[image: image1.png]
Software Acquisition
TASK DELIVERABLE:

Analytical Tools That NASA Projects Should Use

To Assess the Essential Items of Information
Submitted By: Victor Laing, Al Hankinson,

And

Charles Coleman, Manager, SATC

July 2003

	Technical POC: Al Gallo
	Administrative POC: Dennis Brennan

	Phone #: 301-286-3756
	Phone #: 301-286-6582

	Fax #: 301-286-1667
	Fax #: 301-286-1667

	Email: al.gallo@gsfc.nasa.gov
	Email: Dennis.Brennan.1@gsfc.nasa.gov

	Mail Code: 304
	Mail Code: 300.0

Table of Contents

31
Introduction

42
Notation for the Framework

43
The Framework

54
Risk Areas as a Function of Factors and Measures

55
An Example

76
Conclusion

8APPENDIX

1
Introduction
Acquiring software from an external source places several barriers between those that need the software and those that build the software. Each barrier (e.g., organizational, cultural, technical, economic, distance) increases the risks that the software delivered will not meet the needs and expectations of prospective users.

Risk management (risk identification, assessment, and mitigation) is an important method for assuring that contractually acquired software will meet delivery, performance, and quality requirements. This risk – based approach requires the availability of critical items of information to objectively determine the status of deliverable products and to identify trends that may impact the availability and utility of those products. In order to insure that the needed information is available when needed, it is essential that the contract explicitly identifies the critical items of information and requires the contractor to provide NASA with those items in a timely manner.

Identifying and getting relevant data is just part of the solution to managing the risks associated with contractually acquired software. The real challenge is in using the data to objectively gain insight on probable risks and provide the appropriate level of oversight for the software acquisition. At any given time, the contractor may provide as many as 264 primitive information items to the acquirer. Each information item provides a measure relevant for assessing some aspect of software development risk. Looking at each information item in isolation is not likely to be useful. What is needed is some way of analyzing the data and presenting the results of that analysis in a form that clearly communicates the areas and degree of the risks.
Our research identified six common areas of software development risks. Each of these risk areas is characterized by one or more factors associated with the development processes and/or software products. The factors that characterize each risk area are defined by one or more measures. Measures for each factor of each risk area are identified and quantified by specific items of information or data acquired from sources that must be included in the contract’s list of deliverable. This relationship between risks, factors contributing to those risks, and measures for assessing those factors form the framework for identifying the essential items of information needed to objectively assess and manage risks associated with software development. The complete list of risk areas, associated factors, and information items are presented in Task Deliverable: Essential Items Of Information That NASA Projects Should Obtain From The Contractor March 31, 2003.

This document describes a framework for identifying the functionality of a toolset for analyzing the essential items of information and presenting the results of that analysis in a form that clearly communicates the areas and degree of the risks.
Section 2 lists the notations used in developing the framework. Section 3 and 4 describe the mathematical concepts of the framework. An example using the framework is provided in Section 5 and we conclude the discussion in Section 6. Further, the appendix contains a description of the schema for a toolset that is based upon the framework. Lastly, it should be mentioned that the framework is not limited to specific areas of software development risks identified here; it can be adapted as required to reflect the particular characteristics of the application domain and the software project.

2
Notation for the Framework
Let

Y = Overall Risk

Ri = the i-th RISK AREA

Fij = the j-th FACTOR associated with the i-th RISK AREA

mij = the MEASURE associated with the j-th FACTOR and the i-th RISK AREA

The notations above have a direct one-to-one mapping to the risk areas, risk factors, and risk measures presented in Task Deliverable: Essential Items Of Information That NASA Projects Should Obtain From The Contractor March 31, 2003.
3
The Framework

Assuming that overall development and quality risk represent a linear combination of the individual risk areas, this relationship is described in equation (1).

Y = α0 + (1 – α0)∑i = [1, n]αiRi

(1)

i)
α0 ≤ Y ≤ β ≤ 1

ii)
0 ≤ Ri ≤ 1

iii)
α1 + α2 + … + αn = 1

iv)
0 ≤ αi ≤ 1

v)
1 ≤ n < ∞

Where α0 are levels of risk that cannot be removed from a project, this is intrinsic risk. A value for α0 would be assigned according to the project’s domain. For 1 ≤ i ≤ n the αi’s represent the weights given to each area of risk. When each area of risk contribute equally to the overall development and quality risk then αi = 1/n for all i’s, n is the number of risk areas and β is an upper bound for the risk the project is willing to accept, which is depends on the project.

To verify i) in equation (1) set Ri = 0 and Ri = 1, respectively for all i’s, which is 0 risk and maximum risk for all the risk areas. From (1) we get,

Y = α0 + (1 – α0)((α1)(0) + (α2)(0) + … + (αn)(0))

Y = α0
When Ri = 0 for all i’s as required. Now setting Ri = 1 (maximum risk for all areas) for all i’s gives:

Y = α0 + (1 – α0)∑i = [1, n]αi

Y = α0 + (1 – α0)(α1 + α2 + … + αn)

Y = α0 + (1 – α0), since α1 + α2 + … + αn = 1, from (1) iii)

Y = 1

When Ri = 1 for all i’s as required.
4
Risk Areas as a Function of Factors and Measures

In equation (1) overall risk is a function of FACTORS and MEASURES. The question now is, how do we calculate the individual risk areas? Let the i-th risk area be represented by equation (2)

Ri = (∑j = [1, k]mijFij)/(∑j = [1, k]Fij)

(2)

i)
0 ≤ mij ≤ 1

ii)
0 ≤ ∑j = [1, k]mij ≤ k

iii)
k = number of FACTORS

Where Fij = 0 or 1; assign 0 if the j-th factor is not included in the i-th risk area, if not then assign 1. The values for the measures (mij’s) would be obtained and set by domain experts pertaining to each software project that will then be fed into equation (2) and (1) respectively.
5
An Example

In this section we look at a specific example and implement it into the framework developed above. In this example, we use the risk areas, factors, and measures identified in Task Deliverable: Essential Items Of Information That NASA Projects Should Obtain From The Contractor March 31, 2003. The risk areas are:

R1 = Schedule and Progress

R2 = Development Resources

R3 = Product Growth and Stability

R4 = Product Quality

R5 = Development Performance

R6 = Technical Adequacy

Substituting the above into equation (1) gives:

Y = α0 + ((1 – α0)/6)∑i = [1, 6]Ri

(3)

Assuming each risk area is given equal weight, where α0 would be assigned by the project or information, and experience obtained from previous projects of similar nature. From equation (2) the Ri are obtained and listed below:

R1 = (m11F11 + m12F12 + m13F13 + m14F14)/∑j = [1, 4]m1j

R2 = (m21F21 + m22F22 + m23F23 + m24F24)/∑j = [1, 4]m2j

R3 = (m31F31 + m32F32 + m33F33)/ ∑j = [1, 3]m3j

(4)

R4 = (m41F41 + m42F42)/ ∑j = [1, 2]m4j

R5 = (m51F51 + m52F52 + m53F53)/ ∑j = [1, 3]m5j

R6 = (m61F61 + m62F62 + m63F63)/ ∑j = [1, 3]m6j
From (4) the FACTORS are listed below:

F11 = Milestone Performance

F12 = Work Unit Progress

F13 = Schedule Performance

F14 = Incremental Capability

F21 = Effort Profile

F22 = Staff Profile

F23 = Resource Performance

F24 = Environment Availability

F31 = Function Size and Stability

F32 = Product Size and Stability

F33 = Target Computer Resource Utilization

F41 = Defect Profile

F42 = Complexity

F51 = Process Maturity

F52 = Productivity

F53 = Rework

F61 = Target Computer

F62 = Technical Performance

F63 = Technology Impacts

Recall Fij = 0 or 1; assign 0 if the j-th factor is not included in the i-th risk area, if not then assign 1.
The only values missing from (4) to fully specify the equation are the mij’s. As mentioned before, domain experts and/or project staff assign the mij’s. For example in the mij’s could be the number of time units that milestones are:
· ahead of schedule,

· on schedule, and

· behind schedule.

This would translate to a value of 0 ≤ m11 ≤ 1 depending on how critical the deadline for milestones being met is to software development and quality risk. For instance, a value of 0, 0.5, or 1 can be assigned to m11 if the project is ahead of schedule, on schedule, or behind schedule respectively. Where 0 means that there is minimum risk to software development and quality, and 1 stands for maximum risk to software development and quality with respect to schedule and milestone performance. All the other mij’s can be obtained in a similar manner. Equation (1) is now fully quantified.
6
Conclusion

This paper describes a framework for assessing overall software development and quality risk. The framework can be used with an arbitrary number of risk areas pertaining to the software development process. Input for the framework is entered by the project seeking development assessment and the output is a value between α0 and 1, the minimum and maximum risks to the project respectively, where α0 is the level of risk that cannot be removed from a project, i.e. intrinsic risk. This framework once implemented in a tool can be used to significantly reduce a project development risk and effort. The tool will also be useful in increasing overall software quality and keeping track of a project milestones and resources.

APPENDIX
Software Acquisition Tool Schema

Input Data

 R = (R1, R2, … Rn)

Input Values

 Database

[image: image2]

 Default Values
Data Processing

 Y = α0 + (1 – α0)∑i = [1, n]αiRi Risk Framework

[image: image3]

 Expected Risk

 Calculated Risk
Output Data Overall Risk

 Overall Risk

 Individual Risk Areas
 Individual Risk Areas

[image: image4]

 Risk Threshold

 Case 1 Case 2
Action

A1

 C

 Corrective
 Default Corrective Project

 Action Region

 Action Region

A2

 D1

 Project

 Default

 Non-Corrective

 Action Region

 B
 Non-Corrective

 D2

 Action Region

Figure 1: The Software Acquisition Tool Schema showing the four different tiers which makeup the tool.
Software Acquisition Tool Overview
The Software Acquisition Tool will consist of four logical tiers, the input data, data processing, output data, and action.

Input Data – the input data tier of the tool will contain the Software Acquisition Tool interface which will present the user of the tool with different options to input data, use default data, or use both for analyses. The interface is link to the database containing the default development and software risk data.
Database – the database will contain project development risk and quality data (data items, see Essential Items Of Information That NASA Projects Should Obtain From The Contractor March 31, 2003). The values in the database will be used as default values in the data processing tier.
Input Values – the input values is the development risk and quality data entered by the project, this data is also used in the data processing tier. The user of the tool will be allow to chose between using the default value or the inputted value only and the tool will also be capable of comparing the output of both the default and inputted values.

Data Processing – this tier will be doing the processing of the data collected from the input phase (default or inputted). This tier of the tool will implement the framework for assessing overall software development and quality risk (see sections 2-4). The data processing modules will do all the number crunching and pass on the results to the output data tier of the tool.
Output Data – the output data tier will use the results from the data processing tier to display overall risk and individual risk areas from the project. The display shall consist of to categories expected risk and calculated risk.
Expected Risk – the expected risk is calculated using the default data. The expected risk is further categorized into overall risk and individual risk areas, which is compared to the calculated risk and the results of this comparison is used by the action tier.
Calculated Risk – the calculated risk is obtained in a similar fashion as the expected risk the only different is that the overall risk and individual risk areas are calculated using the inputted data.
Action – the action tier uses the risk data from the output data tier along with risk default thresholds and risk thresholds set by the project, these are then used to suggest what action should be taken by the project. Two cases arise from the default and project thresholds settings. Note the vertical lines in the action tier represent the risk thresholds and A1, A2, B, C, D1, and D2 represents the risk regions.
Risk Thresholds – any level of risk above the level of risk set by the project (the level of risk the project is willing to accept) is unacceptable. The level of risk above the default risk threshold represents levels of risk projects in the pass of similar nature were willing to accept.
Case 1 – when the default risk threshold is higher than the threshold set by the project (Figure 1).
Case 2 – when the risk threshold set by the project is higher than the default threshold (Figure 1).
Corrective Action – calculated risk falling in the risk regions A1, A2, and C requires intervention by the project to mitigate the risk (Figure 1).
Non-Corrective Action – calculated risk falling in the risk regions B, D1, and D2 requires no intervention to mitigate risk (Figure 1).
Information Obtained from Data Items

This document describes some important information which can be obtained from the data items listed in the Software Acquisition Task Deliverable (Essential Items Of Information That NASA Projects Should Obtain From The Contractor March 31, 2003) document. In that document six common risk areas of software development was analyze along with the factors contributing to the areas of risk and the data items used to measure them. In this document each section represents a development risk area. The subsections represents the factors and contained in the first line of each subsection is the information which can be obtained form each data item in Software Acquisition Task Deliverable (Essential Items Of Information That NASA Projects Should Obtain From The Contractor March 31, 2003) related to the particular risk area and factor. Also listed in each subsection are some measures which can be used to quantify the factor. These measures should be assigned by domain experts and the values given to the measure should be depended on the particular project.
A1. Schedule and Progress (risk area)

A1.1 Milestone Performance (factor)

Number of time units that milestones are: (information obtained from the factor)

a) Forward of schedule (value assigned to measure the factor)

b) On schedule (value assigned to measure the factor)

c) Behind schedule (value assigned to measure the factor)

A1.2 Work Unit Progress

Percentage of components in the system that are:

a) Design completed

b) Implemented

c) Tested

d) Integrated into the system after problem reports have been resolved, reviews completed, and changes implemented

A1.3 Schedule Performance

The percentage of budgeted money consumed by to project thus far:

a) Project over budget

b) Project on budget

c) Project under budget

A1.4 Incremental Capability

Change in system capability over build/release:

a) By components

b) By functionalities

A2. Development Resource

A2.1 Effort Profile

Number of hours of effort applied to each software task thus far:

a) Number of hours allotted

b) Number of hours used

c) Number of hours remaining

A2.2 Staff Profile

The number and distribution of project staff:

a) Number of staff assign to each software task

b) Number of staff qualified to work on the task they are given

c) Number of staff being trained to qualify for the task they were assigned

d) Number of staff turnover before the software task they have been assigned to has been completed

A2.3 Resource Performance

Staff hours usage over the project life at a particular time point:

a) Correct amount of usage

b) Over usage

c) Under usage

A2.4 Environment Availability

Availability and utilization of necessary tools and facilities that project do not own themselves:

a) Over utilization (project waiting on tools and facilities to become available)

b) Full utilization (project using tools and facilities without wait time or idle time)

c) Under utilization (tools or facilities are idle while in the possession of the project)

A3. Product Growth and Stability

A3.1 Function Size and Stability

Functionality of the software product:

a) Percentage of requirements meet and changes (modifications) over the software builds/releases

A3.2 Product Size and Stability

Size and change in the size of the software measured by:

a) Lines of code over builds/releases

b) Number of components over builds/releases

c) Number of databases over builds/releases

A3.3 Target Computer Resource Utilization

Hardware adequacy for the project:

a) Adequacy of internal memory storage as need by the project

b) Adequacy of external memory storage as need by the project

c) Adequacy of CPU throughput as needed by the project

d) Availability of the hardware when needed by the project

A4. Product Quality

A4.1 Defect Profile

Software quality with respect to problem report, failure interval, and defect density:

a) High quality

b) Average quality

c) Poor quality

A4.2 Complexity

Software quality with respect to cyclomatic complexity, weighted methods per class, response for a class, lack of cohesion of methods, coupling between object classes, depth of inheritance, and number of children:

a) High quality

b) Average quality

c) Poor quality

A5. Development Performance

A5.1 Process Maturity
Is the software development organization at the correct CMM level:

a) Yes

b) No

A5.2 Productivity

Give the amount of labor hours consumed, is the software development organization at the correct level of productivity:

a) Yes

b) No

A5.3 Rework

The percentage of rework in (documents, design, code, test plans, testing), is the software development process at the correct level:

a) Yes

b) No

A6. Technical Adequacy

A6.1 Target Computer Resource Utilization

Hardware adequacy for the project (same as 3.3):

a) Adequacy of internal memory storage as need by the project

b) Adequacy of external memory storage as need by the project

c) Adequacy of CPU throughput as needed by the project

d) Availability of the hardware when needed by the project

A6.2 Technical Performance

Did the software satisfied system performance requirements:

a) Yes

b) No

A6.3 Technology Impacts

Percentage of reused lines of code, components, and requirements:

a) High reuse

b) Average reuse

c) Low reuse
PAGE
6

