Software Fault Injection Research

NASA Glenn Research Center

Research Summary

The first phase of this Software Fault Injection research project has involved learning the techniques of fault injection and researching how and where it has been applied successfully. A single study subject has been selected (as per the proposal for the first year) and metrics defined to track the results of this study. It is important to remember that there are two aspects to this research. First, is software fault injection useful at finding errors or faults (usefulness)? Second, is the technique useful from an Independent Verification and Validation perspective (usability)? The first study subject is a “learning experience” in what works, how much effort is involved, and what needs to be learned before software fault injection can be used. In a subsequent phase, two or more additional study subjects will be chosen which will provide additional “statistical” information in usefulness as well as information on the ease or difficulty in using fault injection on various types of projects.

The research performed at the beginning of this project showed how wide and varied the software fault injection technique is. It soon became obvious that the scope of the research needed to be narrowed to keep it manageable. In the following sections, are the detailed rationale for narrowing the scope of the research, choosing interfaces to work with, and selecting the initial study subject.

Metrics have been selected that apply to both aspects of the research (usefulness and usability). They are detailed on page 3. Additional metrics may be added as the research progresses.

One aspect that was not considered with the initial proposal is the need to pay for help from the study subjects. Many projects were not considered for this research because they are in the hands of contractors, and any help would come with a price tag. In addition, the current budget and probable cuts have made projects unable to provide much in the way of support for this research, either in time on equipment or help from project personnel. Next year’s proposal will correct this oversight, to allow for a greater range of potential study subjects.

Narrowing the scope

Software Fault Injection (SFI) is a collection of testing techniques primarily used to test the error handling capabilities of the software. In particular, does the software respond gracefully and appropriately to erroneous inputs? Software Fault Injection can be used to create internal errors (equivalent to programmer or logic errors) and determine if they propagate through the system to a final, erroneous result. SFI can also be used to test software robustness to externally generated errors, such as failed sensors and garbled commands.

Each variation of SFI follows a similar methodology: alter the input to a “module” and observe what happens (if anything). Traditionally, SFI required access to the source code. The software code was instrumented to modify (mutate) an input to a module or software unit and to observe the output, comparing it to the expected output from an uninstrumented version of the software. By hand, this is a tedious and time-consuming process. While several tools have been developed, the systems they run on and the languages they can mutate are limited.

Recently, Software Fault Injection has been extended for other purposes, such as security verification, safety, testability information, and COTS verification. Most of these methods still follow the basic technique of instrumenting the source code to mutate data as it moves through the system. Some, however, work at the interfaces between system elements (hardware, software executables, operating system, for example). When dealing with interfaces, access to the source code is usually not necessary.

Because Software Fault Injection covers such a broad spectrum of variations, it was necessary to limit the scope of research. The usefulness of SFI is one aspect of the research, and the usability of it from an IV&V perspective is the other. Scoping the project was approached from an IV&V perspective. The assumption was made that any technique that required an intimate knowledge of the software would likely be prohibitively expensive for an IV&V effort. Only if assured of a “high return” (finding critical errors or verifying safety and robustness with high assurance) would such an investment be justified.

The one form of Software Fault Injection that does not require more than passing familiarity with the source code is that which focuses on the interfaces. For this SFI technique, the IV&V engineer needs to understand how the software system works, but does not have to be intimately familiar with the inner workings.

Selecting Interfaces

Four potential interfaces of interest were selected, based on experience and what could be gleaned from the literature. These interfaces are:

· COTS operating system or other COTS software

· hardware interfaces

· user input

· communications media

Operating systems (OS) are often assumed to function as documented and to be “error free”. Unexpected but legitimate OS errors may not be handled correctly by the applications software. Hardware failures, such as malfunctioning sensors returning incorrect data, “sticky” valves, or output port bits stuck high (1) or low (0), can lead to software problems if they are not anticipated. Communications difficulties (static leading to garbled or altered commands, for example) and user errors are difficult to test for, since they do not occur in nominal operation.

To gain some confidence that the reduction in scope would lead to useful results, two aspects were considered: error sources for failures and how Software Fault Injection is being used.

Finding literature that give details on root causes of failures was difficult. While causes of prominent failures, such as Ariane 5, the Mars Climate Orbiter, and the Mars Polar Lander, are well documented, statistical information from a larger variety of failures was not easy to find. Some information could be found in the NASA Lessons Learned database. The article “Lessons from 342 Medical Device Failures” included some failures related to interfaces, invalid inputs, or COTS software. However, these were lumped together with other failures. Without the raw data, it cannot be said what percentage falls into these categories. In “Sources of Failure in the Public Switched Telephone Network”, most failures are not software related, and there is no way to tell how many would fall under the fault injection criteria. However, operator data input errors caused 10/303 outages, and software 44/303. The article noted that error handling, detection, and correction code is about 50% of the executable software, which is much higher than “normal”, and was a factor in the software being very reliable. From these sources, however, it was possible to see that at least some failures were attributable to problems at one or more of the four proposed interfaces.

A literature search turned up several articles and projects using Software Fault Injection with COTS software. The Ballista project has tested the robustness of COTS software, particularly the Unix Operating System. “Wrapping Windows NT Binary Executables for Failure Simulation”, by A. Ghosh and M. Schmid, looked at how Windows NT reacted to injected faults. The articles “Tolerant Software Interfaces: Can COTS-based Systems be Trusted Without Them?”, J. Voas and F. Charron, and “Defensive Approaches to Testing Systems that Contain COTS and Third-Party Functionality”, J. Voas, discussed approaches to using Software Fault Injection at the interface between the COTS software and the rest of the system.
One article that was especially apropos to this research direction was “An approach to Testing COTS Software for Robustness to Operating System Exceptions and Errors”, by A. Ghosh and M. Schmid. Building on their knowledge of Windows NT potential errors (from an earlier research project, documented in the article mentioned above), they looked at how software applications handled those errors, injected into them via SFI.

Selecting a Study Subject

With the scope of the research narrowed to one or more of the interfaces (COTS, hardware, user, and communications), individual projects and programs could be evaluated as potential pilot study subjects. The goal was to find a project/program that included several of the interface areas and was willing to participate. In addition, the practical considerations of access to the software (executable required and source helpful) and the ability to run the software were a factor. This research has to be conducted in a “non-interference” manner. In addition, any use of study subject facilities or personnel that are not “free” needs to be a factor, as there are no funds to pay for such use.

A selection criteria checklist was created to define the important and supporting criteria. An example of the checklist is on page 5, with completed checklists for the potential study subjects following. The first section (above the thick line) addresses the selected interfaces. The more “yes” answers, the better the project, all other things equal. The other questions provide additional information that is useful in making the subject selection. The Comment section of the example checklist gives additional information about that question or piece of information.

From the list of potential projects at NASA Glenn Research Center, three projects were prime candidates. They are:

· the Combustion Module-2 (CM-2) experiment

· the Tempest embedded web server and application (Java version)

· the Tempest embedded web server and wind tunnel application (C/C++, VxWorks version)

After speaking with the project managers and weighing the various factors, the VxWorks version of Tempest was selected.

The CM-2 experiment rated higher in the number of interfaces, and is probably a better subject. However, the limited “non-paying” time on the Hi-Fi functional model (simulator) would make the research more difficult to conduct. If funding continues, CM-2 or a similar system would be an excellent choice for one of the second pilot studies.

Of the two Tempest versions, the VxWorks version had several important factors going for it. First, VxWorks is a popular operating system used on many projects. In addition, this version is currently running a mini wind tunnel, and code exists for the hardware interface. The one limiting factor would have been the cost of the VxWorks operating system, which is in the $3-5K range. However, a project here at Glenn had an extra seat and was willing to let us use it for this research.

At the end of this document are copies of the completed selection criteria checklists for the three projects.

Next steps

· Get a working system with VxWorks, Tempest, and wind tunnel application.

· Create any necessary “hardware simulators”, since the real hardware is not available for use.

· Gain a working knowledge of the VxWorks operating system, the Tempest web server, and the wind tunnel application.

· Research the failures of the operating system. [Look for error code returns, exceptions, etc. in documentation; do a web/literature search for any other “unexpected” and undocumented problems.]

· Create the fault injection code for testing the interfaces.

· Perform the tests and record the results.

· Analyze the results.

· Throughout, keep accurate records and metrics for the study.

Metrics

There are two aspects to this research: How usable is the techniques from an IV&V perspective, and how useful is the technique in finding faults. The metrics chosen reflect both aspects.

Usability metrics:

· Time spent per task The tasks for the preparatory phase are:
· Literature search

· Management (reports, etc.)

· Preparatory work (pre-project selection)

· Study Subject understanding (getting to know the subject). This includes time to learn the appropriate software technology (language, operating system, etc.)

· Technical (time spent hands-on with the software)

· Miscellaneous (searching for tools, etc.)

Tasks for the Fault Injection phase are preliminary, and will be refined as the research progresses. They are:

· System setup and configuration

· Understanding of system and component software (including learning language, OS, etc. if necessary)

· Creation of required simulators and support code

· Research into failure modes of interfaces

· Creation of fault injection code for interface testing

· Performing tests

· Analyzing test results
· Management (reports, metrics, etc.)
· Miscellaneous (small tasks that don’t fall under other categories)
· Subjective “effort” scale for each task (easy, difficult, required significant outside help, etc.)

Usefulness metrics:

· Software project metrics:

· Size (SLOC)

· # modules/classes/units/functions

· Complexity of modules

· Previous error information (when/where found)

· Interface documentation (# inputs, type of inputs, OS calls)

· Fault Injection Metrics:

· # faults injected, by interface type (OS, hardware, operator error, etc.) and location (module/unit/program)

· # faults that lead to failures, by interface type and location

· # faults handled correctly by the software

· # faults ignored by the software

Software Fault Injection Project Selection Checklist

Project:

Project Manager:

	Question
	Yes/No/NA
	Comment

	Does the project contain one or more of the following capabilities:
	
	** Interface questions – number of ‘yes’ answers determines applicability**

	Commercial Operating System?
	
	

	COTS library or other COTS functions?
	
	

	Control of Hardware?
	
	

	Processing of Hardware signals?
	
	

	Operator commanding or input to system?
	
	

	Communication through potentially lossy medium?
	
	

	# software elements (CSCIs)
	
	If > 1, may chose 1 or all

	Hardware or software simulator available?
	
	Run software without flight hardware available

	Software can be run on standard, easily available desktop operating system? [Linux, Windows]
	
	Run software in desktop environment, don’t interfere with subject

	OS + software element can run on hardware I have available without other special hardware
	
	If hardware required, do I have it or can I get it cheaply?

	OS simulator is available that can run on desktop system?
	
	Run software in desktop environment, don’t interfere with subject

	Simulator for other hardware available?
	
	Same as above

	Hardware simulator is software and runs on desktop system?
	
	Same as above

	Hardware simulator is a “duplicate” of flight hardware?
	
	Run software without flight hardware available

	Amount of time available to use hardware simulator, if duplicate of flight hardware
	
	Availability of necessary tool

	Operator scripts for nominal operations?
	
	Aids in understanding of system, knowledge of “off nominal” situations

	Software system user guide available?
	
	Same as above

	Degree of testing already accomplished (level of testing)
	
	How much is known about software problems and robustness

	What test levels – unit, integration, CSCI, system?
	
	Same as above

	Completeness of test reports
	
	Same as above

	As-run Test procedures available (so can reproduce tests)
	
	Are there previously run tests defined which can be used with the fault injection testing?

	Detailed CSCI or integration test procedures available? [at the level of the “unit” I would select to work with]
	
	Same as above. These would be especially helpful.

	Source code available (if needed)?
	
	Aids in understanding of system

	OS Documentation available? Including possible error conditions/values.
	
	Aids in understanding of system, problems to inject

	COTS software documentation available? Including possible error conditions/values.
	
	Same as above

	Information readily available to determine possible hardware failures or out-of-range readings? FMEA, FTA, etc.
	
	Same as above

	Project has information (metrics) relating to robustness, reliability, errors found during testing, etc.
	
	For comparison with fault injection results

	Project is willing to share metrics, if available.
	
	Same as above

Software Fault Injection Project Selection Checklist

Project:
CM-2 (Combustion Module-2)

Project Manager:
Ann Over
3-6535

	Question
	Yes/No/NA
	Comment

	Does the project contain one or more of the following capabilities:
	
	

	Commercial Operating System?
	Yes
	OS/9 for control CSCI, Win98 for operator interface laptop

	COTS library or other COTS functions?
	No
	

	Control of Hardware?
	Yes
	Control CSCI only

	Processing of Hardware signals?
	Yes
	Control CSCI only

	Operator commanding or input to system?
	Yes
	Both CSCI’s

	Communication through potentially lossy medium?
	Yes
	Both CSCI’s

	# software elements (CSCIs)
	2
	One is instrument control, one is operator interface (laptop)

	Hardware or software simulator available?
	Yes
	Minimal time, however, without paying

	Software can be run on standard, easily available desktop operating system? [Linux, Windows]
	No
	Only operator interface CSCI

	OS + software element can run on hardware I have available without other special hardware
	No
	

	OS simulator is available that can run on desktop system?
	No
	

	Simulator for other hardware available?
	No
	

	Hardware simulator is software and runs on desktop system?
	No
	

	Hardware simulator is a “duplicate” of flight hardware?
	Yes
	Hi-Fi Functional Model

	Amount of time available to use hardware simulator, if duplicate of flight hardware
	some
	Minimal – operator needed, only part time, would have to pay for more than a few hours

	Operator scripts for nominal operations?
	Yes
	

	Software system user guide available?
	minimal
	Some documentation, no real user guide

	Degree of testing already accomplished (level of testing)
	Final
	CM-2 has shipped

	What test levels – unit, integration, CSCI, system?
	System
	Other software testing not well documented

	Completeness of test reports
	Good
	For system tests

	As-run Test procedures available (so can reproduce tests)
	System only
	No “as-run” software tests, only system-level

	Detailed CSCI or integration test procedures available? [at the level of the “unit” I would select to work with]
	No
	

	Source code available (if needed)?
	Yes
	

	OS Documentation available? Including possible error conditions/values.
	Yes
	

	COTS software documentation available? Including possible error conditions/values.
	N/A
	

	Information readily available to determine possible hardware failures or out-of-range readings? FMEA, FTA, etc.
	Some
	Information available, but not in one place.

	Project has information (metrics) relating to robustness, reliability, errors found during testing, etc.
	No
	

	Project is willing to share metrics, if available.
	N/A
	

Software Fault Injection Project Selection Checklist

Project: Embedded Web, Java version

Project Manager:
Dave York
3-3162

	Question
	Yes/No/NA
	Comment

	Does the project contain one or more of the following capabilities:
	
	

	Commercial Operating System?
	Yes
	Runs on any O/S with a Java Virtual Machine

	COTS library or other COTS functions?
	Yes
	Java language libraries

	Control of Hardware?
	possible
	Control via applications, not Web server

	Processing of Hardware signals?
	possible
	Same as above

	Operator commanding or input to system?
	Yes
	Input via network only

	Communication through potentially lossy medium?
	Yes
	Network packets

	# software elements (CSCIs)
	2
	Embedded Web Server, application program

	Hardware or software simulator available?
	No
	

	Software can be run on standard, easily available desktop operating system? [minimizes impact on project. Example: Linux]
	Yes
	Any standard desktop system

	OS + software element can run on hardware I have available (Motorola 68000 VME processor) without other special hardware
	possible
	Runs on any hardware/OS that supports a JVM

	OS simulator is available that can run on desktop system?
	N/A
	

	Simulator for other hardware available?
	Unknown
	Application controls hardware, and application not selected

	Hardware simulator is software and runs on desktop system?
	N/A
	

	Hardware simulator is a “duplicate” of flight hardware?
	N/A
	

	Amount of time available to use hardware simulator, if duplicate of flight hardware
	N/A
	

	Operator scripts for nominal operations?
	No
	

	Software system user guide available?
	Yes
	Both User and Developer Guides

	Degree of testing already accomplished (level of testing)
	complete
	All testing completed

	What test levels – unit, integration, CSCI, system?
	System
	

	Completeness of test reports
	
	Still getting this information

	As-run Test procedures available (so can reproduce tests)
	No
	

	Detailed CSCI or integration test procedures available? [at the level of the “unit” I would select to work with]
	No
	

	Source code available (if needed)?
	Yes
	

	OS Documentation available? Including possible error conditions/values.
	N/A or Yes
	Since it runs on any OS, I could select any, including Windows.

	COTS software documentation available? Including possible error conditions/values.
	N/A
	

	Information readily available to determine possible hardware failures or out-of-range readings? FMEA, FTA, etc.
	N/A
	

	Project has information (metrics) relating to robustness, reliability, errors found during testing, etc.
	No
	

	Project is willing to share metrics, if available.
	N/A
	

Software Fault Injection Project Selection Checklist

Project: Embedded Web, VxWorks version

Project Manager:
Dave York
3-3162

	Question
	Yes/No/NA
	Comment

	Does the project contain one or more of the following capabilities:
	
	

	Commercial Operating System?
	Yes
	VxWorks

	COTS library or other COTS functions?
	No
	

	Control of Hardware?
	Yes
	Through application – wind tunnel

	Processing of Hardware signals?
	Yes
	Through application – wind tunnel

	Operator commanding or input to system?
	Yes
	Input via network only

	Communication through potentially lossy medium?
	Yes
	Network packets

	# software elements (CSCIs)
	2
	Embedded Web Server and application program (wind tunnel)

	Hardware or software simulator available?
	Yes
	VxWorks Simulator

	Software can be run on standard, easily available desktop operating system? [Linux, Windows]
	Yes
	Any standard desktop system

	OS + software element can run on hardware I have available without other special hardware
	No
	

	OS simulator is available that can run on desktop system?
	Yes
	VxWorks simulator

	Simulator for other hardware available?
	No
	

	Hardware simulator is software and runs on desktop system?
	N/A
	

	Hardware simulator is a “duplicate” of flight hardware?
	N/A
	

	Amount of time available to use hardware simulator, if duplicate of flight hardware
	N/A
	

	Operator scripts for nominal operations?
	No
	

	Software system user guide available?
	Yes
	Both User and Developer Guides

	Degree of testing already accomplished (level of testing)
	complete
	All testing completed

	What test levels – unit, integration, CSCI, system?
	System
	

	Completeness of test reports
	
	Still getting this information

	As-run Test procedures available (so can reproduce tests)
	No
	

	Detailed CSCI or integration test procedures available? [at the level of the “unit” I would select to work with]
	No
	

	Source code available (if needed)?
	Yes
	

	OS Documentation available? Including possible error conditions/values.
	Yes
	

	COTS software documentation available? Including possible error conditions/values.
	N/A
	

	Information readily available to determine possible hardware failures or out-of-range readings? FMEA, FTA, etc.
	N/A
	

	Project has information (metrics) relating to robustness, reliability, errors found during testing, etc.
	No
	

	Project is willing to share metrics, if available.
	N/A
	

PAGE
8

