	Glenn Research Center Document
	Title: Test Report for Software Fault Injection

	
	Document No.: xxxxx
	Rev.: Draft

	Document No.
	

	Revision
	Draft

SAIC/NASA

Test Plan for Software Fault Injection

Prepared By

Hugh Caldwell

SAIC/NASA Glenn Research Center

Date: September 30, 2002

Signature Page

(Official signatures on file with the xxx Project Control Specialist)

Prepared By:

Hugh Caldwell

ESA/Glenn Research Center

September 30, 2002

Reviewed By:

Kalynnda Berens

Principal Investigator

SAIC/Glenn Research Center

October 1, 2002
Approved By:

Kalynnda Berens

Principal Investigator

SAIC/Glenn Research Center

October 1, 2002

Change Record

	Rev.
	Effective

Date
	Description

	Draft
	09/30/2002
	Original

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

TABLE OF CONTENTS

60. Test Plan Identification

61.0 Introduction

61.1
Objectives

81.2
Background

81.3
Scope

81.4
References

92. Test Items

92.1
COTS/GOTS Component

92.2
Project Control Procedures

102.3
Implementer Procedures

102.4
End-User procedures

113.
Features to be Tested

124.
Features not to be Tested

135.
Approach

135.1
Domain Fault Injection

145.2
Requirements (Vendor Viewpoint) Fault Injection

145.3
Standards Fault Injection

145.4
Sub Categories

145.4.1
Cost

145.4.2
HFE Fault Injection

145.4.3
Miscellaneous Fault Injection

145.4.4
Performance Fault Injection

145.4.5
Security Fault Injection

155.4.6
Specifications Fault Injection

155.5
Recovery testing

155.6
Regression Testing

155.7
Comprehensiveness

165.8
Constraints

176.
Component Pass/Fail Criteria

187.
Suspension Criteria and Resumption Requirements

187.1
Suspension Criteria

187.2
Resumption Requirements

198.
Test Deliverables

209.
Testing Tasks

2110.
Environmental Needs

2110.1
Hardware

2110.2
Software

2110.3
Security

2110.4
Tools

2110.5
Publications

2211.
Responsibilities

2211.1
COTS/GOTS Auditors Fault Injection Team

2211.2
Developers

2211.3
End-Users/Customer

2312.
Staffing and Training

2312.1
Staffing

2312.2
Training

2413.0
Schedule

2514.0
Risks and Contingencies

2615. Approvals

2716. Summary

2716.1
Part of SAFE that Require further Development

2716.2
Parts of SAFE that Required Changes

2716.3
Prioritizing Parts of SAFE that were executed

2716.4
Lessons Learned

2716.5
Addition/Related Research

2716.6
Additional comments

29Attachments

30Attachment A. Test Log

91Attachment B Definitions

93Attachment C Test Bed Layout and Design

95Attachment D SAFE Work Breakdown (Flow Chart Format)

105Attachment E
Major Tasks Performance Summary

0. Test Plan Identification

Injecting Faults for Software Error Evaluation using the SAFE engineering approach

Testing the GOTS software component Tempest - an embedded web server developed by the Engineering and Technical Services Directorate, Engineering Design and Analysis Division, Flight Software Branch at NASA Glenn Research Center.

1.0 Introduction

NASA Fault Injection:

Complex software is an integral part of many NASA projects. More and more this software is controlling aspects of the mission that are critical to the mission’s success. These critical system, such as environmental controls inside a flight system that allow pilots and scientist to breath, flight surface control system that control location and orientation of flight surfaces/devices which was the domain of hardware, have now been moved into the software domain. This software must therefore be highly fault /failure tolerant. One method of insuring such tolerance is to organically design all the software. Designing a full organic system is very costly and in complex systems very cost prohibitive. The solution is to use software packages called components, that may be purchases from commercial entities or obtain from free distributions available to the software community. These packages can be “plugged” into the software design. The use of these components allow the project manager to reduce the cost of the project and the amount of time it takes to develop a finished product. The side effect of using software components is the unknown fault tolerance and reliability of the software component used. Aggravating this situation even further, commercial software component vendors very rarely release source code for peer review. In NASA , mission assurance requires that the software product included in any system must be fault tolerant. How does NASA verify and validate system’s that include software components where source code is not available for inspection? What techniques can be used by NASA IV&V and Quality Assurance teams to insure the software components used in a NASA system meet NASA’s quality, safety and robustness requirements?

SAFE is an engineering approach that was designed to use fault injection as a means to test the fault-tolerance, robustness and reliability of software components when source code for those components may be unavailable (a situation common when using COTS software). NASA is evaluating the usefulness and cost effectiveness of the SAFE approach. A GOTS software component called Tempest was the software component chosen first to evaluate the SAFE approach.

Tempest:

An embedded web server designed to be a drop-in software component into embedded systems. The purpose of Tempest is to give a real-time operating system a means of communicating with the “outside world” via a web interface. This web interface allows NASA to replace costly custom video hardware and custom software GUI solutions with a reusable general purpose laptop that allows multiple GUIs to be loaded on the client side interface with a common off-the-shelf video interface that comes as part of a general purpose computer laptop.

1.1 Objectives

Following the outlined approach of the SAFE method, this test document will document the activities that occurred during the Testing phase. The following tasks were performed to prepare for the testing of the Tempest component:

· A test bed of computer with browsers and real-time operating systems were set up to test the Tempest web server.

· Every computer system in the test bed was only modified enough to run the applications that were required for testing purposes and Ethernet networking. Default settings were used as much as possible.

· The real-time operating system that ran the web server did have one real-time task running during testing (that measured hardware jitter (RT-LINUX machine jitter program)) to simulate a real-time OS (RT-Linux) running real-time tasks while serving web pages. (Yes, we know that more real-time tasks should have been executing but time and money did not allow us to develop such as system). The Java web server was loaded to run on top of the Linux 6.2 Redhat OS that was running as a task on the RT-Linux real-time operating system.

· The Application Analysis phase Review was performed (Auditors, Developers, End user and customer in attendance).

· The Design Analysis phase Review was skipped for this project since Tempest is not being embedded into any project.

· The Translation (coding) phase Review was skipped for this project since Tempest is not being embedded into any project.

· SW/HW Translation was skipped because the hardware has been developed along with the operating systems several years ago and has been test by other. It is also not under NASA configuration control.

Testing phase is the phase that is being audited here (this phase is usually considered a “system-level” audit). The audit team loaded eight computers from a bare-bones no operating system state to a “clean” operating system state. Since Tempest was developed on desktop systems using the Microsoft Windows operating system and the claim made by the Tempest developers that their Java version will run on top of any Java enabled OS, we purposely decide to use Linux based operating systems under the client browser and real-time Linux for the real-time operating systems. The objective here was to test the portability of Tempest across operating system platforms. Another objective is to demonstrate that when phases are skipped because Fault Injection is a after thought rather than a fore thought in development that many of the errors we expect to find with SAFE in early development will be exposed in this phase. We expect that many of the results will demonstrate that faults were introduced during requirement and design phases and that requirement and design fault injection would have prevented costly repairs in this phase.

Responsibilities

Auditors: To discover “remaining” faults in the Tempest component. Auditors will use test scenarios and testware developed to test and retest the Tempest component.

Mr. Hugh Caldwell

Developers: Will participate in reviewing the log to discuss findings and solutions to findings that have been declares faults by the review team (auditor/end-user/developer meeting to review auditor’s logs and classify the items contained in the log). The developers will provide auditors with “application support to ensure the component is being “operated” properly.

Mr. Joe Ponyik

End-User: The end user will work closely with the Auditor to ensure the Auditor does not have any misconception about how the component is to be used. The end-user will review all test scenarios and testware to aid the Auditor in make sure that end-user concern’s about the component’s quality are addressed.

Mr. David York

Customer: The customer is responsible ensuring that Tempest meets the system requirements. The customer will work with the Auditor to insure test scenarios and testware will test system requirements.

Mr. David York

Mr. Phouc Thai

Sources for Plan preparation

1. SAFE Fault Injection Plan

2. IEEE 829-1998

3. The SAFE databases used to record and organize vendor component requirements (requirement s that the vendor states he meets), standards requirements and domain knowledge on Tempest, Web standards and Web design and common design faults

4. HTTP version 1.1 and associated standards

Test Tools and System Environment

· No automated tools were used

· System network environment was a stand alone Ethernet network (Distributed Control Network Level 1)

1.2 Background

Tempest was developed from the need to control the number of custom SW/HW GUIs that experiments on the International Space Station would require. The solution was to develop an embedded web server (Tempest) small enough to fit inside an real-time embedded system yet large enough to provide the scientists working on the Space Station a familiar GUI interface that would allow them to monitor the experiments that were being performed. This internet/web solution presented itself as the most logical frame work to pursue as a solution to the growing number of proliferating HW monitors and custom GUI that would have to be used and maintained. The web server could run as a low priority task inside the real-time operating system who task would be to server web pages, while the scientist could use a common ordinary laptop and web browser to provide the GUI. This solution would allow the use of a common language to produce a HTML page, one Laptop could service hardware wise as the monitor and software GUI for many experiments. The experiments RTOSs would only have to worry about serving web pages over an Ethernet connection to provide their man-machine interfaces using a cross-platform Java based web server.

1.3 Scope

This test plan covers a “full” component test of the Tempest Web Server. This includes testing all aspect of Tempest. Aspects of concern are the ability of Tempest to handle command line inputs, HTML inputs, configuration inputs, security, the ability to handle system induce “bad data” (it ‘s reliability when bad data is input), and what part of the standards were implemented, were not implemented, or ignored. Based on the results a developer that does decide to use the Tempest component will know the risks of doing so and will have the ability during design to develop methods and procedure to protect or minimize the known risk.

1.4 References

Fault Injection Plan (SAFE)

Tempest User manuals

2. Test Items

The Java version of Tempest Release 2.0 will be tested on a JVM Release 1.4.0_01.

The Tempest server is available from NASA via Open Channel Foundation (www.openchannelsoftware.com) . The end user must sign a ELUA before download agreeing to the term and condition set forth in the EULA. The JVM was down loaded from Sun Corp. (www.sun.com). Both components were downloaded and archived on a CD for portability reason (Internet connection were not available to the audit team on the test bed network). Low power desktop machines were used to more closely simulate the computing power of the types of processors that would be used in real live situation.

The Tempest development team supplied the following materials for Tempest support

	Requirements Specification
	No specification were developed

	Design Specification
	A draft is available and was drafted and published after the release of Tempest.

	Source Code
	Available from the down load. This project did not use the source code because the Fault Injection Test Team wanted to simulate the worst case COTS situation to test its COTS software Fault Injection system.

	User Guide
	Available in down load. The user’s guide was used and followed “religiously”.

	Operation Guide
	No document available. Internet did supply some operational information.

	Installation Guide
	Included in User Guide

	Workshop Hardcopy
	Two workshop documents are available for review and training.

	Software Log
	An ad-hoc document is available but was not used for reasons stated under Source Code.

	Fault List (Bug report)
	Available in Eudora Email format. Difficult to follow. Bugs are not documented in any formal structured system.

2.1 COTS/GOTS Component

Tempest Version 2.0 (Java Version)

2.2 Project Control Procedures

Fault Injection: The fault injection of Tempest followed the procedure outlined in a Software Initiative Proposal (CSIP: Injecting Faults for Software Error Evaluation) prototype Test Plan Document deliver April 2002. This prototype Test Plan Document presents the SAFE engineering approach and supporting documentation on why NASA should implement SAFE for injecting faults. SAFE is a proactive evaluation of software applications/modules/components before they are included in a NASA system. For untested applications/modules/components SAFE provides a procedure for auditing during NASA application requirements and design phases. Armed with the knowledge garnished from SAFE databases NASA project engineer can manage the risks of using a vendor’s application/module/component.

Tempest:

Tempest will follow the procedures as outlined in the SAFE approach. A work-break-down high level flow chart illustrates SAFE’s major tasks and when they occur in Appendix D

2.3 Implementer Procedures

Tempest Workshop hardcopies

2.4 End-User procedures

Tempest User manual and help desk advice from Mr. David York, NASA Glenn Research Center

3. Features to be Tested

Portability

Utilized Linux OS 7.2 with Netscape and Konqueror browsers to test the cross platform capabilities of Tempest. Tempest was primarily developed and tested on a Microsoft Windows System and Internet Explorer (other browser were tested as well on the MS platform)

Security

Particularly embedded anything let alone embedded web server must be secure. Many of these systems are not attend to regularly so they must therefore be able to withstand any attempt to breach their security and file corruption (wither on purpose or by mistake). Only basic “newbie” attempts will be made to break security (time and lack of funds prevents heavy auditing of Tempest security features.

Compliance to Standards

Particularly in the case of the World Wide Web (www) compliance to Standard is of utmost importance. A deviation of from one of the accepted practices that the standard stipulates will mean a lack of operability with other server and browsers. What are the deviations, were all of the MUSTs implemented, what optional service were included, what services only implement part of the standard? This type if information is important to developers to see if Tempest will meet the needs of their system requirements. Tempest implements several Standards. Due to schedule and funds we selected to test only a few MUST in HTTP V1.1 Standard.

Usability

If the server is not easy to implement and configure the server will not be used. Testing will include easy of setup of third party software (JVM for Linux in this case) , starting the server using command line options, configuration on the system, Tempest configuration files, reaction to client request and common user actions and miss-actions (“double clicking”, terminating client, requests for bogus pages, request for secure pages) and usefulness of error messages in logs and monitor outputs. Again only some of the basic were covered due to time and money constraints.

Suggestions of Mr. York to concentrate in certain areas of concern were taken and used to select the items that were tested.

4. Features not to be Tested

Tempest marketing documentation states that it can fulfill many requirements. Many of these “requirements” depend upon third party software providing the bulk to the software to fulfill the requirement (i.e. …able to utilize NFS. If available from another third party component and accessible to Tempest, Tempest will utilize the NFS service). Only ”pure “ Tempest component requirements were audited. Time and money prevented us from developing testware to audit component interfacing.

Tracking COTS component quality via metric was not including in this test. IV &V and Software assurance metrics were entirely skipped due to money and time constraints and the shear size of the task.

Exhaustive testing of Tempest to the web’s domain knowledge (i.e. lessons learned), to Standards and to requirements Tempest states it meets was not done due to imposed schedule and funding.

5. Approach

SAFE is very, very labor intensive in the requirements and design phase. Please note that this is also the developer Achilles heel because this is when a vast majority of faults are introduced into software. A lot of effort must be expended to organize the required data into a usable format that the auditor can utilize to develop test scenarios and testware. The “icing” or the “easy part” is to implement the testware at the “end”. SAFE breaks the collected COTS information up into three general areas of concentration and then subdivides that information into several sub categories. The databases that store this information have been purposely design to follow as close as possible the same formats and styles. If a component has been tested, then the auditor reviews the results of past auditing with the developer. If the component has been upgraded the auditor will “maintain” the database by upgrading the information store to include new data generated as a result of auditing the new version. If the component that is plan for use has never been audited then a full all out audit will be performed in time for the developers and auditors to decide if “that component” is the correct component to meet the needs of the project.

As the SAFE databases grow test scenarios and testware may be reused to test new components. For example: the first project that implements HTTPV1.1 will have to develop a full test suite of test scenarios and testware. Any project that follow that has plans to implement a HTTPv1.1 compliant component would just review the test suite for completeness, then reuse the test suite to audit the “new “ component (test results would be added to the SAFE database for other to utilize). Based on test results the project can make rational decisions to utilize the new component or look for another more suitable component. This auditing also allows the project to manage the risks of using a component in their software design (i.e. If the component allows buffers to overflow, then the project’s software controls the amount of data the buffers in the component are allowed to see. This is done by the developer wrapping the component with a set of functions that control the flow of data to the component and its buffers. But the developers must know that the requirement in this project is to design such a wrapper.)

Tempest

Tempest will be tested in accordance with the test scenarios/testware generated from the SAFE databases that document the “requirements” that Tempest must meet in order to validate and verify that Tempest is fault-tolerant and able to perform it’s tasks as expected.

Audit personnel will use Tempest documentation and information generated by the SAFE databases as sources to develop and prepare test cases. The approach should follow NASA testing standards and should verify that Tempest requirements accurately reflect it capability and fault-tolerance. The end-user will enjoy full participation in this process to ensure that all faults represent live system condition of the real-world.

Areas of auditing concern are listed below

5.1 Domain Fault Injection

This database documents the general requirements that all web servers must follow to function “flawlessly” in a real-world environment. Some of the sources of these requirements are:

Bug list from other field web servers

Lesson learned and documented

Textbook guidelines

Published checklist and design standards (official and unofficial)

5.2 Requirements (Vendor Viewpoint) Fault Injection

This database logs and details the claims of the vendor to meet certain “requirements”. The developer will compare his design requirements to the database’s requirements for matches. If the match is close enough, the developer should be able to use the component in his design. If the match is a partial match, then risks will have to be managed and faults and omission within the component will have to be managed so the developer’s software does not suffer the negative side effects of using the component. If very little matches or there is no match then the propose component should not be used in the project. The database can be used to find components that match the projects requirements if the database has validated the components ability to fulfill the requirement without generating a fault.

5.3 Standards Fault Injection

The Standard database documents the requirements that must be fulfilled for that component to state that it is compliant to a standard. Making the statement that a component is complaint to a set standard, states to the developer that certain states and modes of behavior are to be expected from the component. Any deviation from expected behavior stated in the standard should be considered a fault. The developer cannot count on the component to deliver an expected quality of service and an expect output if the standard is not meet.

5.4 Sub Categories

Sub categories are used to refine the level of detailed information from the above three databases. These standard sub categories allow the auditor to refine item in the databases into test scenarios. The developers can use these databases to identify component strength and weakness in several general areas of interest to the programmer. Real-time programming is more sensitive to many of these issues than are general use programs.

5.4.1 Cost

Many embedded system are suppose to be small, fault-tolerant, and cheap. A $5.00 hardware system that has a $100.00 license fee is not a laughing matter. Nor is a system that takes 5 days to load before its works.

5.4.2 HFE Fault Injection

Humans will do the things as their society has trained them, Human also expect certain behaviors. Violate any expectation here and the product you are producing is considered a failure. Matters such as clicking a mouse and getting the result back quickly are an HFE issue.

5.4.3 Miscellaneous Fault Injection

Requirements that do not fit in any other area are placed here.

5.4.4 Performance Fault Injection

These are requirements that reference time or timing requirements. In embedded real-time system were the CPU has only one chance to catch an event and react in time to prevent a negative affect, performance requirements may be very high on the developers list concerns and risks to manage. These requirements usually can be measured.

5.4.5 Security Fault Injection

These are requirements that safeguard the developed application and the data files housed and collected by the system. These requirements may not be important to systems that are self- contain and “off-line” from the internet or have very little side effect to a human or physical property damage. Systems that are “private” would have some concerns that “open files” could be corrupted, misused or abused. (Remember that 80% of cyber crime is employee generated)

An open system that is on-line on the internet this issue is of up-most concern

5.4.6 Specifications Fault Injection

These are requirements that must be met for the component to function properly within a system and are usually the largest of the databases on a particular component. Observation and measurement can usually confirm conformance. Did the system turn the light red (yes or no)? or the system must open the value to 60% open. The requirements that have subjective answers that do not fit in any of the specific databases should be record in the Misc. database. Questions of “the system shall be easily maintained” are placed here. How do you measure easy maintenance? The answers and conclusions here are more subjective than objective and depended upon the auditor’s and review committee’s options.

5.5 Recovery testing

Recovery is a very important concept in embedded system programming. If after a fault the system is unable to recovery quickly it may destroy the process it was meant to control and itself!

The embedded system must be programmed to monitor its health, withstand hardware/system failures and withstand abusive attack. If a failure does occur, the component must be able to be reset and reset quickly. A 500msec reset may be fine for some embedded programs but may cause the destruction the entire system in other cases.

Tempest will not be tested in this area due to time and money. Normally one would present both hard and soft faults to test Tempest ability to continue to function or to degrade gracefully.

5.6 Regression Testing

Due to time and money constraints and the fact that Tempest is being tested at system level with no developer support to address faults immediately, this topic will not be addressed. Under normal SAFE conditions regression testing must be compete. Be aware anything short of a complete retest run the risk of not uncovering old faults that due to the correction have now been exposed, or catching new faults introduced by the correction.

Example

The embedded program was no longer able to catch all the events it was programmed to catch. The maintainer only changed a log message that was displayed on an output device (the old message confused customers). HMMM what could be the problem? Several days later it was discovered that the original developer had use the time it took to display the old message as embedded timer that would fire several other task. When the message length was increased the timing loop time was increased causing events that should have been caught and processed by the embedded program to be missed entirely. The real-time kernel had to be rewritten include another system timer to correct the timing error the system was experiencing.

5.7 Comprehensiveness

Each requirement that the component vendor states will have at least one test design specification and will be tested at least once. Each operation/procedure/function the component states that process shall also have a test specification and will be tested at least once (to the extent of what is “public” and controllable by developers who will wrap code around the component. A coverage matrix will relate test specifications to the requirement(s) they are testing in the areas above.

5.8 Constraints

Tempest is a general-purpose component. As such the auditor will test it as if it were operating in its worst case as an embedded real-time web server on the Internet.

Due to the nature and purpose of the auditors objective Tempest will not be tested completely to the best ability of the auditor. Tempest was chosen to Test SAFE and its ability to uncover faults in COTS software components. The auditor has not reviewed any Tempest source code, which is available, to make this research more realistic of an audit that would occur if Tempest were a COTS component and the vendor would not allow NASA the right to due a complete peer review of the source code.

Testing of Tempest is not the auditors objective, testing SAFE’s ability to catch faults in a structured engineering approach and test the economics of catching the faults is the auditors objective. Tempest was chosen in part because it has been fielded and is suppose to be fault-tolerant according to its developers. Although subjective the “costs of the faults caught verse the severity” should also be investigate. Mr. Caldwell recommends the use of the Mitre CVE concept to classify fault severity (otherwise we have another meaningless measurement).

Test resources were limited and more realistic system was not setup due to time and money.

Deadlines and time constraints resulted in only implementing those parts of SAFE that would demonstrate SAFE’s ability to ferret out faults and demonstrate the ease or difficulty in doing so. A full implementation would require more time and give better results than he was able to obtain in the short time period he was given to demonstrate the SAFE process. A project history line is available in the appendix E.

6. Component Pass/Fail Criteria

The system must satisfy the standard pass/fail criteria stated in NASA’s standards, in addition to specific pass fail criteria that mention on each test log.

Addition criteria

Any failure to meet NASA criteria or the specific criteria stated on the test log will constitute a failure to meet the requirement.

7. Suspension Criteria and Resumption Requirements

7.1 Suspension Criteria

The inability to start the web server or the web server not functioning properly in a steady state to allow for testing will cause a suspension of all testing activities until the developers resolve the cause.

7.2 Resumption Requirements

When the developers have obtained a new version/patch from the web server vendor and have transmitted a copy of the new version to the audit team only then will the testing resume. Auditors will need to consider the type of regression testing that will be required to satisfy SAFE’s requirement for complete testing and accurate testing. SAFE’s customers rely on complete and accurate test results to evaluate a component’s quality and usefulness in their software products.

8. Test Deliverables

The following document s will generated by the audit group and will be delivered or have been delivered to the configuration management group and SAFE maintainers

The SAFE software Component Test Plan
April 02

Test Plan for Software Fault Injection

September 02

Test Logs (included in Fault Injection Test Plan
September 02

Test Summary Report (included in Fault Injection Test Plan September 02

Most of the SAFE’s documentation was not generated in electronic format and was not completely finished, per instruction of the project manager. Enough documentation was generated however to aid the auditor in his tasks to execute the SAFE procedure. More funding and time would be required to generate and clean up SAFE documentation for purposes of delivery. Under normal circumstances SAFE would generate the documents list in the April02 Test plan mention above.

Test data that the auditor will try to deliver for the test data will be:

Copies of all data entry, inquiry screens, and any modified files that were use to set up the test

Copies of all input and output test files, system logs, server logs and other such generated document used for the purpose of testing

Any printed output from the test

9. Testing Tasks

This describes the testing tasks for a complete SAFE effort. The actual time spent on tasks is shown in Appendix E.

	Task
	Predecessor
	Special skill
	Responsibility
	Est. Effort Hrs
	Actual Hrs
	Date

	1prepare test plan
	Select component to test Select test scenarios
	--
	Developers and Auditor as observer
	hrs
	hrs
	Dd mmm yy

	2 Prepare test design Spec
	Task 1
	Knowledge of component domain
	Senior test analyst
	hrs
	hrs
	Dd mmm yy

	3 Prepare test case spec
	Task 2
	
	
	hrs
	hrs
	Dd mmm yy

	4 Prepare test procedure
	Task 3
	
	
	hrs
	hrs
	Dd mmm yy

	5 Build the test system
	Task 4
	
	System experience
	hrs
	hrs
	Dd mmm yy

	6prepare test items
	Task 5
	
	
	hrs
	hrs
	Dd mmm yy

	7assemble compile and link test items as required
	Task 5
	
	Knowledge of component and wrappers that component uses
	hrs
	hrs
	Dd mmm yy

	8 Execute test
	Task 5

Task 7
	
	
	hrs
	hrs
	Dd mmm yy

	9Check result
	Task 5

Task 8
	
	Domain expert

Senior analyst
	hrs
	hrs
	Dd mmm yy

	10Resolve variances
	Task 9
	
	
	hrs
	hrs
	Dd mmm yy

	11Generate test report
	Task 10
	
	
	hrs
	hrs
	Dd mmm yy

	12Repeat 6 –11 as required until all test items are tested
	Task 11
	
	
	hrs
	hrs
	Dd mmm yy

	13 Generate s summary reports
	Task 12
	
	
	hrs
	hrs
	Dd mmm yy

	14 review with developers test results
	Task 13
	
	Developer

Auditors

End- users
	hrs
	hrs
	Dd mmm yy

	15 Transmit reviewed documents to configuration management
	Task 14
	
	Audit manager
	hrs
	hrs
	Dd mmm yy

10. Environmental Needs

10.1 Hardware

We would have liked to use PC 104 boards and other such form factors for the real time computers but time and money prevented us from doing so.

The Tempest web server uses general purpose PCs. See Appendix C for hardware details on the computers used and network equipment used.

10.2 Software

Design of a simulated distributed control system with real values to read (of known quantities and changes rates) would have been more realistic but time and money prevented us from doing so.

One real-time system was used that did perform a real-time task while the embedded web server (Tempest) was serving pages and being tested. Linux operating systems were used because they are usually stricter about following standards of general computing and execution of programs.

10.3 Security

Although our test bed would not have to worry about security issues, a “live” server would. We did use basic generic hacking procedure to hack into the Tempest server files. The purpose of the off-line network was not data related but some plan testing scenarios would have generated a lot of network traffic that would have had a negative affect on the NASA center network do to the shear volume of traffic that would have been generated.

10.4 Tools

A packet sniffer was use to verify and examine message composition of messages on the “line”.

10.5 Publications

Linux Redhat documents

RTLinux documents

Tempest User Manual and Workshop Handouts

11. Responsibilities

11.1 COTS/GOTS Auditors Fault Injection Team

Audits proposed requirements that developers plan to use component with

Aids developers in proper use of components and risk management

Tests components ability to meet requirements stated by the vendor in a fault tolerant manner.

11.2 Developers

Presents to auditor his/her needs to fulfill a project requirement.

Selects components that he/she plans to use.

Aid auditor in properly testing component (See SAFE procedures).

Manages the risk of using a component within the project’s software and tries to prevent known component faults from affecting the project’s software in a negative way.

11.3 End-Users/Customer

Aids auditor and developer in developing the proper environment that will test the component fairly and realistically. Will review auditor’s work and make suggestions for improvements.

The end user will review documented reports of the results and make comments as required.

12. Staffing and Training

12.1 Staffing

Developers that plan to use the component

Mr. David York and his programming team for the FCF

If available a representative from the vendor of the component to contact

Mr. David York

Lead Auditor will lead a team of auditors and domain experts at his disposal

Mr. Hugh Caldwell and his staff of technicians and senior level programmers

12.2 Training

Under normal situations training is available for Tempest and such training should have been provided to the auditors and the developers (developer do have Tempest training auditors did not).

Mr. Caldwell via the United States Air Force was trained in software programming, software project management, software fault inject, CMM and other eclectic software issues in which the United State Air Force wanted him to be skilled. Fault injection and other eclectic software subjects are part of what is required for an individual to effectively become an auditor in good standing. Much of the training is available from SEI and other institutions. Such material usually has to be presented and taught at a graduate level (the Air Force tried and failed when they taught this material any lower that graduate level; auditors were no longer performing the audit task properly). Eight or more years of programming and maintenance experience also would help the auditors. Mr. Caldwell and his Sr. programmer do have more than 20 years of on the job experience in programming and maintenance. Mr. Caldwell’s training and experience enable him to uncover common faults programmer commonly program in to their programs. IF NASA is serious about Fault Injection training degreed engineers and programmers in the other 80% of software engineering would be highly recommended.

13.0 Schedule

Under normal SAFE conditions the effort for testing a Tempest would be possibly much greater. Mr. Caldwell benefited from past SAFE efforts like those who follow would benefit. The First SAFE effort will require a lot of effort. Please note that the vast majority of the work occurs during requirements and design. It does produce a vast volume of raw data that the auditor will use to produce the “show” needed at the end of the auditing effort.

Reference Appendix E to see how Mr. Caldwell and his staff spent their time in this small demonstration of SAFE.

14.0 Risks and Contingencies

Templates are not complete.

Complete templates.

SAFE for Tempest did not follow the compete SAFE path.

Go back and make a serious attempt at auditing Tempest

Fault Domain is not fully exposed.

SAFE makes an attempt to discover the critical faults. No matter how hard we could try some faults would still remain. The task of fault injection is to make the probability of a component fault causing a serious system failure less probable.

15. Approvals

Approvals will go here according to the organizational structure

16. Summary

16.1 Part of SAFE that Require further Development

Quality metrics for software components are few and far between. Right or wrong, a standard way of measuring a component’s quality attributes is required. Development of quality metric for components was not addressed in this effort.

16.2 Parts of SAFE that Required Changes

The parts of SAFE that were exercised worked as expected. A few concepts did however need to be tuned (mostly in the forms area to record collected data) to meet the needs of testing COTS components.

16.3 Prioritizing Parts of SAFE that were executed

A large amount of time was spent in determining the requirements and prioritizing those to be tested. The Tempest project did not have a requirements document, and requirements had to be distilled from other documentation and the standards used by Tempest (HTTPv1.1). This strong foundation proved to be very useful when test scenarios had to be chosen to provide results for management.

Mr. Caldwell also believes that the Domain knowledge database further focused his effort in developing test scenarios that also produced results.

16.4 Lessons Learned

Mr. Caldwell was able to demonstrate that trained technicians were able to produce more possible test scenarios in a shorter amount of time for fault injection than were a straight up programmer. Both individuals were give the same set of instruction, but only one received Fault injection training.

Without a good set of requirements, much time and effort is necessary to create the testing database. This additional time should be considered when applying SAFE to a project.

16.5 Addition/Related Research

A complete test from beginning to end of SAFE would be recommended.

SAFE would provide a good foundation in validating and verifying GRID and Atomic network computing (how do you test a program to see if it is fault tolerant when different parts of it run on different types of CPU which are not located in the same physical box).

16.6 Additional comments

SAFE as a self-contained effort would work for very large projects. This being the case many smaller projects would not benefit from SAFE as much. To increase the usefulness of SAFE a branch could be created who could rent out their equipment and personnel to smaller projects to spread the cost of equipment purchases, equipment maintenance and personnel training. By sharing cost these smaller project would receive the same benefit from SAFE that the larger programs would but not at the cost. Another side benefit would be that a vast majority of NASA software project could use the service. Many of NASA ‘s software projects are small, and small projects would think twice about supporting a full time fault injection auditor, however, if available a part time auditor would be affordable and the project manager with the right metric could show a ROI by employing the auditor only when he is needed.

A first SAFE will be very time consuming since very little information is in its databases. As the database grows and the test suites multiple fault injecting will become more of a off the shelf solution and less of a custom made solution thereby reducing costs to develop test.

Example

Tempest utilizes HTTPv1_1 Standard. The first auditor through discovers that there are no test suites for this version of HTTP and develops a test suite. The next web application through SAFE that states it must be HTTP compliant can then take the already developed test suite, review the tests (if a test is missing may add it to suite) and use the test suite off the shelf, thus speed up test, and reducing testing costs.

Attachments

Attachment A. Test Log

This section will document the chosen faults that were executed. When possible screen snapshot and logs were documented to all developers to review the results and evaluate possible causes for the injected fault creating an unexpected result

Index to Fault Injections Performed

	Test ID
	Description

	Tempest 1
	Starting Tempest on a different OS platform then the design platform

	Tempest 2
	Operating System file structure case sensitivity

	Tempest 3a
	Corrupt Configuration Files – Tempestjava.sys

	Tempest 3b
	Corrupt Configuration Files – Files In HTDOC directory

	Tempest 4
	Port Access

	Tempest 5
	Securing Directory and Files – Basic Hacker’s First-Tries

	Tempest 6
	Command Line - Log file operation

	Tempest 7
	Log Overflow

	Tempest 8
	Record of Miscellaneous Events/Concerns

	Sample
	Sample Log Page

Sample Fault injection Record Template is documented on the last 2 pages of this appendix.

1.0 Test Identifier

Tempest 1

Start up of Tempest on another operating system platform that is different from the “design” platform

2.0 Test Requirement being tested

In SAFE reference the database and the table that contains the requirement

SAFE

#28 Requirement: requirement

#41 Requirement: requirement

#72 Requirement: requirement

3.0 Test description

Use the symbol √ to indicate selection

	√
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	·
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	
	5
	 Security

	√
	6
	 General Specification

Tempest was designed on the Microsoft Windows platform. Developers tested Tempest on Microsoft Windows and Sun Workstations Platform. We will use a Linux based system. Workstations are Linux based (Red Hat 7.2) and real-time Linux (RT LINUX 3.0.) The Linux systems will be running a runtime Java virtual machine inside the Linux task. The Linux task runs a 6.2 version of Linux that is running as a real-time task. This will test the portability of the Java version of Tempest.

3.1 Common test-case characteristics.

Example: All test cases require a JVM runtime.

4.0 Test identification

Cases

Valid

Able to start Tempest from command line without errors.

Invalid

Unable to start Tempest from command line or

Errors are logged on the consul or in the error log.

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

Tempest must start and display startup log on consul Tempest shall start eight threads that are ready to accept browser requests. Each thread shall display its availability on the consul log window so the operator knows that the web server has start properly.

6.0 Environmental needs

A JVM must be loaded and operating.

6.1 Special procedural requirements

The procedure for loading and running an instance of the JVM can be obtain from the Sun Corp. web site.

7.0 Inter-case dependencies

None.

8.0 Summary

The web server fails to start. The Java run-time does dump several error messages to the consul. The error messages offered very little help in debugging the problems. Two command line parameters in the documentation made starting Tempest possible on a Microsoft operating system platform but virtually impossible on the Linux platform.

9.0 Variances

1. a required jar file in third party software package (Java from Sun Corp) no longer exists in the newer JVM runtimes . Replaced the “old” jar file with rt.jar file, the new jar file.

2. Documentation written for MS DOS/Windows environment where the semi-colon “;” is the Java separator. In the Unix/Linux environments the colon “:” is the separators. Replaced ; with :

10.0 Comprehensiveness assessment

The attached checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	√
	1
	Failure

	
	2
	Handle Correctly

	
	3
	Software ignored injected fault

Fault Type

	
	1
	Operator

	√
	2
	Documentation

	√
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	
	5
	Application

12.0 Summary of results

For Fault type 2

1. For Linux replace semi-colon “;” with a colon “:” as a separator of Java commands.

2. Tools .jar was replaced by rt.jar due to newer Java version.

For Fault type 3

1.Linux command line required to start Tempest on a RT LINUX 3.0 system is a colon “:”.

A (Note to the path to the Java binary had already been loaded by the Linux system.) Change to Tempest directory.

B. Note Linux is case sensitive.

java –cp .:/usr/java/j2ce1.4.0-01/1.b/rt.jar Server.Tempest

The Linux system had to be manually set-up with no instructions for Tempest user’s manual. This lack of information would prevent junior engineers from starting the Tempest server up at all. The stack dump that Java provides did not indicate the real nature of the problem it was having starting the server

13.0 Root Cause

Documentation does not make it clear that command line is an example of what the command line should possibly look like if you use a Microsoft operating system. Java error messages did not relay to the operator the real cause of the problem.

Possible solution to the problem is to state in the installation section that the installer may have to modify the command line to meet the needs of his/her system. Another possibility is to provide small batch files that start the server up with a common name for common operating systems (Linux, VxWorks, Qnx, AMX, etc.)

15.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing 09/02/02
	4hrs
	8 hrs

	Debug both command line errors
	
	21 hrs

	Start Tempest with corrected command line parameters
	1-2 minutes
	2 minutes

	Document and reset server
	
	1 hrs

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing 09/05/02
	4 hours
	30 hrs

16.0 Cost of Faults

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hrs.

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

30 hours

Cost to perform task

$1500.00

Difference

$1,498.33

Cost to correct fault

???????????//

17.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

1.0 Test Identifier

Tempest 2

Operating System file structure case sensitivity

2.0 Test Requirement being tested

In SAFE reference the database and the table that contains the requirement

S.A.F.E.
#28 Requirement: requirement

#38 Requirement: requirement

#41 Requirement: requirement

#44 Requirement: requirement

3.0 Test description

Use the symbol √ to indicate selection

	√
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	√
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	
	5
	 Security

	√
	6
	 General Specification

Test Tempest internal file structure. Most programmer will hard code files with “absolute paths” because it is easy. Unless you control hardware, hardware/software setup and the software this programming method is deadly (only proprietary systems can hard code) . Tempest is suppose to be a cross-platform embedded web server so hard coding path and files names or parts there of will prevent the server from running except on the platform it was designed on and for. Follow the set-up installation explicitly, paying attention to case of character. If the manual has a capital H in HtDocS , the auditor will insert a capital H in the directory or file name on the web server platform just as it is illustrated in the manual. Linux /Unix is case sensitive. Microsoft OSs are not. Test to see if Tempest is case sensitive or insensitive

3.1 Common test-case characteristics.

All test cases require a JVM runtime.

4.0 Test identification

Cases

Valid

Server is able to find directories and files required to service itself and its clients,

The case of a character does not affect operation of the Tempest web server or

The manual illustrates the proper file structures and cases to use for proper operation.

Invalid

Server is unable to find files under server root unless case or the server does not start

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

Tempest shall find all the required files for setting up an instance of the server and all files that it will be required to serve. It shall inform the operator of any missing configuration files and name the file(s) it is looking for. It must not read bogus configuration files or be will to do so.

6.0 Environmental needs

A JVM must be loaded and operating.

6.1 Special procedural requirements

The procedure for loading and running an instance of the JVM can be obtain from the Sun web site.

7.0 Inter-case dependencies

None.

8.0 Summary

Out of the box configuration file images, internal to the source code indicate that the server uses lower case characters in some directory/file names for location of graphic and other files. These names seam to be hard coded into Tempest. Some developer considered hard coding file names a bad programming practice when developing cross platform applications unless the instructions are very detailed and follow a pattern. Tempest graphic images were not found and displayed on the browsers. When directory case is changed from “IMAGES” as illustrated in the manual to “images” (wild educated guess of the auditor) the graphics were found and displayed. Character case rules are inconsistent within the Tempest environment making configuration more difficult.

.

9.0 Variances

Out of the box configuration is not sensitive to case sensitive operation systems such as Linux/Unix and RT-Linux files structure rules or any other OS that use case sensitive file and memory structure. Auditor played with the system enough and utilized experience of configuring other systems to determine that the root case of the problem was hard coded case sensitive file names. File names and directory structure were changed to match what Tempest was expecting.

10.0 Comprehensiveness assessment

The attached checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	√
	1
	Failure

	
	2
	Handle Correctly

	√
	3
	Software ignored injected fault

Fault Type

	
	1
	Operator

	√
	2
	Documentation

	
	3
	Third Party required application/applet (JVM)

	√
	4
	Operating System

	√
	5
	Application

12.0 Summary of results
Files structure of the OS that Tempest is running on top of needs to be considered

Out of the box code should be aware case sensitive OS. The expected cases are not documented in the user’s manual

A little concern of the auditor is with the file structure that Tempest uses. Configuration, web page and log files are not in the location most “web administrator would expect them to be. Many web server use a directory called ” log “ to store system logs (only viewable by administrator and web server source), a directory called “conf” stores system configurations (only viewable by administrator and web server source) and a “htdoc” to store hypertext documents (web pages). Client are only allowed to view document s in htdoc and any files in any subdirectory under htdocs. Tempest does not follow this rule of thumb.

13.0 Root Cause

File names from loading media(CD-Rom generate from web download) do not match what seem to be coded into the source code. For case sensitive OS, like RT-Linux, the operating system is unable to find the requested files

A common practice in program cross-platform application is to always use lower case in directories server side and embedded in application. Hard reference in application are discouraged. Have a configuration utility map the directory structure with a source code variable. The variable would be provided the path name during startup from a configuration file that provides the absolute path names. Supplier should modify all code, scripts, and configuration data files to match installed case of directories and files.

If the developer wants to hard code then to find a directory is called “Image” anything referencing “Image” should be typed as “Image”. For maximum portability lower case for every character is best for historical (i.e. Image should be code as image and used as image).

14.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing 09/02/02
	1hrs
	

	Error bring image up. Error message is poor
	
	1 hrs

	Reconfigure Tempest
	
	1 hrs

	Get Image
	.03hrs
	.03hr

	Document and reset server
	1
	1

	
	
	

	
	
	

	
	
	

	End Testing 09/05/02
	2
	3 hrs

15.0 Cost of Faults

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hr.s

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

3 hours

Cost to perform task

$150.00

Difference

$148.33

Cost to correct fault

???????????//

16.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

Test 2 Server unable to find graphic files because case of directory name on server does not what the Tempest web server is looking for see error message below:

thread 5 about to accept on port 80
thread 6 about to accept on port 80
thread 7 accepted a connection from 192.0.0.102 192.0.0.102
Error when sending to client.
Java.net.SocketException: Socket closed
at java.net.SocketOutputStream.socketWriteO(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.Java:92)
at java.net.SocketOutputStream.write(SocketOutputStream.java:126)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:69)
at java.io.BufferedOutputStream.flush(BufferedOutputStream.java:127)
at Server.HTTPString.sendResponse(HTTPString.java:670)
at Server.HTTPString._getResponseMessage(HTTPString.java:523)
at Server.HTTPString.process(HTTPString.java:314)
at Server.Tempest.respond(Tempest.java:382)
at Server.Tempest.run(Tempest.java:311)
at java.lang.Thread.run(Thread.java:536)
thread 7 about to accept on port 80
thread 8 accepted a connection from 192.0.0.102 192.0.0.102

thread 8 about to accept on port 80
thread 1 accepted a connection from 192.0.0.102 192.0.0.102
thread 1 about to accept on port 80

thread 2 accepted a connection from 192.0.0.102 192.0.0.102
Test 2 Attachment

Screen Dump

1.0 Test Identifier

Tempest 3a

Corrupt Configuration Files – Tempestjava.sys

2.0 Test Requirement being tested

In SAFE reference the database and the table that contains the requirement

SAFE.

#25 Requirement:requirement

3.0 Test description

Use the symbol √ to indicate selection

	√
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	√
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	√
	5
	 Security

	√
	6
	 General Specification

Configuration files control Tempest modes and behaviors. Configuration files configure the modes and states in which the Tempest server will operate. Errors editing any of the files could put the server in an undetermined state. The server may serve or may not serve. Each configuration file will be tested for the server’s reaction. Any web server must be fault tolerant especially those that service real-time applications.

Corrupt Tempestjava.sys file. Does Tempest start? Does the console/log record a “corrupted file” or does it give some other error message that does not directly indicate the problem. Does Tempest start even though files are corrupted? 3a will corrupt the main configuration files.

3.1 Common test-case characteristics.

All test cases require a JVM runtime.

4.0 Test identification

Cases

Test 1: Removed # (comment symbol).

Server seems to have ignored “new” statement (the comment). Browsers get pages.

Valid:
Server does not start and records error in log of an unknown configuration option

Invalid:
Server started.

Tempest started which is an invalid response.

Test 2: Missing system statement _MIME_CFG_HTDOC/MIME.sys seems to have ignored variable. Server starat. When browsers try to access a web page, browsers times out. Server “crashes.” Error message does not indicate problem except that a null pointer exception was generated on an HTTP string. There was a long time out on the server side, and then the return to the command prompt. Netscape error client side 7.2 “The document contained no data. Try again later or contact the server administrator:

 **If server were running correctly , an error of 500 (Internal Server error) or 501 (not implemented) should have been sent back to the browser for display. (HTTP 1.1 requirement.)

Valid:
Server fails to start and records in log.

Invalid: Server starts.

Tempest starts, which is an invalid response. See attachment for screen dump

Test 3: Leading while space in front of MIME_CfG=HTDOC/MIME.sys. Same as in Test #2, same server side and client side errors.

Valid: Server fails to start login file or

 Ignores linear white space and functions properly

Invalid: Server starts and errors are generated

Server starts and generates errors invalid response. See Test 2’s screen dump for error message generated.

Test 4: White space at end of MIME_CfG=HTDOC/MIME.sys but before CRLF.

Valid: Server does not start and logs error message or

Server stars and serves pages ignoring the white space

Invalid: Server starts, and or no error message, Server misbehaves or

 Server does not start

Server starts ignoring white space. Browser and server work fine

Test 5: Uncommented future Host Table.

Valid: Server does not start. Display error message that this option is for future use.

Invalid: Server starts , and even works allowing end-user to think option is functional and is working

Invalid: Server starts. Browser works. No indication that Host Table is a future option

User in he/she uncommented this option might think they have it working

Test 6: Inserted _FUD-CRG=HTDOC/FUD.sys as a bogus configuration file for Tempest to look up

Valid: Server should not start. An error message should indicate an invalid configuration file.

Invalid: Server starts and or no error message logged indicating a specification to an illegal configuration file

Invalid response Server starts, Browsers works, and no error message

Test 7: With command line noauth option and comment out _USER_CFG=HTDOC/USERS.SYS.

Valid: Server does not start and an error should convey the missing user file

Invalid: Server starts, no error message generated

Invalid response server works, browsers work, and no error message generated. This may cause security concerns for those who worry about security.

Test 8: With command line auth option and comment out _USER_CFG=HTDOC/USERS.SYS.

Valid: Server should not start and an error message should be logged.

Invalid: Sever starts and or asks for password when no password is available

 Invalid response server works browser asking for password. Browsers keep asking for password. Error message to browser should instead be one of the 5xx series (HTTP v1.1 requirement)

Test 9: Comment out _USER_CFG=HTDOC/CLIENTS.SYS.

Valid: Server does not start and error log message is generated

Invalid: Server starts and no error message

Server works and browsers work. No error messages are generate. This would concern anyone who is concerned about security. Error message should use the 5xx series.

Test 10: Comment out _IMAGESCFG=HTDOC/IMAGES.SYS

 Valid : Server does not start and an error message is generated

 Invalid: Server starts no error message is generated. Server may try to server pages

Server loads. Browsers time out. Server does look for files. Error generated after browser issues a request. Server still runs after error message is generated on console.

On Client side:

Konqveror: browser dialog window states a time out has occurred.

Netscape: connection refused by the server. “The server may not be accepting connection or may be busy.” See attachment for error message

Invalid response, server starts with no error messages and does not generate the correct error message client side (one of the error message of 5xx series should have been the response.) See attached system dump for server side error message

Test 11: Put special characters into file in first position in line. Try characters:

*

/

=

Valid: Server should not start and generate an error message for anything it does not understand in that position

Invalid: Server starts and or generates error message server side that do not reflect the root cause

Invalid responses to these characters:

a) a special character one per line

 *

 /

 =

b) a special character by its self

(*) Server starts. Server works; Browser works.

(/) Server starts. Server works; Browser works.

(=) Fails to start server. No error log generated!

Bogus characters particularly special character could cause a security risk.

Test 12: White space embedded in file in this format:

Comments or command

White space CRLF
White space CRLF

White space CRLF

Comments or command

Tried three locating examples:

At the very beginning of the file

In the middle of the file

At the end of the file

Valid: Starts if the parser is linear white space tolerant server should ignore white space

Invalid: Server fails to start or start and generates an error during operation

In the format

Comments

White space CRLF
White space CRLF

White space CRLF

_MIME_CFG=HTDOCS/MIME.SYS

Invalid: Server fails to start in the above mention configuration.

The attribute of linear white space does not seem to be handled in a consistent manner. Auditor suggests that developers set a white space policy and follow it. It is advisable to inform the ender-user about the white space policy in the users manual.

Test 13: CRLF at the end of the last line and further

__ __ __ __ __ END OF FILE __ __ __ __ __ CRLF

Valid: Server should handle CRLF at end of file and after by ignoring the extra line feed. Server should start and operate normally

Invalid: Server fails to start or

 Start and generates errors

Invalid response server does not start with CRLF at the end of the last line and any line after. The server generates the same message that was generated for Test 13

Test 14: No TempestJava.sys is present where the server initialization expects it to be.

Valid: Web server failed to start. Error message generated to describe the problem (correct response)

 Invalid: Web server start and does not generate any error message or

 Fails to start and does not generate an error message

Valid response, server does not start and an error message correctly informs user of problem.

Test 15: Commented out _CMD_CFG=HTDOC/COMMANDS.SYS

Valid: Server fails to start. Error message is generated

Invalid: Server start. Error log may be generated

Invalid response, server starts no error messages are generated

Browsers time out and generate error message:

The document continued no data. Try again later or contact the server’s administrator.

Which is an invalid error message. Error message should indicate a server side problem using one of the 5xx series errors.

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

See test 1-15.

6.0 Environmental needs

 A JVM must be loaded and operating.

6.1 Special procedural requirements

The procedure for loading and running an instance of the JVM can be obtain from the Sun web site.

7.0 Inter-case dependencies

None.

8.0 Summary

If server fails to get valid input it should fail to start. When server did start and allowed browser to connect to server, server failed to indicate to the browser that it did not understand the command. The server failed to notify display log of the exact error. Some faults were ignore by the server. Ignore faults should be further investigated to see if they present a security risk

9.0 Variances

None

10.0 Comprehensiveness assessment

The attached checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	·
	1
	Failure

	·
	2
	Handle Correctly

	√
	3
	Software ignored injected fault

Fault Type

	·
	1
	Operator

	·
	2
	Documentation

	
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	·
	5
	Application

12.0 Summary of results
1) Files are read once and only once at startup.

2) Typographical errors are common especially when key words, structures are strictly followed. Without documentation, instructing the administrator about the structure, files are difficult to configure especially when uncommon format rule needs to be followed like no CRLFat the end of the file.

3) Initialization error statements should indicate file and cause of problem.

13.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing 09/10/02
	
	See below

	 Modify Files
	
	

	Run Test
	
	

	Report
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing 09/10/02
	
	8 hrs

14.0 Cost of Faults

Example of cost of leaving the fault in for the end user (Fault Cost) verses what it should have cost if the fault did not exist (cost of performing the task when the item under test functions properly.

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hr.s

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

Could vary depending upon the end-user mistake any where from 1hr to 24 hr or more. Assume $200.00 charge best case to debug a configuration error under current condition

Cost to perform task

$200.00

Difference

$198.33

Cost to correct fault

???????????//

15.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

Test 3a Attachment

Tempest 3 test 2

Server configuration file is missing a required file. File is no longer reference in configuration file.
[root@tempestl08 Tempest]* Java -classpath .;/usr/java/j2rel.4.0_01/lib/rt.jar Server.Tempest
noauth
Starting Tempest Java $Revision: 2.0 $ at Tuesday, 10 September 2002 10:30:46 EDT
Tempest: authorization off
thread 1 about to accept on port 80
thread 2 about to accept on port 80
thread 3 about to accept on port 80
thread 4 about to accept on port 80
thread 5 about to accept on port 80
thread 6 about to accept on port 80
thread 7 about to accept on port 80
thread 8 about to accept on port 80
thread 1 accepted a connection from 192.0.0.102 192.0.0.102
Java.lang.NullPointerException
at Server.HTTPString.process(HTTPString.Java:286)
at Server.Tempest.respond(Tempest.Java:382)
at Server.Tempest.run(Tempest.java:311)
at Java.lang.Thread.run(Thread.Java:536)
Screen Dumps

Tempest 3 test 10 images file location commented out.

Screen Dump
thread 8 about to accept on port 80
thread 1 accepted a connection from 192.0.0.102 192.0.0.102
Java.lang.NullPointerException
at Server.HTTPString.replaceString(HTTPString.Java:733)
at Server.HTTPString.processString(HTTPString.Java:691)
at Server.HTTPString.process(HTTPString.java:337)
at Server.Tempest.respond(Tempest.Java:382)
at Server.Tempest.run(Tempest.Java:311)
at java.lang.Thread.run(Thread.Java:536)
Tempest 3 test 11
special characters
test 11 a
[root@tempestl08 Tempest]# Java -cp . :/usr/java/j2re1.4.0_01/lib/rt.jar
Server Tempest Starting Tempest Java $Revis3-on: 2.0 $ at Tuesday, 1U beptemoer
2002 13:16:03 EDT Exception in thread "main" java.util.NoSuchEiementExceptxon
 at java.util.StringTokenizer.nextToken(StringTokenizer.3ava:232)
at Server.Tempest.main(Tempest.Java:131)
[root@tempestl08 Tempest]#

test 11 b
Starting Tempest Java revision: 2.0 $ at Tuesday, 10 September 2002 13:21:43 EDT
Exception in thread -main" java.util.NoSuchElementException
at java.util.StringTokenizer.nextToken(StringTokenxzer.3ava:232)
at Server.Tempest.main(Tempest.Java:131)
[root@tempestl08 Tempest]#
tempest3 test 12
white space with a CRLF just before first valid command

Starting Tempest Java $Revision: 2.0 $ at Tuesday, 10 September 2002 13:27:12 EDT
Exception in thread "main" java.util.NoSuchElementException
at Java.util.StringTokenizer.nextToken(StringTokenizer.Java:232)
at Server.Tempest.main(Tempest.Java:131)
[root@tempestl08 Tempest]#
Tempest 3 test 15
command file location was commented out
Screen Dump

thread 2 accepted a connection from 192.0.0.102 192.0.0.102
Java.lang.NuilPointerException
at Server.ContentTag.process(ContentTag.Java:85)
at Server.HTTPString.replaceString(HTTPString.Java:746)
at Server.HTTPString.processString(HTTPString.Java:691)
at Server.HTTPString.process(HTTPString.Java:337)
at Server.Tempest.respond(Tempest.Java:382)
at Server.Tempest.run(Tempest.Java:311)
at Java.iang.Thread.run(Thread.Java:536)
1.0 Test Identifier

Tempest 3b

Corrupt Configuration Files – Files In HTDOC directory
2.0 Test Requirement being tested

SAFE.

#23 Requirement:requirement

#59 Requirement:requirement

#39 Standards:HTTPV1_1

3.0 Test description

Use the symbol √ to indicate selection

	
	1
	Requirements coverage. Has each of the requirements been satisfied?

	·
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	·
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	
	5
	 Security

	·
	6
	 General Specification

Check one or more of the boxes above as they apply to the test. Describe the test below.

3.1 Common test-case characteristics.

All test cases require a JVM runtime.

4.0 Test identification

Cases

Corrupting xxx.sys files in HTDOC

Corrupt HTDOC/CLIENTS.SYS

Valid

Valid address should be able to be served by the server.

Invalid

Invalid address or inputs should not be serviced. Wild Cards should not be mixed with address in a subnet

Test 1: a. White space in front file.

b. White space in middle.

c. White space at end.

d. No white space.

Valid: Common practice is to allow the server to start and run as normal

Invalid: Server does not start, does not start and generates an error log that is inaccurate, or server starts and does not function properly

Valid start. Server started. Browsers work.

Test 2: Change, wild card to 3 ,separator, to 2.

Valid: Server starts and functions properly servicing computers who are named

Invalid Server start and does not function properly or

Does not start and generates inaccurate messages

Valid response, Server starts, browsers work.

Test 3: Use wild cards * and separator : but not specify that 3 is a wild card and separator is 2:

Valid: Server does not start due to specification mismatch

Invalid: Server starts, may or may not function properly or

 Does not start and logs an invalid message

Invalid: Server failed to start, but lacks correct message.

Error message does not indicate the problem.

Test 4: White space at the end of line.

Valid: Server ignores white space, server functions properly

Invalid: Server fails or

Starts and does not function properly

Valid response, server starts and browsers work.

Test 5: White space at beginning (in first column)

Valid: Server ignores white space, server functions properly

Invalid: Server fails or

Starts and does not function properly

Invalid: Server does not start, error generated. Server should ignore white space. See attachment

Test 6: White space between descriptor and symbol.

Valid: Server ignores white space, server functions properly

Invalid: Server fails or

Starts and does not function properly

Valid: Server starts and browsers function properly

Test 7: White space before TCP/IP number

Valid: Server ignores white space, server functions properly

Invalid: Server fails or

Starts and does not function properly

Invalid: Server starts but browsers gets “Forbidden” error message”. See attachment

Test 8: White space between #TCP/IP number and separator

Valid: Server ignores white space, server functions properly

Invalid: Server fails or

Starts and does not function properly

Invalid: Server started browsers get “Forbidden” Message.

Test 9: Forget record part after the separator, does the server not start ?

Valid: Server does not start error message is correct

Invalid: Server does start, may or may not function properly or

Does not start and error log is incorrect

Valid response, server does not start and error message is correct See attachment

Test 10: Mismatch descriptor x: y. x does not correlate to y in the real world

Valid: Server catch mismatch (of .com one side and .gov on the other)

Invalid: Server does not catch mismatch or

Fails to start without error message

Invalid: Server starts, and browsers work. Server resolves to correct ID of browser.

Server does not catch error.

Test 11: Do not included client in list to be served

Valid: Server starts and refuse to service those not in the list. Client get correct error message

Invalid: Server starts and service those not on the list or send a response that is not valid

Valid: Server starts, browser gets a “Forbidden “ Message.

Test 12: Invalid TCP reference. (DNS or HOST List)

Valid: Server starts and does not connect to IP addresses that it cannot get resolved. Unresolved address should be handles properly (error message to client) log message should be generated of possible break in and server still should continue to serve

Invalid: Server fails to start, stop serving on unresolved addresses or generates inaccurate error message or no error messages

Invalid response, the server did start , was unable to resolve the address, service other clients afterwards however to log record of attempt by a forbidden client was recorded. This error message is consider vital information for security analysts.

Browser failed to connect with a “Forbidden” error message.

Test 13: Test names that begin with numbers (not common but not illegal)(also not recommend)

 Use 102.Tempest.com .

Valid: Accepts name

Invalid: Does not accept name and/or generates error

Invalid response, server starts but will not all browser to connect

Test 14 Test wild card control over list

Valid : Up for debate can be argue that *.* take control over listed addresses

Invalid: May allow address to be served that the administrator does not.

????? Tested *:* server allowed service to any one but this wild card may be a security TCP issue if misconfigured. Restricting is a better networking policy.

Most network administers do not like the use * wild cards because wild cards can have unpredicted behaviors based on the whims of a programmer who does not know networking and may program an incomplete solution.

Test 15: Test raw TCP numbers 192.0.0.102

Valid: Server start and services raw number

Invalid: Server does not start or

 starts and refuses to serve the page

Invalid response Server starts but browser gets “Forbidden” message.

Common accepted practice is to accept raw numbers. DNS and Host services may not be available particularly on a small embedded systems. DNS requires another computer or more computer, this idea off adding to the system is some thing that is not in the embedded programmer’s vocabulary. When services are not available raw numbers are the best TCP/IP format to use.

Test 16: Using wild cards format => *.Tempest.com

Valid: Wild card works with rest of name

Invalid: server fails to start, errors are not correct, or server starts and fails to serve pages

Valid: Server started, browser get request pages

Test 17: *.*.com (Only .com’s may attach no .gov, .org etc..)

Valid: Wild card works with rest of name

Invalid: server fails to start, errors are not correct, or server starts and fails to serve pages

Invalid response server started ok, browsers get “Forbidden” message even though their absolute name end with .com

Test 18: *.*.*: and *.*.*.*: Anyone may attach short-hand (Common TCP/IP formats for TCP/IP

version 4) (Did not test version 6 format)

Valid: Wild card works with rest of name

Invalid: server fails to start, errors are not correct, or server starts and fails to serve pages

Invalid response server started OK but browsers get “Forbidden” message.

Test 19: *. Any one may connect

Valid: Wild card works with rest of name

Invalid: server fails to start, errors are not correct, or server starts and fails to serve pages

Valid: Server starts OK, browser get requested pages

Test 20: 192.0.0.*

Valid: Wild card works with rest of name

Invalid: server fails to start, errors are not correct, or server starts and fails to serve pages

Invalid: Server starts OK but browsers get “Forbidden” message. Also tried a absolute raw TCP/IP number (198.000.000.102) same response. Of concern is a lack of subnet control making the system admin work to list all computers with a naming service. This presents a maintenance nightmare of list keeping especially if the list is long. Any network administrator knows he can go to raw numbers as his backup if DNS is out.

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

6.0 Environmental needs

A JVM must be loaded and operating.

6.1 Special procedural requirements

The procedure for loading and running an instance of the JVM can be obtain from the Sun web site.

7.0 Inter-case dependencies

None.

8.0 Summary

Some tests worked as expected. The inability to use raw TCP/IP numbers and the inability to subnet (a basic TCP/IP function) is of concern. The configuration files are very sensitive to formats and misplaced white space.

9.0 Variances

This lack of configurability would require the network to redirect the access to parts of subnets which is the opposite of what networks are supposed to do. This solution as implanted will rely one hardware to control access if connected a large intranet or the internet

10.0 Comprehensiveness assessment

The attached checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	·
	1
	Failure

	
	2
	Handle Correctly

	
	3
	Software ignored injected fault

Fault Type

	·
	1
	Operator

	·
	2
	Documentation (lack of)

	
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	·
	5
	Application

12.0 Summary of results
Each configuration file seems to have its own unique parser, each behaving slightly different than the next. Solution could be a configuration that would stream into a binary file or a GUI front and like webmin (www.webmin.com) that will write to the ACSII files in a standard format. Web administrator would then not have to worry about CRLF and white space placement.

13.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing 09/11/02
	
	

	Load network capability
	
	

	 Move machines from peer-peer to

Client-server network 9/12/02
	
	

	Testing 9/13/02
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing 09/13/02
	
	16

16.0 Cost of Faults

Example of cost of leaving the fault in for the end user (Fault Cost) verses what it should have cost if the fault did not exist (cost of performing the task when the item under test functions porperly

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hr.s

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

30 hours

Cost to perform task

$1500.00

Difference

$148.33

Cost to correct fault

???????????//

17.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

Test 3b Attachment

Screen Dumps

Tempest 3b Test 5
Wildcard and Separator do not match entries
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 08:55:10 EDT
Tempest: authorization off
Exception in thread "main" java.utii.NoSuchElementException
at Java.util.StringTokenizer.nextToken(StringTokenizer.Java:232)
at Server.HTTPFile.parseLine(HTTPPile.Java:104)
at Server.HTTPFile.<init>(HTTPFile.Java:82)
at Server.Tempest.main(Tempest.Java:174)
[root@tempestl08 Tempest]*
Test 7
leading white space
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 09:13:38 EDT
Tempest: authorization off
Exception in thread "main" Java.util.NoSuchElementException
at java.util.StringTokenizer.nextToken(StringTokenizer.java:232)
at Server.HTTPFile.parseLine(HTTPFile.java:104)
at Server.HTTPFile.<init>(HTTPFile.java:82)
at Server.Tempest.main(Tempest.java:174)
[root@tempestl08 Tempest]#
Test 12
Forget second half after seperator
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 09:43:39 EOT
Tempest: authorization off
Exception in thread "main" java.util.NoSuchElementException
at java.util.StringTokenizer.nextToken(StringTokenizer.java:232)
at Server.HTTPFile.parseLine(HTTPFile.java:104)
at Server.HTTPFile.<init>(HTTPFile.java:82)
at Server.Tempest.main(Tempest.java:174)
1.0 Test Identifier

Tempest 4

Port Access
2.0 Test Requirement being tested

SAFE.

#59 Requirement:requirement

#3 Standards:HTTPV1_1

#4 Standards:HTTPV1_1

#5 Standards:HTTPV1_1

3.0 Test description

Use the symbol √ to indicate selection

	·
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	·
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	
	5
	 Security

	·
	6
	 General Specification

Check one or more of the boxes above as they apply to the test. Describe the test below.

Ability to assign ports and have the port work or receive warnings according to TCP/IP protocol and HTTPv1.1

Assign illegal values below 0 and above 65535. Assign illegal values with a decimal point included. Assign reserved and common used port numbers for other services (FTP/TIME/Tempest). Assign valid numbers.

3.1 Common test-case characteristics.

All test cases require a JVM runtime.

4.0 Test identification

Cases

Valid

If a valid port is assigned the port should be reachable and serve a page.

Invalid

Port is not available or no error is logged if error occurs.

	Ports that are assigned
	Normal Classification
	Test results

	-1
	TCP/IP out of range
	Server does not start. See Attachment

	0
	TCP/IP reserved
	Server starts, browsers refuse to issue connection

	21
	ftp
	Server fails See Attachment

	23
	telnet
	Server fails See Attachment

	37
	Time
	Server starts OK; Netscape refused to serve port 37 for security reason. Konqueror services port OK Port service as expected.

	255-241
	IANA
	OK Port service as expected

	249-255
	IANA
	OK Port service as expected

	513
	login
	Server fails to start. See Attachment

	1011-1022
	
	OK Port service as expected

	1023
	
	OK Port service as expected

	1024
	
	OK Port service as expected

	1109
	IANA
	OK Port service as expected

	3097
	IANA
	OK Port service as expected

	49151.45
	Bogus TCP/IP number
	Under 49151.45 Server opens port 80. Unexpected result! Server Unreachable. Server reachable. Some unexpected behavior was observed

	49152
	Started Dynamic/Protocol
	OK Port service as expected

	65535
	Top of the List
	OK Port service as expected

	65536
	Exceeds Standard TCP/IP limit
	OK Server fails as expected.

	0-1024
	Some OS reserve this range for “root” service reasons
	Linux reserves these numbers, like many UNIX systems do. Unless Tempest is started as a root service these numbers are out of range for Tempest. Linux refuse to allow the Tempest server to bind to these ports. Linux will allow Tempest to bind to port 1025-65535. Special set-up would be required to run ports in the lower range. Do not use root authorization, the security risk is to great!

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

6.0 Environmental needs

A JVM must be loaded and operating.

6.1 Special procedural requirements

The procedure for loading and running an instance of the JVM can be obtain from the Sun web site.

7.0 Inter-case dependencies

None.

8.0 Summary

Notice that the web server seems to appear to accept illegal ports and ports in use before testing if the port is valid and available. This is more of a programming issue but could cause issues if wrapped into another application or start remotely. For programmers to avoid a stack dump they would have to pre-empt the dump by testing the requested port number themselves.

9.0 Variances

Conditions identified during testing.

10.0 Comprehensiveness assessment

The attached (but not included with example) checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	·
	1
	Failure

	
	2
	Handle Correctly

	·
	3
	Software ignored injected fault

Fault Type

	·
	1
	Operator

	
	2
	Documentation

	
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	
	5
	Application

12.0 Summary of results
Server stack dumps if port is in use or invalid. This may or may not be of concern depending on web server’s use. Some browsers do not accept the use of certain numbers. This situation means that the server may start serving pages to the “clients” but the clients are unable to make request because they cannot use the reserved port or port in use. Therefore the server side port assignments should be carefully chosen.

The decimal test provided an unexpected result by Tempest reassigning the port back to 80 instead of issuing an error. Browser behavior on several of this test was strange

13.0 Root Cause

NA

14.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing 09/13/02
	
	8 hrs

	Finished testing 9/13/02
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing 09/13/02
	
	

16.0 Cost of Faults

Example of cost of leaving the fault in for the end user (Fault Cost) verses what it should have cost if the fault did not exist (cost of performing the task when the item under test functions porperly

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hr.s

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

Assume 2 hours if programmer has to redesign wrapper

Cost to perform task

$100

Difference

98.33

Cost to correct fault

???????????//

17.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

Test 4 Assigning port numbers to server’s port
Test using negative numbers for ports
Port -1
[root@tempestl.08 Tempest]* Java -cp .:/usr/java/j2rel.4.0_01/lib/rt.jar Server.Tempest noauth -1
Starting Tempest Java $Revision; 2.0 $ at Friday, 13 September 2002 12:08:51 EDT
Tempest: authorization off
Tempest: listening to -1
Exception in thread "main" java.lang.IllegalArgumentException: Port value out of range: -1
at Java.net.ServerSocket.<init>(ServerSocket.Java:177)
at Java.net.ServerSocket.<init>(ServerSocket.Java:138)
at Server.Tempest.go(Tempest.Java:190)
at Server.Tempest.main(Tempest.Java:186)
[root@tempestl08 Tempest]*
port 21 FTP
[root@tempestl08 Tempest]# Java -cp .:/usr/java/j2rel.4.0_01/iib/rt.jar Server.Tempest noauth 21
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 12:17:25 EDT
Tempest: authorization off
Tempest: listening to 21
Exception in thread "main" Java.net.BindException: Address already in use
at Java.net.PlainSocketImpl.socketBind(Native Method)
at Java.net.PlainSocketImpl.bind(PlainSocketImpi.Java:321)
at Java.net.ServerSocket.bind(ServerSocket.Java:308)
at Java.net.ServerSocket.bind(ServerSocket.Java:266)
at Java.net.ServerSocket.<init>(ServerSocket.java:182)
at java.net.ServerSocket.<init>(ServerSocket.Java:138)
at Server.Tempest.go(Tempest.Java:190)
at Server.Tempest.main(Tempest.java:186)
[root@tempestl08 Tempest]#
port 23 Telnet
[root@tempestl08 Tempest]* java -cp .:/usr/java/j2rel.4.0_01/lib/rt.jar Server.Tempest noauth 23
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 12:19:15 EDT
Tempest: authorization off
Tempest: listening to 23
Exception in thread "main" java.net.BindException: Address already in use
at java.net.PlainSocketImpl.socketBind(Native Method)
at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:321)
at Java.net.ServerSocket.bind(ServerSocket.Java:308)
at java.net.ServerSocket.bind(ServerSocket.java:266)
at java.net.ServerSocket.<init>(ServerSocket.java:182)
at java.net.ServerSocket.<init>(ServerSocket.java:138)
at Server.Tempest.go(Tempest.java:190)
at Server.Tempest.main(Tempest.java;186)
[root@tempestl08 Tempest]*
port 513 login
[root@tempestl08 Tempest]* java -cp .:/usr/java/j2rel.4.0_01/lib/rt.jar Server.Tempest noauth 513
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 12:19:52 EDT
Tempest: authorization off
Tempest: listening to 513
Exception in thread "main" java.net.BindException: Address already in use
at java.net.PlainSocketImpl.socketBind(Native Method)
at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:321)
at java.net.ServerSocket.bind(ServerSocket.java:308)
at java.net.ServerSocket.bind(ServerSocket.java:266)
at java.net.ServerSocket.<init>(ServerSocket.java:182)
at java.net.ServerSocket.<init>(ServerSocket.java:138)
at Server.Tempest.go(Tempest.java:190)
at Server.Tempest.main(Tempest.java:186)
[root@tempestl08 Tempest]*
Test 4 Attachment

[root@tempestl08 Tempest]* Java -cp .:/usr/java/j2rel.4.0_01/iib/rt.jar Server.Tempest noauth 65536
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 12:43:59 EDT
Tempest; authorization off
Tempest; listening to 65536
Exception in thread "main" java.lang.IllegalArgumentException: Port value out of range: 65536
at java.net.ServerSocket.<init>(ServerSocket.java:177)
at java.net.ServerSocket.<init>(ServerSocket.java:138)
at Server.Tempest.go(Tempest.java:190)
at Server.Tempest.main(Tempest.java:186)
[root@tempestl08 Tempest]*
port 49151.45
[root@tempestl08 Tempest]* java -cp .:/usr/java/j2rel.4.0_01/lib/rt.jar Server.Tempest noauth 49151.45
Starting Tempest Java $Revision: 2.0 $ at Friday, 13 September 2002 12:49:05 EDT
Tempest: authorization off
thread 1 about to accept on port 80
thread 2 about to accept on port 80
thread 3 about to accept on port 80
thread 4 about to accept on port 80
thread 5 about to accept on port 80
thread 6 about to accept on port 80
thread 7 about to accept on port 80
thread 8 about to accept on port 80
Tempest Test 7
[rqhcald@tempestl08 Tempest]$ whoami rqhcald [rqhcald@tempestl08 Tempest]$ Java -cp .:/usr/j2re1.4.0_01/lib/rt.jar Server.Tempest
Starting Tempest Java $Revision: 2.0 $ at Wednesday, 18 September 2002
14:00:33 EDT . . ,
Exception in thread "main" Java.net.BindException: Permission denied
at java.net.PlainSocketImpl.socketBind(Native Method)
at Java.net.PlainSocketIrnpl.bind(PlainSocketIrnpl.Java:321)
at Java.net.ServerSocket.bind(ServerSocket.Java:308)
at Java.net.ServerSocket.bind(ServerSocket.Java:266)
at Java.net.ServerSocket.<init>(ServerSocket.Java:182)
at Java.net.ServerSocket.<init>(ServerSocket.Java:138)
at Server.Tempest.go(Tempest.java:190)
at Server.Tempest.main(Tempest.java:186)
(rqhcald@tempestl08 Tempest]$ whoami
rqhcald
rqhcald is a general user account
however if the port is changed above 1024 (common for secure OS and
secure/fault tolerant embedded systems to reserve 0 - 1024 ports assignments to
system service with the service and super user being the only owners) Web
server in the OS world are applications not services and do to exposure to teh
outside world they are generally isolated from the OS as much as possible
[rqhcald@tempestl08 Tempest]$ Java -cp ,=/usr/32rtl.4 0-01/lxb/rt ,ar Server Tempest 1025

Starting Tempest Java $Revision: 2.0 i
Tempest: listening to 1025
thread 1 about to accept on port 1025
thread 2 about to accept on port 1025
thread 3 about to accept on port 1025
thread 4 about to accept on port 1025
thread 5 about to accept on port 1025
thread 6 about to accept on port 1025
thread 7 about to accept on port 1025
thread 8 about to accept on port 1025
1.0 Test Identifier

Tempest 5

Securing Directory and Files – Basic Hacker’s First-Tries
2.0 Test Requirement being tested

SAFE.

#77 Requirements:requirements

#43 Standard:HTTPV1_1

#44 Standard:HTTPV1_1

#45 Standard:HTTPV1_1

#181 Standard:HTTPV1_1

3.0 Test description

Use the symbol √ to indicate selection

	·
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	·
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	·
	5
	 Security

	·
	6
	 General Specification

Check one or more of the boxes above as they apply to the test. Describe the test below.

Each user should be able to view only those directories they have authorization to use. Server directories outside the “sandbox” should not be viewable through the browser by the user. Users should only be able to access HTTP documents and files under the web root directory that the programmer wants them to view.

3.1 Common test-case characteristics.

All test cases will be able to access viewable “sandbox” directories, all other directories should be off limits.

4.0 Test identification

Cases

Valid: Only valid html/web pages should be accessible

Invalid:
Binary, logs etc should not be accessible. OS, etc. files outside the “sandbox” should not be accessible. Since Tempest records hack attempts any directory outside the sandbox should be recorded as a hack

Tests Performed:

	Directory files is in
	Results (in debug mode)
	Valid/Invalid

	. ./. ./root/fud
	File not found
	Valid

	~
	Not recorded as a hack attempt. Parse out of “Look Up”
	Invalid – invalid error message

	-
	Not recorded as a hack attempt. Parse out of “Look Up”
	Invalid – invalid error message

	./fud
	Works
	Invalid –security breach

	/sp NewFolder/fud
	Unexpected. Goes to html.index page in root.
	Invalid - unexpected

	/New sp Folder/fud
	Does not work.
	Invalid legal unix/linux name

	/New Folder sp/
	Does not work
	Valid

	?
	File not found Netscape
	Valid

	?
	Get index.html Knoqueror Unexpected.
	Invalid

	-
	File not found
	Valid

	~
	File not found
	Valid

	~/username/fud
	File not found
	Valid

	~/fud
	File not found
	Valid

	/../../../../root/fud
	File not found
	Valid

	../../../root/fud
	File not found
	Valid

	./HTDOC/xxx.sys
	All files viewable on browser
	Invalid*

	./tempestjava.sys
	Viewable in browsers
	Invalid*

	/aaa (480times)
	File not found
	Valid

	Many more combos
	File not found
	Vaild

~ Use services home directory usually in home under users name (i.e /home/username). If root is being used to start Tempest then /root is the home directory

- Another Unix/Linux short cut

sp => Linear white space

* Any file below /usr/Tempest may be viewable or captured. Source code , client lists, password/user ids, web server logs, image file locations and the like. This is a very big security breach. Since the user manual does not mention anything about security as it applies to file systems the end-user may leave files open for abuse as the auditor did because the user manual did not instruct him about file security and what rights are need where. The distribution does not make an attempt to set rights access directly (via scripts) or indirectly by seting read/hide bits to files so all files are open, accessible and viewable.

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

6.0 Environmental needs

A JVM must be loaded and operating.

6.1 Special procedural requirements

Ran web server in debug mode to monitor error message.

7.0 Inter-case dependencies

None.

8.0 Summary

The server seems to want to serve only pages from its start directory and below. The security problem here is that logs, sources, passwords/user ids, etc. are exposed and readable. Several popular operating systems use white space in the file name. Behavior here was not unexpected and web serve failed as expected. Several Linux/Unix system directory short cuts were not recognized as a hack attempt by the web server and look like they were being resolved by the web server unlike the “..” which were recognized as an attack.

9.0 Variances

.

10.0 Comprehensiveness assessment

The attached checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	·
	1
	Failure

	
	2
	Handle Correctly

	·
	3
	Software ignored injected fault

Fault Type

	
	1
	Operator

	
	2
	Documentation

	
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	·
	5
	Application

12.0 Summary of results
Commonly accepted design guidelines for web server was not followed by Tempest.

For many other web servers, Config, Log should be read only for security reasons. If possible on the server and the web administrator should have access to these files only. An example tree of a typical web server is illustrated below.

Server

Configuration

Log

HTDOCS (web pages)

Configuration files

Log Files

Web Pages

Directory of static web pages should also be read only. Security should be mention in the manual. File access rights should be discuss in terms of read only, hidden, system attributes

Scripts and batch files as well as the user manual should be used as aids to secure the web server

13.0 Root Cause

Security here depend upon application design. Developer may use the operating system to secure some files but the system administrator needs to know which files need what rights. Tempest right now depends upon the operating system and the administrator’s fore thought to secure the files by trail and error to secure the system. Many system administrator and developers are not trained like the auditor to do this work and therefore these individuals may not even be aware of everything they need to do to secure this version of the web server.

14.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing 09/16/02
	
	

	End Testing 9/17/02
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing 09/17/02
	
	16

16.0 Cost of Faults

Example of cost of leaving the fault in for the end user (Fault Cost) verses what it should have cost if the fault did not exist (cost of performing the task when the item under test functions porperly

Burden Rate: $50.00

No Fault Cost

Time to perform task: securing directories and files when working if automated
 4.0 hr.s

Cost to perform task

$200.00

Fault Cost

Time to perform task of securing directories by trail and error

40 hours

Cost to perform task

$2000.00

Cost to secure directory and restore files after hack

$2000.00

Difference

$1,800.00

Cost to correct fault

???????????//

17.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

1.0 Test Identifier

Tempest 6

Command Line and Log files
2.0 Test Requirement being tested

Command line log function

SAFE.

#xxx Domain:Logs

3.0 Test description

Use the symbol √ to indicate selection

	·
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	·
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	
	5
	 Security

	·
	6
	 General Specification

Check one or more of the boxes above as they apply to the test. Describe the test below.

Test log function from command line. Does the log start, does the server start, are log files generated, secure or available to the “public”?

3.1 Common test-case characteristics.

All test cases require a JVM runtime.

4.0 Test identification

Cases

Valid

Log appears in directory specified by Tempest.

Log events entered in order of occurrence

Invalid

Log does not appear or does not allow server to start.

Logs entrées not in chronological order

Test1: Does log start logging when command is issue on command line

Valid: Log starts logging in known directory

Invalid: Log does not start or

Server does not start

Invalid response, log does not start. Developer hard coded log directory file structure mismatch

Test 2: Is log file viewable by system administrator and Tempest

Valid: Server and system administrator viewable, access to log by others is prohibited.

Invalid: Log can be view by unauthorized personnel

Invalid response, using the ./log/logfilename any one can access the log files via any browser

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

6.0 Environmental needs

A JVM must be loaded and operating.

6.1 Special procedural requirements

The procedure for loading and running an instance of the JVM can be obtain from the Sun web site.

7.0 Inter-case dependencies

None.

8.0 Summary

Log directory is hard coded and does not handle the case-sensitive OS file structure. Common programming error when programming cross platform applications.

9.0 Variances

Discovered via error message the directory case-sensitive log name. Created directory to match code’s name. Log file start logging server messages. See attachment. Notice for the same event that messages seem to vary based on browser used; this is a matter of concern same event should generate the same error message

10.0 Comprehensiveness assessment

The attached checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	·
	1
	Failure

	
	2
	Handle Correctly

	
	3
	Software ignored injected fault

Fault Type

	
	1
	Operator

	
	2
	Documentation

	
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	·
	5
	Application

12.0 Summary of results
Application did catch the absolute break-in, but failed to catch the “relative path” break-in. therefore logs are viewable with any web browser. Also of concern is the matter of different log entries based on browser type for the same event See attachments

13.0 Root Cause

Developers did not take into account case-sensitive operating systems

14.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing
	
	10

16.0 Cost of Faults

Example of the cost of leaving the fault in for the end user (Fault Cost) verses what it should have cost if the fault did not exist (cost of performing the task when the item under test functions properly

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hr.s

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

10 hours

Cost to perform task

$500

Difference

$498.33

Cost to correct fault

???????????//

17.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

Access from 102.tempest.corn at Tuesday, 17 September 2002 14:30: 01 EDT
Hack attempt? GET ..
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:31: 51 EDT
Access from 102.tempest. corn at Tuesday, 17 September 2002 14:32: 01 EDT
Access from 102.tempest corn at Tuesday, 17 September 2002 14:33: 13 EDT
Access from 102.tempest corn at Tuesday, 17 September 2002 14:33: 26 EDT
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:33: 30 EDT
Access from 102.tempest•corn at Tuesday, 17 September 2002 14:33:43 EDT
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:33:55 EDT
Access from 102.tempest•corn at Tuesday, 17 September 2002 14:38: 09 EDT
Hack attempt? GET /LOG
Access from 102.tempest•corn at Tuesday, 17 September 2002 14:39:27 EDT
Hack attempt? GET /LOG
Access from 102.tempest•corn at Tuesday, 17 September 2002 14:40:03 EDT
Hack attempt? GET /LOG
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:40:42 EDT
Hack attempt? GET /LOG
Access from 102.tempest•corn at Tuesday, 17 September 2002 14:41:18 EDT
Hack attempt? GET /LOG
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:41: 27 EDT
Hack attempt? GET /LOG
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:41: 58 EDT
Hack attempt? GET /LOG
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:45: 28 EDT
Access from 102.tempest.corn at Tuesday, 17 September 2002 14:45: 39 EDT
Konqueror Log file for getting hacked by ..

Access from 102.tempest.com at Tuesday, 17 September 2002 14:30:01 EDT Hack attempt?
GET .. Access from 102.tempest.com at Tuesday, 17 September 2002 14:31:51 EDT Access
from 102.tempest.com at Tuesday, 17 September 2002 14:32:01 EDT Access from
102.tempest.com at Tuesday, 17 September 2002 14:33:13 EDT Access from
102.tempest.com at Tuesday, 17 September 2002 14:33:26 EDT Access from
102.tempest.com at Tuesday, 17 September 2002 14:33:30 EDT Access from
102.tempest.com at Tuesday, 17 September 2002 14:33:43 EDT Access from
102.tempest.com at Tuesday, 17 September 2002 14:33:55 EDT Access from
102.tempest.com at Tuesday, 17 September 2002 14:38:09 EDT Hack attempt? GET /LOG
Access from 102.tempest.com at Tuesday, 17 September 2002 14:39:27 EDT Hack attempt?
GET /LOG Access from 102.tempest.com at Tuesday, 17 September 2002 14:40:03 EDT
Hack attempt? GET /LOG Access from 102.tempest.com at Tuesday, 17 September 2002
14:40:42 EDT Hack attempt? GET /LOG Access from 102.tempest.com at Tuesday, 17
September 2002 14:41:18 EDT Hack attempt? GET /LOG Access from 102.tempest.com at
Tuesday, 17 September 2002 14:41:27 EDT Hack attempt? GET /LOG Access from
102.tempest.com at Tuesday, 17 September 2002 14:41:58 EDT Hack attempt? GET /LOG
Access from 102.tempest.com at Tuesday, 17 September 2002 14:45:28 EDT
Using Netscape 7.2 getting hack by ..

Access from 102.tempest.com at Tuesday, 17 September 2002 15:00:36 EDT Hack attempt? GET /LOG

Access from 102.tempest.com at Tuesday, 17 September 2002 15:00:43 EDT Hack attempt? GET /LOG

1.0 Test Identifier

Tempest 7

Log Overflow
2.0 Test Requirement being tested

Command line log function

SAFE.

#yyy Domain:Log

3.0 Test description

Use the symbol √ to indicate selection

	
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	√
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	
	5
	 Security

	√
	6
	 General Specification

Check one or more of the boxes above as they apply to the test. Describe the test below.

Do the logs created grow to a point that they consume the whole disk? Do quote limits affect server operations. Do the logs log events in order?

3.1 Common test-case characteristics.

All test cases require a JVM runtime.

4.0 Test identification

Cases

Test 1: Set disk quota so log will run out of room quickly. RAM and Disk on Chips are not very large. Does server continue to work? Are logs lost?

Valid: Server continues to work. Data does not ride limit of storage media. Data files are transferred to “offline” archive. Logs record event in order of occurrence

Invalid: Server may or may not continue to work. Log uses every available free memory. Data is lost because system does not store it properly.

Invalid response. Logs use every available resource of free memory. Error messages are transmitted to consoles. Auditor noticed that the error message sent to console are not the same as the message recorded in the logs. See attachment. Data is not transfer to another file or an off line system. Data in log files is not recorded in the order that the events occurred. Review attached log files

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

6.0 Environmental needs

A JVM must be loaded and operating.

6.1 Special procedural requirements

The procedure for loading and running an instance of the JVM can be obtain from the Sun web site.

7.0 Inter-case dependencies

None.

.

8.0 Summary

The log file will run themselves up to the limit of the storage media. Although the server does not stop functioning, valuable data is never recorded for review (like the attempted hacks). On some system like Microsoft Windows the OS may stop and or act erratic because the OS cannot allocate swap memory. It is of great concern that error message are not recorded in the order they happen. Are message being lost?

Another note of concern is seeing in the error message that a socket is being closed. The auditor does not know why or the cause

To fill the log the Auditor pretended to be the double the double click user when browser did not react quickly. Used the ../ to generate a Hack message to fill buffers quickly. Server was slow to answer. Server recorded messages out of order. Server closed the TCP/IP socket. Server crashes under double click load. All the may be of concern to developers and web administrators. As a hacker I just took down a web server that if it were in a distributed control environment I may be denying other controllers information

9.0 Variances

None

10.0 Comprehensiveness assessment

The attached checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	√
	1
	Failure

	
	2
	Handle Correctly

	
	3
	Software ignored injected fault

Fault Type

	
	1
	Operator

	
	2
	Documentation

	
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	√
	5
	Application

Check one or more

12.0 Summary of results
Web server needs a way to control log size and archive old logs

13.0 Root Cause

Developers did not consider what, whys and how logs are used especially in and distributed control system that uses embedded web server. Data logs are important to trace system failures and are used routinely.

14.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing
	
	16

16.0 Cost of Faults

Example of cost of leaving the fault in for the end user (Fault Cost) verses what it should have cost if the fault did not exist (cost of performing the task when the item under test functions properly

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hr.s

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

4 hours

Cost to perform task

$200.00

Difference

$198.33

Cost to correct fault

???????????//

17.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

Error generated when double clicking fast several times in a row noauth and log
server still runs. Notice that the socket is closing. A human should not be able to hit a socket so hard that it has to close temporarily to control the flow of datagrams that the human is generating. If another controller were to replace the human what would happen?
Error when sending to client.
java.net.SocketException: Socket closed
at java.net.SocketOutputStream.socketWriteO(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:92)
at java.net.SocketOutputStream.write(SocketOutputStream.java:126)
at java.io.BufferedOutputStream.fiushBuffer(BufferedOutputStream.java:69
)
at java.io.BufferedOutputStream.flush(BufferedOutputStream.java:127)
at Server.HTTPString.sendResponse(HTTPString.java:670)
at Server.HTTPString._getResponseMessage(HTTPString.java:523)
at Server.HTTPString.process(HTTPString.java:241)
at Server.Tempest.respond(Tempest.java:382)
at Server.Tempest.run(Tempest.java:311)
at j ava.lang.Thread.run(Thread.j ava:5 3 6)
Error when sending to client.
java.net.SocketException: Socket closed
at java.net.SocketOutputStream.socketWriteO(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:92)
at java.net.SocketOutputStream.write(SocketOutputStream.java:126)
at java.io.BufferedOutputStream.fiushBuffer(BufferedOutputStream.java:69
at java.io.BufferedOutputStream.flush(BufferedOutputStream.java:127)
at Server.HTTPString.sendResponse(HTTPString.java:670)
at Server.HTTPString._getResponseMessage(HTTPString.java:523)
at Server.HTTPString.process(HTTPString.java:241)
at Server.Tempest.respond(Tempest.java:382)
at Server.Tempest.run(Tempest.java:311)
at java.lang.Thread.run(Thread.java:536)
Error when sending to client.
java.net.SocketException: Socket closed
at java.net.SocketOutputStream.socketWriteO(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:92)
at j ava.net.SocketOutput St ream.write(SocketOutput St ream.j ava:12 6)
at java.io.BufferedOutputStream.fiushBuffer(BufferedOutputStream.java:69
at java.io.BufferedOutputStream.flush(BufferedOutputStream.java:127)
at Server.HTTPString.sendResponse(HTTPString.java:670)
at Server.HTTPString._getResponseMessage(HTTPString.java:523)
at Server.HTTPString.process(HTTPString.java:241)
Error when sending to client.
java.net.SocketException: Socket closed
at java.net.SocketOutputStream.socketWriteO(Native Method)
at java.net.SocketOutputStream.socketWrite(Socket Output Stream.java:92)
at j ava.net.SocketOutput St ream.write(SocketOutput St ream.j ava:12 6)
at java.io.BufferedOutputStream.fiushBuffer(BufferedOutputStream.java:69)
at java.io.BufferedOutputStream.flush(BufferedOutputStream,java:127)
at Server.HTTPString.sendResponse(HTTPString.java:670)
at Server.HTTPString._getResponseMessage(HTTPString.java:523)
at Server.HTTPString.process(HTTPString.java:241)
at Server.Tempest.respond(Tempest.java:382)
at Server.Tempest.run(Tempest.java:311)
at java.lang.Thread.run(Thread.java:536)
thread 8 about to accept on port 1025
thread 7 about to accept on port 1025
thread 1 about to accept on port 1025
This is a record of the log file notice the unnatural order of the log entrees when the human double click verses when he starts double clicking. The error messages do not stay in order. These message differ from the console message on the glass

Access from 102.tempest.com at Thursday, 19 September 2002 12:35:34 EOT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:35 EDT
Hack attempt? GET
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:37 EOT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:38 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:39 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:40 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:41 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:42 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:43 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:35:44 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:36:52 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:36:53 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:36:54 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:36:55 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:36:56 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:36:57 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:36:58 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:00 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:00 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:01 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:03 EDT
Hack attempt? GET ..
Access from 102.teropest.com at Thursday, 19 September 2002 12:37:04 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:05 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:06 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:06 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:07 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:08 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:09 EDT
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:40 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:41 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:42 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:43 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:44 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:45 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:46 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:48 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:49 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:50 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:51 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:52 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:37:53 EDT
Access fro£ 102.tempest.com at Thursday, 19 September 2002 12:37:54 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:42 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:43 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:45 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:45 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:46 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:47 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:48 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:49 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:50 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:51 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:52 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:53 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:54 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:55 EDT
Access^rom^O^empest.com at Thursday, 19 September 2002 12:38:55 EDT
Hack attempt? GET . .
Access from 102.tempest.com at Thursday, 19 September 2002 12:38.56 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:38:57 EDT
Access frS 102.tempest.com at Thursday, 19 September 2002 12:43:11 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:12 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:13 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:14 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:15 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:16 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:17 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:18 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 19 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 22 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 23 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 24 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 25 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 26 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 27 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 28 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 29 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 30 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 31 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 32 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 33 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 34 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 35 EDT
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 36 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 38 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 37 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 42 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 41 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 40 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 43 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 46 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12 43 50 EDT
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:52 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:56 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:54 EDT
Hack attempt? GET ..
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:57 EDT
Access from 102.tempest.com at Thursday, 19 September 2002 12:43:58 EDT
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:44:13 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:44:15 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:44:16 EDT
Hack attempt? GET ..
Access from 102.tempest.com at Thursday, 19 September 2002 12:44:18 EDT
Note two things here the ability of an ordinary use to use ports above 1025 not below and the errors that are generated when a disk quota has been exceed.

[rqhcald@tempest3.08 Tempest]$ Java -cp .:/usr/j2rel.4.0_01/lib/rt.jar Server.Tern
pest noauth log 1025
Starting Tempest Java $Revision: 2.0 $ at Thursday, 19 September 2002 10:02:38 E
DT
Tempest: authorization off
Tempest: logging on
Tempest: listening to 1025
thread 1 about to accept on port 1025
thread 2 about to accept on port 1025
thread 3 about to accept on port 1025
thread 4 about to accept on port 1025
thread 5 about to accept on port 1025
thread 6 about to accept on port 1025
thread 7 about to accept on port 1025
thread 8 about to accept on port 1025
thread 1 accepted a connection from 192.0.0.102 102.tempest.com
thread 1 about to accept on port 1025
/: write failed, user disk limit reached.
Logger: 10 error trying to write to the
log file
java.io.IOException: Disk quota exceeded
at Java.io.FiieOutputStream.writeBytes(Native Method)
at Java.io.FileOutputStream.write(FileOutputStream.java:257)
at sun.nio.cs.StreamEncoder$CharsetSE.writeBytes(StreamEncoder.Java:334)
at sun.nio.cs.StreamEncoder$CharsetSE.implFlushBuffer(StreamEncoder.Java
:403)
at sun.nio.cs.StreamEncoder$CharsetSE.implFlush(StreamEncoder.java:407) at sun.
nio.cs.StreamEncoder.flush(StreamEncoder.Java:150)
at Java.io.OutputStreamWriter.flush(OutputStreamWriter.Java:213)
at Server.Logger.run(Logger.Java:64)
Logger; 10 error trying to write to the log file
java.io.IOException: Disk quota exceeded
at Java.io.FileOutputStream.writeBytes(Native Method)
at Java.io.FileOutputStream.write(FileOutputStream.java:257)
at sun.nio.cs.StreamEncoder$CharsetSE.writeBytes(StreamEncoder.Java:334)
at sun.nio.cs.StreamEncoder$CharsetSE.implFlushBuffer(StreamEncoder.Java
:403)
at sun.nio.cs.StreamEncoder$CharsetSE.implFlush(StreamEncoder.java:407) at sun.
nio.cs.StreamEncoder.flush(StreamEncoder.Java:150)
at Java.io.OutputStreamWriter.flush(OutputStreamWriter.Java:213)
at Server.Logger.run(Logger.Java:64)
thread 4 accepted a connection from 192.0.0.102 102.tempest.com
thread 4 about to accept on port 1025
Logger: 10 error trying to write to the log file
java.io.IOException: Disk quota exceeded
at Java.io.FileOutputStream.writeBytes(Native Method)
at Java.io.FileOutputStream.write(FileOutputStream.java:257)
at sun.nio,cs.StreamEncoder$CharsetSE.writeBytes(StreamEncoder.Java:334)
at sun.nio.cs.StreamEncoder$CharsetSE.implWrite(StreamEncoder.java:394) at sun.
nio.cs.StreamEncoder.write(StreamEncoder.Java:134)
at sun.nio.cs.StreamEncoder.write(StreamEncoder.Java:144)
at Java.io.OutputStreamWriter.write(OutputStreamWriter.Java:204)
at Java.io.Writer.write(Writer.Java:126)
at Server.Logger.run(Logger.Java:63)
thread 3 accepted a connection from 192.0.0.102 102.tempest.com
thread 3 about to accept on port 1025
Logger: 10 error trying to write to the log file
java.io.IOException: Disk quota exceeded
at Java.io.FileOutputStream.writeBytes(Native Method)
at Java.io.FileOutputStream.write(FileOutputStream.java:257)
at sun.nio.cs.StreamEncoder$CharsetSE.writeBytes(StreamEncoder.Java:334)
at sun.nio.cs.StreamEncoder$CharsetSE.implWrite(StreamEncoder.java:394) at sun
.nio.cs.StreamEncoder.write(StreamEncoder.Java:134)
at sun.nio.cs.StreamEncoder.write(StreamEncoder.Java:144)
at Java.io.OutputStreamWriter.write(OutputStreamWriter.Java:204)
at Java.io.Writer.write(Writer.Java:126)
at Server.Logger.run(Logger.Java:63)
at sun.nio.cs.StreamEncoder.write(StreamEncoder.Java:144)
at Java.io.OutputStreamWriter.write(OutputStreamWriter.java:204)
Record of Miscellaneous Events/Concerns that were not investigated

Server only shows 6 threads started to receive requests

Server only shows 4 threads started to receive requests

Character is unknown on client side when server just served it a page. Why? Does Tempest use the correct character set? Is that information not being placed in the header?

Command line contain an option

No auth

Server ignored the no and ran the auth this was unexpected. An error message was not generated. Auditors feels an error message should have been generated

When server crashed on double clicks on error message and no service. If experience is any teacher look for a buffer overflow in the TCP/IP service area.

Server has trouble keeping up when pages are requested faster than 1 second. For a real-time embedded system this time is extremely slow. Many embedded systems could hit this server at 30-40 milliseconds easily. Why the long wait?

Log has trouble keeping up with events. This is not good in a distributed control system. Event are out of order. Are some events missed or just relocated?
Demo3 did not work on Linux system. See attachment below

Demo3.shtm error message
The following tag should execute the method display () coded in Tempest/source/SomeClass.java.
This was generated by String TestClass.SomeClass.someMethod(String s) where s is WOW! WHAT A
FEATURE!
The following tag should execute the method someMethod(s) coded in
Tempest/source/SomeClass.java..
This was generated by String TestClass.SomeClass.displayQ
Tempest Audit Log Sample

Fault Injection Template/Sample

1.0 Test Identifier

Test number

Test description

2.0 Test Requirement being tested

Command line log function

SAFE.

#RefID Databasename:Tablename

3.0 Test description

Use the symbol √ to indicate selection

	
	1
	Requirements coverage. Has each of the requirements been satisfied?

	
	2
	Design coverage. Has each of the functional design specifications been satisfied?

	·
	3
	Domain coverage. Has each of the input constraints (e.g., maximum of one decimal point) been tested? Have representative values been included? Have all error messages been generated?

	
	4
	Branch coverage. Has every branch been taken at least once? This may not applicable in component testing

	
	5
	Statement coverage. Has every statement been executed at least once? This may not applicable in component testing

	
	6
	Component Function coverage. Has every public function in the component been tested?

Test Fault Category:

	
	1
	 Cost

	
	2
	 HFE

	
	3
	 Misc

	
	4
	 Performance

	
	5
	 Security

	
	6
	 General Specification

Check one or more of the boxes above as they apply to the test. Describe the test below.

Test description goes here.

3.1 Common test-case characteristics.

Example: All test cases require a JVM runtime.

4.0 Test identification

Cases

Valid

Log appears in directory specified by Tempest.

Invalid

Log does not appear or does not allow server to start.

Test 1: Describe Test

Valid:

Invalid:

Valid or Invalid description

5.0 Feature pass/fail criteria

Each feature must pass all of its test cases in order to pass this test.

6.0 Environmental needs

Example: A JVM must be loaded and operating.

6.1 Special procedural requirements

Example: The procedure for loading and running an instance of the JVM can be obtain from the Sun web site.

7.0 Inter-case dependencies

Describe what cases must precede this case in order for this case to be tested.

.

8.0 Summary

Summary of events .

9.0 Variances

If the Auditor is able to decode and get the test to produce a valid response (in that it is running like it is suppose to then a the Auditor notes the changes made here and the out come

10.0 Comprehensiveness assessment

The attached (but not included with example) checklists and execution trace reports demonstrate that the minimum comprehensiveness requirements specified in the test design specification have been satisfied.

11.0 Evaluation

Fault Failure Mode:

	
	1
	Failure

	
	2
	Handle Correctly

	
	3
	Software ignored injected fault

Fault Type

	
	1
	Operator

	
	2
	Documentation

	
	3
	Third Party required application/applet (JVM)

	
	4
	Operating System

	
	5
	Application

Check one or more

12.0 Summary of results
Application did catch the absolute break-in, but failed to catch the “relative path” break-in. Able to get to anything using shorthand/with pu.(?)

13.0 Root Cause

Root cause describes where the fault was introduced. A requirements error (lack of understanding the domain/exclusion of the requirement), a design error, a translation error translating design to code, etc

14.0 Activities Log

	Description
	Estimate
	Actual

	
	
	

	Begin Testing
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	End Testing
	
	

16.0 Cost of Faults

Example of cost of leaving the fault in for the end user (Fault Cost) verses what it should have cost if the fault did not exist (cost of performing the task when the item under test functions properly

Burden Rate: $50.00

No Fault Cost

Time to perform task when working
 .03 hr.s

Cost to perform task

$1.67

Fault Cost

Actual Time to perform task

30 hours

Cost to perform task

$1500.00

Difference

$1,498.33

Cost to correct fault

???????????//

17.0 Sign Off

Auditor

Date

Developer

Date

Audit Manager

Date

Attachment B Definitions

This clause contains key terms as they are used in this Document.

design level:

 The design decomposition of the software item (e.g., system, subsystem, program, component or module).

pass/fail criteria:

 Decision rules used to determine whether a software item or a software feature passes or fails a test.

software feature:

 A distinguishing characteristic of a software item (e.g., performance, portability, or functionality).

software item:

 Source code, object code, job control code, control data, commercial-off-the-shelf component or a collection of these items.

 test:

 (A)

 A set of one or more test cases, or

 (B)

A set of one or more test procedures, or

 (C)

A set of one or more test cases and procedures.

Testware: Source code, object code, job control code, control data, or a collection of these items that is designed to test software that is under audit

test case specification:

 A document specifying inputs, predicted results, and a set of execution conditions for a test item.

test design specification:

 A document specifying the details of the test approach for a software feature

or combination of software features and identifying the associated tests.

 test incident report:

A document reporting on any event that occurs during the testing process which

requires investigation.

Audit/ testing:

The process of analyzing a software item to detect the differences between existing and required

conditions /faults (that is, bugs) and to evaluate the features of the software item.

 test item:

A software item which is an object of testing.

test item transmittal report:

A document identifying test items. It contains current status and location

information.

test log:

 A chronological record of relevant details about the execution of tests.

test plan:

 A document describing the scope, approach, resources, and schedule of intended testing activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, and any risks requiring contingency planning.

test procedure specification:

 A document specifying a sequence of actions for the execution of a test.

test summary report:

 A document summarizing testing activities and results. It also contains an evaluation of the corresponding test items.

Attachment C Test Bed Layout and Design

Test Bed Platform

The test bed platform consists of eight general use desktop computers. One computer was set up to monitor network traffic and capture datagrams (using NETXRay a sniffer program) passed between the other computers running on the test bed. Three computers were set up as “end-users” computers with several different browsers loaded onto each computer. Three other computers were loaded with RTLinux to simulate other Real-Time Operating Systems (RTOS)s hitting the Tempest Web server for information in a simulated real-time distributed environment like the one in NASA’s Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The last computer was loaded with RTOS, a JVM and Tempest the embedded Web server under test.

Hardware

The following hardware was used in setting up the test bed

Network Switch

Netgear Auto 10/100 Fast Ethernet Switch: Model FS308

Wintel Computers

Dell Optiplex GX1

ATI Rage Pro – graphics

Pentium II 266 Mhz

64 Mb Ram

Maxtor 4Gb Hard drives

3Com #C900/905 10 MHz network cards

Software

The Monitoring Computer

Microsoft Window NT with service pack 4

Applications loaded to monitor network services

The End Users computers

Red Hat Linux 7.2

Browsers

Kongveror 3.0

Netscape 4.2

Netscape 6.2

The Real-Time computers

RTLinux 3.0

Tempest the Web Server

RTLinux 3.0

One real-time task “jitter” included with the distribution

Tempest for Java (version 2.0)

Java Runtime Environment (j2re1.4.0_01)

The physical set up is illustrated below:

[image: image1.png]Q

WEb Client/Gateway
B ol
8

_t

Embbed Web Server

Web Client

Web Client

Web Client

Web Client

Web Client

Web Client

Power Demand 25 Amps(2 20 amp circuits)

Attachment D SAFE Work Breakdown (Flow Chart Format)

The white boxes indicate tasks that a development team would be executing within the SAFE environment. The white boxes were included here to provide a frame of reference for the reader. The shaded gray boxes indicate tasks a SAFE auditor would perform within the SAFE environment. The SAFE approach has been used by Mr. Caldwell on several projects when he worked for DOD and was selected to provide IV&V support for various programs that included the QF-106 program(http://www.af.mil/news/airman/0398/drone2.htm explains the program’s purpose) and the C-17 program; glass avionics sub-system (http://www.globemaster.de/c-17/facts.html. Quick facts on C-17 and its purpose)

[image: image2.png]Application Anlysis

Start

L 4

Customer,

Custormer's Developer,
Requirernents & fuditor
Editing

Auditor Path

Testware Requirement Faults Log

RS Verification
Scenarios
Developer Path
L
Requirement Faults Discovered
Anaylsis
Fault Tolerant
SFl
Rests
Developer,
& Buditar
Editing
systems(
ructure
j—
(Object) Faults Log
Behavioral Fault Tolerant
(Object)
Proceed to
Verily Arifacts design (sfiL)

[image: image3.png]Design

Continued from
Application
Anlysis (sfil

Developer,
& duditor
Editing

x

Update
Testware &
Test
Scenarios

Faults Discovered

L 4
Architectural
Design
¥ Fault Tolerant
Mechanistic
Design Proceed to
Translation (sfi2)
v Faults Log
Detail Design

Veriy Arifacts

I

[image: image4.png]Translation

Continued from
Design (sfi2)

V&Y

Software
oTS Companent
Software
Companent
Selection
Faults in OTS comp s o
v
Organic
Codet
Ll Test companent in organic environment
Developer's
Software
Tesing
ey
| Software
Companent in
o W
* Environment

Update
Testware &
Test
Scenarios

Faults Log

Faults Discovered

Results

Developer,
& Buditor ——
Editing

Developer HW. Developer HW.
Testing (sfid) Organic (sfi5)

“10reanic Code: Code developed In-House 20TS: Off-the-Shelf (COTS & GOTS)

Fault Talerant

Praceed to SW/HW.

Translation (5fi3)

[image: image5.png]SW/HW Translation

Developer HW Developer HW [e
Testing (sfid) Organic (sfi5) Translation (sfi3)

v

———» &y
Integrated
Software and
OTS Harware

1

Faults Log

oTs
Hardnare
Companent

Organic
Hardnare

Developer's
Hardware [Faults Discovered
Testing v

Develaper,
& Auditor

Editing

HW V&Y
Companent

Update
Testware &
Test
Scenarios

Mo
HW Ivay Proceed to SyTstet;“ Fault Tolerant:
Component(sfi7) Testing (s1i6) <

Yes

[image: image6.png]Testing

HW V&Y
Component(sfi7)

Proceed to
Testing (sfi6)

Faults Log

Update
Testware &
Test
Scenarios

-~ ey

et up Integrated

CLEAN B Su/Huin

Hardware Enviranment
7y

SFI

Fault Talerant

Set up
CLEAN | —»

Hardware

Load "New"
SystemSoftware

Results

Faults Discovered

v

Develaper,

Faults Log

& Auditor
Editing

Update
Testware &
Test
Scenarios

Faults Discovered

v

Develaper,

& Auditor
Editing

[image: image7.png]Operational Life Cycle

Operational
(sfi8)
L 2

System is
|
“Gold" e

Loop (1) times

Yy Analyze
L Cycle Lite Cycle Metrics
Fault
Maintenance
Injection
e HR & 54
rocess Wodity
{mprovement Training Plan

Improved
Process

[image: image8.png]Design

Continued from
Application
Anlysis (sfil

Developer,
& duditor
Editing

x

Update
Testware &
Test
Scenarios

Faults Discovered

L 4
Architectural
Design
¥ Fault Tolerant
Mechanistic
Design Proceed to
Translation (sfi2)
v Faults Log
Detail Design

Veriy Arifacts

I

[image: image9.png]Operational Life Cycle

Operational
(sfi8)
L 2

System is
|
“Gold" e

Loop (1) times

Yy Analyze
L Cycle Lite Cycle Metrics
Fault
Maintenance
Injection
e HR & 54
rocess Wodity
{mprovement Training Plan

Improved
Process

Attachment E
Major Tasks Performance Summary

This appendix summarizes at a high level the task performed to demonstrate SAFE effectiveness.

	Task Description
	Hours recorded by NASA/SAIC/ESA/Adnohr Technologies

	Collect technical documents to Support SAFE’s methods
	570

	Report to document SAFE approach
	224

	Lab work to validate and verify SAFE’s claim
	0

	 Component Requirements(Vendor Claims)
	162

	 Component Test Scenario Database
	260

	 Standards Requirements
	150

	 Domain Knowledge Requirements
	208

	 Refine Testware/Test Scenarios
	66

	 Test Bed General Setup
	48

	 Testing
	90

	 Test Report/Test Log/Test Plan
	70

	
	

	Total
	1848

Notes:

All tasks are partial efforts of the full tasks. Time and budgets prevented the Fault Injection Team from doing a complete effort in each areas mentioned above. This CSIP researched the effectiveness and the costs of fault injection using the SAFE approach.

NASA - Glenn Research Center

Cleveland, OH 44135

Printed copies are uncontrolled and are not to be used for operational purposes.

30 September 2002

Page 2 of 103

