Glenn Research Center Document
Title: Test Plan for Software Fault Injection

Document No.: xxxxx
Rev.: Draft

Document No.

Revision
Draft

SAIC/NASA

Test Plan for Software Fault Injection

Date: April 10, 2002

Signature Page

(Official signatures on file with the xxx Project Control Specialist)

Prepared By:

Name

Title

Glenn Research Center

Reviewed By:

Name

Title

Glenn Research Center

Concurred By:

Name

Title

Glenn Research Center

Approved By:

Xxx Project Manager

Glenn Research Center

Change Record

Rev.
Effective

Date
Description

Draft
03/29/2002
Original

TABLE OF CONTENTS

61.0
INTRODUCTION

61.1
Purpose

61.2
Scope

62.0
REFERENCES

62.1
Reference Documents

62.2
Records and Forms

72.3
Acronyms

72.4
Definition of Terms

83.0
RESPONSIBILITIES

84.0
Fault Injection for Components/COTS/GOTS

84.1 Introduction

84.1.1
Fault Injection and SAFE

94.1.2
GOTS, COTS and Components

94.1.3
Working within SAFE

104.1.4
Cost

114.1.5
What’s Next

124.2 Program Management View of Fault Injection

124.2.1
Problem Domain

134.2.2
High Level Milestones

144.2.3
Training

154.3
Fault Injection Process

164.3.1
Project management and Fault Injection

174.3.2
Software Assurance Role

174.3.3
IV&V Role

194.3.4
Auditor’s Role

204.3.5 SAFE Approach

204.3.5.1 SAFE and Document Products

214.3.5.2 When Does the Auditor Start?

234.3.5.3 Getting Started with SAFE: the Auditor and Conceptual Models/Requirements

244.3.5.4 Fault Injection, Auditors, and Software Developers

254.3.5.4.1 Same Problem, Different Viewpoints

264.3.5.5 Responsibilities of the Auditor in the Different Phases of the Software Life Cycle

264.3.5.5.1 Artifacts and Auditors

314.3.5.5.2 Work Process Flow and Auditors

314.3.5.5.2.1

314.3.5.5.2.2

314.3.5.5.2.3

344.3.5.5.2.4

374.3.5.5.2.5 SA Process Improvement (the party)

374.3.5.5.3
Design

384.3.5.5.4
Translation

384.3.5.5.5
Testing

384.3.5.5.6
Operational Life Cycle

384.3.5.6
 Off-the-shelf Software

394.3.6
Flow charts of Fault Injection Framework

47APPENDIX A - Definitions

55APPENDIX B – Common Software Processes

58APPENDIX C – SEI Process Maturity Model

58C.1 Fault injection Testing and SEI Maturity.

61APPENDIX D – Auditors Guide to Object Oriented Languages

61D.1
Auditors Guide to Object Oriented Languages

66APPENDIX E – Application Use Case

66E.1
Application Use Case

66E1.1 Introduction

66E1.2 Getting Started

67E1.3 Decomposing the Problem – Requirement Analysis

69E1.3.1 Parse Requirements Document

69E1.3.1.1 Parsing System Functions

70E1.3.1.2

71E1.3.2 Requirement Analysis to UML diagrams

72E1.3.2.1 Messages

72E1.3.3.1 Use Cases

73E1.3.3.2 Classifying Requirements via Use Cases

76E1.3.3.3 Documenting Use Cases

76E1.3.3.3.1 Scenarios and Use Cases.

77E1.3.3.3.1 Example of Scenarios and Use Cases

78Post Condition

78Typical Course of events

78System Response

78Alternate Courses

78Line Number

78Course Change

79Alternate Courses

80APPENDIX F – Auditors Guide to Object Oriented Languages

80F.1
Auditors Guide to Object Oriented Languages

81APPENDIX G – Auditors Guide to Real Time Embedded System

81G.1
Auditors Guide to Real Time Embedded System

1.0
INTRODUCTION

1.1
Purpose

Off-the-shelf and reused software is an integral part of many NASA projects. In an effort to save time and money, many projects are beginning to use these components, which are often lacking in documentation, verification (testing) information, and access to the source code. Failure modes, possible faults, and the interaction of the off-the-shelf software with the rest of the system may be unknown or poorly known. Despite this, mission assurance requires that the software must be fault and/or failure tolerant.

Independent validation and verification in such a system is complicated by the lack of software documentation, software code, design specifications, and testing results. Using the proposed solution, we will investigate when and where faults were found, the resulting error(s) (severity) associated with that fault, cost of finding the fault using the proposed solution and cost of the fault in real life (if it has been discovered). We will try to measure subjectively the usefulness of this solution in terms of safety.

1.2
Scope

This investigation will explore a possible solution to be used by an Independent IV & V software engineer as they examine COTS/GOTS software (including operating systems/hardware combinations) where the “public” interfaces to those components give us our only glimpse into the quality of the software “inside”.

2.0
REFERENCES
2.1
Reference Documents

Document Number
Document Title

ISBM 0-201-32564-0
Software Engineering: Testing and Debugging

ISBM 0-201-63181-4
Software Inspection

ISBM 0-201-87756-2
Software Testing in the Real World

ISBN 0-201-65784-8
Real-Time UML

ISBM 0-471-18381-4
Software Fault Injection

ISBM 0-471-08112-4
Lessons Learned in Software Testing

ISBM 0-13-824673-4
Software Requirements, Analysis and Specifications

ISBM 0-385-49408-4
The One-One Manager

SEI white papers

DOD white papers

IEEE white papers

2.2
Records and Forms

· Sample Forms will be included in this document when appropriate.

2.3
Acronyms

Acronym
Definition

OTS
Off-the-shelf, either commercial, government, or other source.

COTS
Commercial Off-the-Shelf

GOTS
Government Off-the-Shelf

IV&V
Independent Verification and Validation

SAFE
Software Application Fault-Tolerant Environment

SFI
Software Fault Injection

CTQ
Critical-to-Quality

ROPES
Rapid Object Oriented Process for Embedded System (ROPES) is the RAD approach for embedded systems and follows the same principles as the RAD.

CMM
Capability Maturity Model, proposed by the Software Engineering Institute (SEI)

SW-CMM
The Software CMM

2.4
Definition of Terms

Term
Definition

Environment
The software tools, software artifacts, development methods, hardware, and personnel that are utilized to create a binary/software image. Each item acts upon this image, determines the image’s behavior, form and the image’s survival (usage).

Failure
An incorrect result. The result of the fault

Fault
An incorrect step, process or data definition in a program (code). The outgrowth of a mistake produce by a human action that produces the incorrect result (a failure e.g. a fault causing an OS to lock-up.)

Guide
Use at your discretion

Instrument
To add code to/around the program to watch what happens internally as the program responds to the injected fault

Recommended practice
Should use (very strongly encouraged, not really at your discretion)

Software Fault Injection
Technique to input errors into a software system and verify that the system responds in an acceptable manner

Standard
Must use

Other definition used in this document are in Appendix A

3.0
RESPONSIBILITIES
Title
Responsibilities

Phouc Thai, Program Manager
Program management for research effort

Kalynnda Berens
Principal Investigator

Hugh Caldwell
Researcher

4.0 Fault Injection for Components/COTS/GOTS

4.1 Introduction

Fault injection, which includes auditing and testing, is a value-added activity within the design, integration, and acquisition processes. For design, fault injection of the requirements may find errors before the design is finalized. In addition, fault injection of proposed COTS components will clarify how the rest of the software system must interact with the COTS software in order to maintain safety and robust behavior. Such characterization of COTS software is vital to the acquisition process, so that high-quality, robust software is used within the project.

4.1.1
Fault Injection and SAFE

The Software Application Fault-Tolerant Environment (SAFE) is an engineering approach to integrating fault injection throughout the project lifecycle. Within SAFE, the developers, auditors, and inspectors work as a team to develop high quality production software rapidly. In SAFE, no one individual owns the code. Rather, the team (developers, auditors, and inspectors) owns the code. Any developer on the team may make changes to the code as required using RAD, object-oriented development, structure programming or other such methods.
 Auditors
 can check any code and inspectors can inspect and test any code within the project and the project guidelines.

Heavy use of preexisting code is encouraged (COTS, GOTS, etc.) to decrease cost, design time, and faults while increasing repeatability and reliability. Examples of common preexisting code can be found in items as common as a programmer’s graphical integrated environment in which windows frames, icons, buttons, TCP/IP stacks and so on are “drag and drop” code components.

4.1.2
GOTS, COTS and Components

COTS/GOTS components that are used within SAFE should be used and treated in the same way as organic code, except they will have a code “wrapper” around them. COTS/GOTS components will be tested via their messages and interfaces. Thus, COT/GOTS testing will be equal to a developer’s unit test, minus the ability to look at the code. Common functions and “key words” in a third or forth generation language are tested this way every day by programmers

A special problem with GOTS/COTS is to make sure the quality of the component meets or exceed your own internal code development quality and the inclusion of such software component is safe. The quality of software is and always will be determined by the quality of the software development design process that created it and the software process that audits it. Faults (bugs, errors) are the by-products of the software development process (that process is not just coding which compromised 10% of the coding effort) used by a software developer. Errors are defined as the amount by which the result is incorrect due to the outgrowth of a mistake (a fault) introduce by the developer’s software process (IEEE).

4.1.3
Working within SAFE

As with any live entity, the entity must be constantly feed and cared for 24 x 7 x 365 to survive. Therefore, too, the software developer needs to feed and care for his/her software project. The developers, inspectors and auditors provide the constant food (requirements) and care (coding and maintenance) the project needs to meet its design object. This process starts with the birth of the project and continues as the project progresses through a series of design spirals that include requirements, design, translation (coding) or component integration, testing, maintenance, and partying (when the project is finally done!) that every project goes through during its life. The early deployment of a SAFE team in the requirement stage exposes faults and risks early and helping the program manager to control risks, budgets, schedules and other life cycle issues.

[image: image1.wmf]Defect Distribution

56%

27%

7%

10%

Requirements

Design

Coding

Other

Figure 1 Data from Dick Bender "Writing Testable Requirements"

Notice in Figure 1 how important the detection and elimination of faults would be during the requirements phase of the software development. With early detection, the SAFE team can mitigate faults and risks to the project. As the coding phases (including COTS integration) are encountered, the developing code segments must be coded to production quality and be production ready. This only occurs if developers, inspectors and auditors work together as a team with that objective in mind. As CTQ (critical-to-quality) issues/items are generated from the audit log, issues are addressed and prioritized promptly by the whole team. Working together, the different “team members” are in sync, reducing exertion used to resolve disagreements, deceasing project risk, costs, and delays while increasing quality and readability. Executed properly there is a “one-to-one” approach in which the various team disciplines have “one-to-one” correspondences, making turf wars useless and obsolete and where information flows seamlessly between all players.

Teams working on particular item/issues are kept small (usually maximum of three members) to speed up and insure the integrity of communications. Improved communications increase the production of a product (in this case a software deliverable with documents) on schedule and on budget. Abstract modeling flowing to concrete modeling, and then flowing to coding and integration, testing and maintenance have a better chance to capture project characteristics and attributes than source-code-level construct and other such system. Use of modeling in SAFE serves the SAFE’s purpose by allowing faults and bugs to be discovered at the earliest possible moments, in most cases as early as requirement analysis, saving the project both time and money. The SAFE modeling approach does assume all diagrams, code, and project documents are different “views” of the same underlying model.

If the code becomes code-based (rather than requirements-based) due to different views of the project, the developers will allow bugs to be introduced during coding, integration, debugging and maintenance phases of the software. Such bugs would be minimized under SAFE. Because models are used, and code is derived from the models, both code and model can be tested early and often. Executable models, e.g. systems such as Honeywell’s MetaH, allow architects to specify and test software and hardware architectures early. This modeling approach provides production quality code that is ready in days to weeks, not months to year. The bottom line is that system testing will have to be done only once in an ideal case. SAFE provide the benefits of rapid development while providing an increase in safety, fault tolerance, and reliability.

The SAFE approach is an environmental approach not a technique approach. (RAD, XP-Extreme Programming, ROPES, etc. are technique approaches.) Why environmental? Because human factor engineers know that people react to environmental inputs and adjust their behaviors/processes (e.g. RAD, ROPES, Structured) they use according to those inputs they receive. This produces an output based on the received inputs. The project management/customer must provide the correct inputs (requirements and resources) to obtain the desired output (safe, fault tolerant, reliable, repeatable, bug-free, on budget software that does the job the end user is tasked to do).

4.1.4
Cost

For the executive or program manager, the question is always “What is the cost?” The better question is, “What is the cost of not addressing the quality issue and leaving the status quo in place?” To calculate a return on investment (ROI), we will need both of these numbers. Depending on the organization, 40 to 70% of the initial cost of developing software is currently devoted to fault detection and removal. Mr. William Gates of the Microsoft Corporation has publicly stated that that Microsoft hires 3-4 testers per developer (75%). At NASA, the cost of carrying cargo to space is reported to be $10,000 per pound. If a non-critical, non-safety-hazard software package controls an experiment that fails, then the cost to NASA is:

(Burden rate to load it into the shuttle x hrs) +

(10,000 x weight of experiment) +

(Burden rate of space crew x hours spent debugging/watching failed experiment) +

(Burden rate to remove it from the shuttle x hrs)+

(Cost of shipping)+(burden rate of maintainer to debug code x hrs)+

(Rate to ship and send it back into space if possible) + (side effects of not having the data on time)

Assume:

Internal Burden Rate: $50.00

Weight: 1 lb

Shipping to and from: $100.00

Labor 1 hour to load and unload

Labor 8 hours to debug

Labor 1 hour space crew

(1*50)+10,000+(1*50)+ (1*50)+ 100 +(1*50)+(8*50) + 10,000= $20,700

Note: rates do not reflect real rates, which are much higher. This example is to demonstrate how much a poorly tested software product can add cost to the “non-critical” project very quickly. Another way to look at this is that 2.34 man-months of fault injection could be paid for, if it prevents the failure.

In all cases, we are talking serious money being spent to NOT incorporate testing, fault injection, and process improvement controls. Could the saving from incorporating fault injection and testing be used to develop new products, the next generation of, or other benefits?

The owners of the software process, from the CEO/Director down, must make the decision where and when the money is going to be spent. There is no free ride and no reallocations of funds without incurring a cost of one kind or another. You must manage the software process to maximize profit and Return on Investment, or lose the funds to faulty processes (remember, “do nothing” is a process too) that do not provide any, or provide negative, value.

4.1.5
What’s Next

Standards tell us what key elements to include if we want to ensure that a minimum quality level can constantly be met. Following standards consistently provides us the logistical coverage we need in executing contract requirements and in litigation. We will approach the “lab” portion of the research project as if we were following a standard. If required by the circumstances involved, we will use less restrictive recommended practices and guides, but we will try to limit their use so results maintain accuracy and the “lab” process can be duplicated and tested at other Centers. We will use the following definitions to define standards, recommended practices and guide:

· Standard – must use

· Recommended practice – should use (very strongly encouraged, not really at your discretion)

· Guide – use at your discretion

The reader is encouraged to read Appendix A: Definitions. The terms used in the remaining sections are defined as the authors intend to use them in this document and to avoid confusion that may exist between the readers’ and authors’ background and training.

4.2 Program Management View of Fault Injection

4.2.1
Problem Domain

Figure 2

The ultimate solution in solving the quality issue for software is to find “All Faults”. The reality is that it is not technically or economically feasible to audit/test software to a point were no faults exist. Figure 2 represents the fault domain for any software process (even CMM level 5). The analyst and coder will discover a subset of the fault domain called Inspection faults. The auditor will discover a subset of the fault domain called Test Faults. The object for the analyst, coder, and auditor then becomes:

· Have the areas of these subsets cover as much area of the fault domain as economically as possible.

· Have both subsets discover as many of the critical faults as possible that can cause catastrophic failures

· Have both subsets discover as many of the faults as possible that cause the largest errors.

· Leave all remain faults that cause minor inconveniences or deteriorate the system slowly and in a controllable fashion

Working as a team, the analyst, coder, and auditor will use in-house and third party metric data to identify areas within the Fault domain the will give them the best chance of identifying the areas to look into to find faults and achieve the above stated objectives.
From a Gantt/PERT point of view, the high-level inspection process would look like Figure 3 for the analyst and the coder.

 Figure 3

At the same time, the auditor will run his testware a day or two later, after the coder is satisfied with his/her inspection. The Gantt/PERT view would look something like the view in Figure 4

 Figure 4

4.2.2
High Level Milestones

The major milestones for the project in the Gantt chart using SAFE would look something like the list below, for the analyst, coder and the auditor. Milestone dates should only be several days apart for these individuals.

Analyze data:

· Review past defects for this project and similar projects

· Time spent to correct defects (analyze current project’s defect metrics to gauge process problems)

· Identify weakness in software process (if any) that contributed to faults (CMM). We will look for faults that are common to this weak process.

· Model and test requirements on paper or using automated requirement tools

· Validate experimental improvements before standardizing a software practice enterprise wide (CMM)

Acceptance test started at requirement time

· Created by end user and/or customer

· Created at the same time requirements are defined. The programmer has made sure the program works, the user needs to create environmental venues that can cause a fault if the code does not handled the “failure” properly. Both common failures and those out-in-left-field/over-the-edge failures should be created.

System Test started at requirement time

· Defined during requirement analysis

· Use paper or automated tools to test model

Integration Test started at architectural design time

· Defined during architectural design. Disconnect hardware, Disconnect software components, disconnect software interfaces. Does the remaining system handle the failure properly?

Unit test started during detail design

· Defined during detail design. Remember that “unit tests” are on the public interfaces to the entity

Inspect test plans that are created

Execute tests

· Record and analyze results

For the auditor of fault injection, his/her standard workflow process will look similar to the process outline in Figure 5 below:

Figure 5

The details (source documents, exit criteria, etc) within this work break down structure (WBS) will change, depending on which phase of development the software project is in. However, the process will remain pretty much the same. Use automated tools whenever possible to check for thing such as data flow and control flow problems.

4.2.3
Training

Training, Training, Training! For the most part, four-year colleges teach the “keywords” of several languages, but they do not teach software engineering or software maturity. (Think of how many college graduates want to ”program” and that is it. They are unaware that programming is only 10% of a software development effort.) On-the-job training (OJT) is a teacher who gives the test first and teaches the lesson afterwards. Relaying on either method to help you generate quality software is suicide at best. SEI Level 5 organizations all state that a complete paradigm shift was required of them to reach a level 5, and the rank and file had to be re-taught from what they learned in college and/or in OJT that many software houses use. These level 5 organizations also state the only way to get to a level 5 and stay there is:

 Training, Training, Training!

 So here is the training required to be taken by each human resource used in a software project:

Work group leaders

· Inspection training

· Management training (i.e. business rules)

· Soft-skills training (i.e. personnel team building, consensus building)

· Practical real life examples

· Personnel may be management level but they MUST NOT belong to the “line” management team (i.e. the fox guarding the hen house). For example, a power generation manager auditing own his power generation software developers and reporting the results back to the CEO, his boss.

Executive Training (GM and SES/CEO briefings)

· Appreciation, Executive summary of process, Benefits of Inspection and testing (Pros and Cons)

· ROI and schedule (Pros and Cons)

· Hardware Mind set verses Software Realities (more people more product. NOT!)

· Small examples to demonstrate process using them as the worker bees (Deming’s color marble/paddle demonstration is a good example to use to demonstrate how not to use inspection.)

· If the “Brass” do not have a complete buy in, including allocating both hard and soft resources, then inform them that they are wasting precious resources that will produce little or no results. Many managers will have a difficult time envisioning a 10-year commitment in process improvement (the average length of time it takes to get from CMM level 1 to CMM level 5 with a highly motivated upper management team.) and a 4-6 year training cycle per engineer. However, let them know that the long-term pay back far exceeds costs, especially at higher SW-CMM levels.

 Team Training

· Metrics and analysis

· Soft-skills training (i.e. team building)

· Inspection and Testing training

Allow the trained audit team to experiment with new techniques to improve detection results and “rejoice and celebrate their failures” as well as their success. In other words, allow your auditors to fail. This will encourage the improvement of the process, which translates into improved software quality. Plan, check and meet activity goals of the entire fault detection process. Work to improve the quality of the fault detection process. Help improve the software engineering process by sharing metrics with software engineers. Since each software engineer is also a trained auditor who actually performs audits, he/she will understand the process and its objective, “quality software”. Remember that your best software engineer is also your best auditor. Throwing untrained, entry-level software engineers into the auditor’s role is like asking the chicken to guard the fox’s den. Training auditors is a long-term commitment with the most serious and concentrated training occurring as the software engineer reaches maturity.

4.3
Fault Injection Process

Remember, SAFE is the creation and maintenance of an environment to develop software. Testing, auditing, and inspecting software is not a necessary evil getting in the way of “coding”, but is a necessary part of coding process that enables the coder to develop the right software from the start, the SAFE keeps the development on track and produces a fault tolerant, high quality, production-grade software package/component/system. The more complex the software development is, the more important it becomes to create and maintain control of the software development environment. SAFE is a structured method to help all those (developers, auditors, program managers, software assurance, etc.) involved in a software project to control the development environment. To gauge the complexity of your project, use the chart (Figure 6) below:

 [image: image2.png]

Figure 6

4.3.1
Project management and Fault Injection

On the business side of the house (project management) the benefits of integrating auditing/testing/ inspection into the development process are:

· A ROI (return on investment) by testing before and during coding verses after. The further into the development a fault remains undetected, the more costly it becomes to remove.

· Less risk. For example, defects and dead ends are found sooner, missing requirements are uncovered, the amount of time “wasted” is reduced, and the dollars spent on producing or using defective software because of a poorly define requirement is reduced.

· On-time On-budget. The project has a better chance of completion within the stated budget and in the time stated if the project is realistically mapped out using the metrics generated from similar projects. Time management and budgets issues take a “back seat” because the work done up front in testing and inspection exposes defects and risks quickly, reducing the program risk and budget strains on the back end of the project. Upfront exposures of defects and risks also help the project manager better control time, manpower and budgets in a more realistic software development environment in real time. The end result is that programmers can develop code in a fault tolerant manner, in the stated time, on budget, while minimizing chances for project failure.

A project manager must remember that a fault can be introduced at any time during the coding and maintenance phases of the software process. The fault results in one or more ‘bugs’, mistakes, misunderstandings, omissions, and/or misguided intent on the part of the developers. It is obvious that this type of error correction is counter-productive to the project. Remember that auditing/testing/ inspection does not include the effort in tracking down the bug or repair of the bug. Testing/inspection does include the effort in finding a defect. A metric that tracks both elements will indicate the condition of the code in your software project. Metrics should also track the source of the fault, such as an omitted requirement.

The most cost effective decision a program manager can make is to allow testing and inspection to start before any code is written or before the off-the-shelf software is acquired. Auditing, testing and inspection of requirements, designs and models used before coding or acquisition helps reduce the chances of a fault being introduced into the code. It also reduces the chance of using off-the-shelf software that is defect-ridden or that does not meet the requirements. Auditing, like testing and inspection, is not a standalone guarantee that all faults have been detected. It does not replace the programmer’s inspections and good coding practices.

4.3.2
Software Assurance Role

Auditing, test and inspection should not be part of the Software Assurance function. They are part of good programming practices. Software Assurance is responsible for developing processes that help prevent faults and processes that help remove faults. The Software Assurance processes should aid the programmers and designers in building better code. Software Assurance personnel can and should use inspection and testing metrics to identify, improve and/or modify the software processes they oversee.

4.3.3
IV&V Role

Auditing, testing and inspection are used to help insure that faults in the code do not prevent the code from performing the task it was designed to achieve. However, it is difficult to audit, test and inspect “code” when the source code is unavailable. In third generation languages, code for which the source is unavailable is commonly referred to as “components”. Examples of components also include library functions, device interface routines or drivers, and even entire programs that are “called” by the developed software.

Without access to the source code, the auditor/tester has to anticipate common mistakes, common omission, developers forgetting to uncomment sections of code, and developers concealing project requirements that were not implemented or adding enhancements that were not required. Auditors/testers have the challenge of developing faults that have to discover the ‘Easter eggs’, trogon horses, backdoors, missing requirements, omissions, and faulty logic hidden inside the ‘black-box component’.

A review of the suite of collected metrics in-house and out-of-house will aid the auditor/tester pick and chose his/her tests. Examples of common components are Microsoft’s MFC and DCOM, X11’s widgets, and Java’s Swing and AWT. All these components have faults that those who have programmed long enough have discovered. Some faults are harmless, like the flights simulator (Easter Egg) in Microsoft’s Excel. Others are more than annoying, such as allowing you to think that the command has been issued error free, when in fact other components are reporting errors because of improper implementation of a standard. For example, Microsoft Visual Basic version 6 improperly toggles RS232 port lines for short haul modems that implement a full RS232 protocol.

In testing/inspecting components, the auditor must focus on testing/inspecting exposed (public) objects (known and undocumented), and not on the functions/methods that are reportedly inside the object’s code. Note, however, that finding out all you can about the insides of the object does aid in developing better test. In SAFE, components should be written with testability and inspection in mind and all exposed objects should be documented properly. However, most COTS and GOTS components will not have the desired amount of documentation, and will often not have been written with testability in mind.

The interaction between the software developer and the auditor are documented in Figure 7 below.

Developer

Auditor

◄ Time ►

Figure 7

Advantages of testing and inspecting via fault injection while in the analysis and development stages are:

· Test/inspections enable analysts and designers as early as requirements to better understand and express the problem domain and to ensure components are “testable”.

· Faults are detected early in development process, thus saving time, money and manpower in the coding, integration and system testing stages. The development team has not been disbanded and move to other “important” projects.

· Test/inspection cases are reviewed early for correctness. If test/inspection cases are define and identified early and applied to the requirements and models, then any misunderstanding of the requirements on the part of the testers/auditors or developers can be addressed and corrected early. A side benefit is that the tester, auditors, and developers have a consistent understanding (view) of the problem domain and the requirements.

· Commercial or government off-the-shelf software can be analyzed before it is integrated with the developed software. This allows verification that the off-the-shelf software is reliable before the project depending on that piece of software. If the software is deemed unacceptable, schedule time may exist to find another off-the-shelf component or to develop the functionality in-house.

Note: Testing/inspection (fault injection) is not a replacement for code testing by the developers, which is an important part of the design process. Also, note that 84% of the faults have been removed before the integration stage has begun.

Early testing and inspection not only discovers faults early in development, but also provides data for the auditor and the program manager on the size and scope of system testing that will be required near the end of development and integration. Implementing testing/inspection often (i.e. iterative testing/ inspection) in a SAFE keeps testing/inspection manageable and catches introduced faults (Figure 7) early. When faults were not discovered in a timely fashion and development was allowed to proceed, testing may take the form of regression testing/inspection. Faults that escaped detection are “OK” and allowable, but the auditor and Software Assurance should investigate the reasons the fault was allowed to pass through the inspection and, if correctable, modify the proper software process (Software Assurance responsibility) to catch that fault on the next time through.

In summary, complete testing/inspecting of every aspect of a software component is infeasible. Resources spent on testing/inspecting a software component should be directed where they are most likely to provide the best results for the best return of investment of those resources. Risk analysis, statistical sampling, historical test cases and historical data are tools that provide some indications of where the tester/auditor should concentrate his/her efforts and resources. The IV&V team should utilize the proper tools and resources to provide the best support they can to the developers and integrators throughout the software development process.

4.3.4
Auditor’s Role

Tester/auditors require training due to the skill set demands of testing and inspection. Normally, these skills are not taught in school or while on the job (OJT). The minimum skill set required for an auditor is:

· A good software development background (degree plus 2 years experience, or 4 years experience)

· An understanding of proper software development cycles (e.g. IEEE 12207, SEI SW-CMM)

· Knowledge of software development management

· An understanding of the problem domain

· An understanding of the ‘true’ and ‘real’ development methods/cycles used by the developers

· An understanding of risk analysis, statistical sampling, and other methods that can be used to uncover faults and errors

· An ability to anticipate faults, errors, omission, and slights of hands developers use to meet their goals, pressures and objectives.

· An ability to develop realistic test cases and test codes to inject faults into the software (via interface or source code where available) to discover the developer’s faults.

Again, these skills are not taught in most schools nor are they a part of common employee training programs. Remember that “On the Job Training” (OJT) is a teacher who gives the test first and part of the lesson is taught, afterwards. Ideally, formal training and a formal personnel development plan are required to produce an effective auditor/tester. The best auditors are often your best developers, so part of a developer’s training should be in auditing. Note that auditing is not an entry-level position for a want-to-be programmer.

Auditors must approach fault injection inspections/testing as a process that looks for things that should be and are not, for things that are missing and were not included, and for things that developers have hidden for various reasons and do not want exposed. Fault injection inspections/testing by its nature is systematic thinking and eclectic insight, gathered over years of experience.

In contrast, developer’s inspection/testing will only validate what exists. It does not search for what does not exist (i.e. is missing) or what is misunderstood. Developer’s inspection/testing is only done within the scope of the requirements used to develop the module or component, not with the system in mind. Also, having developers work within a problem domain that they have not lived in or with for a while may produce inferior code and test results.

4.3.5 SAFE Approach

SAFE relies very heavily on a graphical approach to help auditors discover faults. Why graphical? Human Factor Engineering studies conducted by DOD concluded that as part of the human race we:

· Interpret graphical results faster than textual

· Our comprehension of graphics results is greater than print

· The accuracy of our response to graphics input is better than print input

Conclusion: Our minds are graphic-based, rather than text-based.

SAFE’s intention is to play to the “graphical” strength of our minds. SAFE will use graphics to model our problem domain and the developer’s proposed solution. The graphical approach will aid the auditor in discovering and uncovering faults. Many of today’s programming tools use the graphical approach to design software for the reasons mentioned above. We are going to modify the graphical programming approach to help us uncover and discover faults introduced by the software developer. We will use UML (Unified Modeling Language), OOA (Object Oriented Analysis), and OOD (Object Oriented Design) paradigms for modeling the problem domain and comparing that domain to the documents produced by the developers via inspection and simulated testing. We will use the OOP (Object Oriented Programming) paradigm for “hard” testing of the physical component. Note: As in OOP we are not concerned about the whats, hows, and whys of the component’s internals or the programming paradigms used to construct the component. We are concerned with how this component interfaces (i.e. it’s contract) with other objects and components in the system and about the component’s ability to complete its task completely and accurately based on what the system expects. For these contracted interfaces the auditor may need to monitor and trap entities such as operating system (OS) messages on event-driven OS, system calls to registries, physical resources etc, and system calls and responses to system queues and stacks.

4.3.5.1 SAFE and Document Products

Documents are critical for successful development and successful testing/inspection. A project will generate a complete collection of products (documents) that represent the system and/or the requirements. Documentation products include:

· Requirements document

· Analysis and Design documents

· Architectural documents

· User manuals

· Software Maintenance documents

· Coding documentation

· Software Developers logs that record day-to-day events, discussions and assumptions.

· Source code

All these products have a lifetime greater than their ‘development’ childhood. Most software product’s lifetimes are general 20 years. Documents may be reused on other projects, so high quality documents are important. Documents such as Users Manuals and Theories of Operation manuals are particular useful in discovering faults such as overlooked and missing requirements. A software development project is encouraged to start these documents as early as possible to aid developers and auditors in discovering these types of design faults early. In the early life of the software development process the auditor will be primarily using documentation as his/her “source code” to discover faults. Remember that it is in these early stages of development when most faults are inserted.

4.3.5.2 When Does the Auditor Start?

At the kick-off meeting with the customer and end-user is when the auditor begins his work understanding the requirements. If a pre-bid, request for proposal (RFP) or other mechanism (government entities bidding internally for government work) are use to solicit “bidders” for the work, an auditor should be present to gain an understanding of the scope of the work and help the bidding entity understand the scope of the effort that will be required by auditor and his team. The high level work break down (Figure 8) used by ROPES best illustrates the interaction the auditor is to expect experience during the early stages of software development.

[image: image3.png]

Figure 8

The auditor in these early stages should expect that his deliverables somewhat follow the model developed by Software Development Technologies (SDT). The SDT Dotted U Model has been modified to show the relationship between development’s tasks and deliverables and fault injection’s tasks and deliverables (Figure 9)

Figure 9

4.3.5.3 Getting Started with SAFE: the Auditor and Conceptual Models/Requirements

A conceptual model represents the perception of the real-world problem domain. A conceptual model is not a description of any software component. Its task is to model and identify the “physical abstracts” of the problem domain. The auditor can use these models to help software developers, particularly when problem domain requirements are not well defined. These models provide a starting point for further analysis. An example of such a model is demonstrated below in Figure 10

 1

 1

 Commands Includes

 2 1

 2 Flies 1

Figure 10

· In general, boxes contain nouns, lines contain verbs and how “many” are required. The conceptual abstract usually does not contain very many boxes and does not decompose into an implementation.

The auditor makes sure all high level abstractions are included, based on the application requirements. If the noun can be a part of something else, then it is a detail or it belongs to part of a lower level abstraction. In this case (Figure 8), details such as engine types, passenger seating, and cargo bays are not included because they are part of the reentry vehicle. These items map a solution, not the problem domain. The reentry vehicle is not part of the pilot, so it appears separately on the diagram. For both the software development and the auditing team, this modeling activity forms the foundation for the rest of their work. This “foundation” is very important, and it is important to make sure it is built solidly.

Fault Injection tasks for the auditor at the conceptual level is to:

· Make sure the conceptual model is complete. Look for missing nouns, broken connections, wrong “values”, proper diagram flow, etc.

· Make sure that only the problem domain is mapped. Implementations and solutions should be included in the lower level abstractions, not the high-level model

· Start the creation of test suite. Document each requirement that is being tested with the test specification that is going to verify the implementation of that requirement is free of developer-introduced faults.

4.3.5.4 Fault Injection, Auditors, and Software Developers

In this section, we will define roles and high level responsibilities of the major players in the software development process and where and how fault injection should be use. In defining the responsibilities and roles each player is to play, we hope to avoid the turf wars over “whose task is it”. We also hope to enhance communication between players, because everyone knows what is expected from him/her and what tasks are the responsibilities of the other team players.

We first need to clarify the difference between Analysis and Design, because many developers and auditors will use these terms interchangeably.

Analysis is

· What

· Requirements

· Investigation of domain

· Employs “Use Cases”, class diagrams, and behavioral diagrams (state chart, activity, interaction-sequence/collaboration diagrams)

In plain English, Analysis is: What is a system suppose to do? Remember that we what to use the OOP paradigm because we can use the OOP graphics to help use discover faults. In addition, the OOP model more closely models the ways in which humans think. Therefore, tasks we would expect the software developer to perform would be:

· Classify objects involved in problem

· Identifying attributes

· Identifying operations

· Identifying relationship between classes and instances of classes

· Identifying object behavior

The auditor’s task is to make sure that by injecting a fault into the model, the software developer’s model does not “break”. The auditor is also looking for areas in the software developer’s model that leave the model “just hanging there”, wherever “there” is. During this phase, the auditor should start developing test scenarios and laying down the testware (software used for testing purposes) base to test the components that will be included in the system. This the time that auditor, developers, users, customers, and support staff all develop the same understanding of the problem and the requirements, even though their viewpoints of the “problem” are from different angles.

What is “Design”? Design is:

· How

· Logical Solution

· Implementation diagrams – components/deployment

· Centers on what the system does from an object –oriented point of view

· Objects involved and how objects are related to one another and contracts between objects)

Auditor should be fine-tuning and honing their test cases and testware. Fault injection should be stress methods, algorithms, software components, software driven hardware components, and hardware/ software components use in the developer’s solution to uncover the hidden faults.

By the time translation occurs, most of the fault injection testing should be complete. If the SAFE environment is controlled properly then we have only 17% of the work yet to complete. The translation will account for 7% of the faults yet to be discovered and other activities (integration testing, system testing, deployment) will account for 10%. Remember on page”1” we told you that software has a life (birth to the grave) and here we see that even in deployment some fault injection is still required to uncover the remaining faults.

4.3.5.4.1 Same Problem, Different Viewpoints

We address this subject here to highlight the different vantage points the team players will use to achieve the completion of their assigned tasks. The trick is to keep all players focused on the same view of the problem, while they also view the problem from their own vantage point based on the tasks assigned to each.

For customers/end-users, requirements specification means “I want this” to solve my problem. They represent the marketing vantage point of the problem. Remember that the customer and the end user may not be the same person(s), nor will they necessarily have the same wants and needs to be filled. For example, the pilot for the Space Shuttle is the end user, but he/she is not the customer.

For software developers and designers, the focus is on a specific problem (i.e. the customer/end-user problem mentioned above) within the problem domain. The developer then writes the requirements to solve that problem. When all sub-problems within that larger problem are solved, developers/designers have a requirements document that solves the problem in developer’s terms. This vantage point is the engineer/scientist point of view.

Ah yes, the auditor. In many SW-CMM level 1 organizations, these folks are the evil gargoyles that spew hot oil and fire, the Darth Vader’s that choke the developer’s creativity, or monsters from the dark side that destroy all “good and godly” code presented before them. All auditors answer to only one name, “Destroyer”. Many auditor have also been reported to mumble something about “… Resistance is futile …”. In many organizations, the auditor’s position is commonly filled by an entry-level college graduate and other “worthless” personnel who “can not code”. This is a problem if quality auditing is to be done. Another logistic problem is the auditor, in many cases, has been positioned in the corporate structure to appear as an “aggressor”.

In SAFE and SW-CMM, your auditors should be your best programmers, and part of the team that aids developers in producing solid fault-tolerant code, as mention in above. For auditors, the focus of their task is on the validity of the specific problems the designers have chosen to solve, as that problem applies to the larger problem domain, and as requested by the customer/end-user. Is the specific problem a part of the problem domain and is the inclusion valid? Have all aspects of the problem domain been explored and defined? Are the requirements to solve the problem valid, realistic, and economical? Are there better solutions that the developers have not explored or have over looked? Are the items discussed primarily concrete or are they still abstract? Auditors also look at interfaces and ask, "are the contracts between components/objects well defined?” Is the model complete? Is the information correct? Is the information developed consistently across the developer’s domain and the client’s domain? Are all actors accounted for (direct and indirect: e.g. hard core user and his administrator who controls the end user experience)? The auditor vantage point is “corporate”. Remember that the auditor is part of the development team that contributes to the team’s success.

One of the main questions that the auditor always has to ask him self is not “Are the software developers are paranoid?”, but the real question “Are they paranoid enough”? This is especially important if the software is safety critical. Many programmers are taught to program against a “success model” (light is to turn green, see the light turns green). They are not taught to program against failure (if the light is to turn green, all other lights shall then turn red; verified all other lights as red else…). This “success programming” paradigm leads many programmers to over design or grossly under design the hardware/software solution in an effort to “succeed”(to make sure the light turns green). For proper design, the auditor must make sure developers address the issues of what happens when a portion of the software/hardware solutions fails and causes the program to execute an “un-designed” path of execution. Auditors need to ask when a fault (hardware and/or software) is introduced, “Will the component behave gracefully or catastrophically”. True hard real-time components are particularly sensitive to the programming methods employed by the developer.

Auditor are allowed to, and should, cascade and “gang-up” faults to check the behavior of the software.

4.3.5.5 Responsibilities of the Auditor in the Different Phases of the Software Life Cycle

Regardless of the type of software development cycle methodology you decide to use (spiral, win-win, waterfall; reference Appendix B), you will have to work through these different phases one or more times. We will define the phases as:

· Application Analysis

· Design

· Translation (Coding, including off-the-shelf components)

· Testing

· Deployment

· Decommissioning

The last phase may or may not include tasks an auditor would have to perform. In the deployment phase the auditor would be involve in maintenance upgrades and service pack releases, as well as looking for the last 10% of the faults (in an ideal company). The bulk of the auditing work will be in the first four phases from the list above. The tasks that an auditor will be expected to perform are listed by phases below.

4.3.5.5.1 Artifacts and Auditors

Artifacts are defined as internal (i.e. documents, exhibits, logs) or external documentation, customer deliverables and other resources (e.g. books, newsgroups, databases) that the auditor may use to review and critique the software product that is being constructed by the software developers. Auditors may have to construct their own artifacts if the developers failed to do so, as well as the artifacts that are unique to the auditing process (i.e. auditing metrics, checklist, forms, procedures, etc.). The lists below (Figures 11, 12, 13, 14) define the minimum required artifacts, in each phase listed above, that the auditor will need to apply her trade in a responsible manner. The list may be tailored to suit the need of the project. Subtracting artifacts from this list may dramatically affect the auditor’s ability to create and inject faults into the developer’s models, design and code to discover faults. Each program manager has to assess the risk, and how many faults are tolerable, when he is willing to tailoring out artifacts. The auditor’s task is to uncover as many faults as possible before the “code goes gold”, though she will not discover all of them. The fewer tools or artifacts used, the fewer faults discovered.

Activity
Analysis Process
Generated Artifacts
Output Artifacts Documented

Application Analysis
Requirements
Use Case model
Use case diagram

Use Case scenarios
Use case description

Message Sequence diagrams

Glossary

Report

Systems
Initial high-level Architectural model
Class Diagrams down to subsystems

Refine control algorithms
Deployment diagrams

Component Diagrams

State Charts

Activity Diagrams

Object Structure
Structured Object Model
Class Diagrams

Object Diagrams

Model from legacy code and other outside inputs

Report

Object Behavioral
Behavioral Object model
State Charts

Activity Diagrams

Interaction Diagrams -

Message sequence diagrams

Collaboration Diagrams

Fault Inject (Auditor)
Fault Log
Test Log

Fault Inject Test Scenarios
Testware Log Book

Figure 11 (Application Analysis)

Activity
Analysis Process
Generated Artifacts
Output Artifacts Documented

Design
Architectural Design
Concurrency Model

Deployment Model
· Active Objects

· Orthogonal and-states

· Component Model (file mapping)

· Framework provides OS-tasking model

· Use of existing legacy code and components

Mechanistic
Collaboration Model
· Class diagrams

· Message Sequence Diagrams

· Framework provides design patterns

· Framework provides state execution model

Detail Design
Class Details
Browser access to:

· Attributes

· Operations

· User-Defined Types

· Package-wide members round-trip engineering form modified source code

Fault Injection (Auditor)
Update Logs

Design Testware
Testware Design

Figure 12 (Design)

Activity
Analysis Process
Generated Artifacts
Output Artifacts Documented
IV&V Fault Injection

Translation (Coding)

Executable
Fully executable code generated from structural and behavioral models including:

· Object and class diagrams

· Sequence diagrams

· State charts

· Developers Logs
Fully executable fault injection code generated from structural and behavioral models including:

· Object and class diagrams

· Sequence diagrams

· State charts

· Fault profiles

 Hardware Simulator

Figure 13 (Translation)

Activity
Analysis Process
Generated Artifacts
Output Artifacts Documented
IV&V

Fault Injection
Output Artifacts

Testing and Auditing
· Unit testing

· Integration testing

· Validation testing
· Design Defects

· Analysis Defects
Design-level debugging and testing on host or target (may be remote target) including:

· Animate multithread applications

· Animated sequence diagrams

· Animated statecharts

· Animated attributes in browsers

· Breakpoints on:

· Operation execution

· State entry

· Transition

· Event insertion

· Execution control scripts

· Simultaneous debugging and metric tools with CASE design tools etc.
· Inject Faults designed and coded to test developers executables on a clean target

· Review Developer artifacts to uncover possible faults missed up to this point

· Review Developer’s Metrics
Fault log

Figure 14 (Testing and Auditing)

See the appropriate appendix for more detailed explanations and examples for the use of the artifacts listed in the tables above.

The order of artifact creation may occur in parallel with other artifacts. For example, the glossary is started at the same time the first artifact is being generated, and remains alive throughout the software’s life cycle. This document will be controlled, but anyone can request additional definitions be added to its contents at any time. Human Factor Engineer notes that if a question is asked about the definition of a word or a process, or two or more individuals question each other’s definition, chances are likely that the word or process needs to be defined in this document.

Multiple passes may be required to refine models, use cases, and other artifacts. It is best to have artifacts start with a rough/obvious concepts, defining the broad concepts first, and have later passes through the artifacts refine the concepts into smaller and smaller concepts that define more of the requirements.

4.3.5.5.2 Work Process Flow and Auditors

The work breakdown structure after any developer artifact has been completed should follow the procedure outlined below.

4.3.5.5.2.1

The developers have completed an output artifact and the artifact is ready to review. The project manager prepares the document to be transmitted to the auditing team. “Ready to review” means that the developers are satisfied that a level of abstraction or a section of work is complete and ready to be reviewed. Throughout the development process, most of the software developer’s artifacts will be “alive”. For the Auditor to be of any use to the developer and the “system” being developed, “snapshots” of these live artifacts must be reviewed and feedback to the developer must be in near real time. Again, faults enter through the development process and the quicker the faults are discovered the less they cost to repair.

4.3.5.5.2.2

Project manager has submitted an artifact to the audit team for review. Artifacts can be submitted in any order. The chart can be tailored to omit some artifacts. However, the more artifacts omitted the greater the chance faults have of being introduced into the design by the programmers during coding. The project manager must also remember that auditors use these artifacts to develop faults to inject into the system. The higher the quality of the artifacts, the higher the quality of the testware and the fault cases created by the auditors.

4.3.5.5.2.3

Typical audit should be structured as follows. Notice the task and the task assignments. As each type of audit is done, the roles remain the same, the description change. An example audit is listed below:

Auditor Vantage Point: Application Analysis-Domain Abstraction

Entry criteria

Leader:

Checks the deliverables (should be mostly documents in the beginning). Deliverables should be complete and usable for Domain audit. Task has an excellent chance of producing very little rework for developers

Planning

Leader and Auditors

Objective(s):

 Check to see if developers have command of the problem domain

 Allow auditor/testers engage this projects problem domain in an official capacity

Methods/tactics

1. Auditors review chart below (add more questions as required)

2. Auditors use conceptual problem domain analysis chart below answering the question

3. Record data in database

4. Compute metric. The lower the graph line is to the base line the better. Low graph line indicates the developers have a more complete understanding of the product’s problem domain. If the graph line spikes or is out of the project's norm, have developers concentrate on that area of the review.

Number of who’s efforts may be required in this process:
 Developers

 Customers

 End-users

 Auditors

 Outside experts/Others

Other Details

 Meeting area

 Time

 Effort Required: How many hours

Kick-off Meeting

Leader, auditors, consults with outside experts as required

· Review with auditors the “procedures”

· Obtain feedback and incorporate as required

· Assign task/expected effort required (no more than 3 people working together on a task)

· Train as required in Fault injection procedures

· Discuss targets and strategies as required to meet goal

· Distribute copies of submitted documents and support documents and individual notebooks for personal/Injection team use

· Create IV&V Fault Injection Domain map if not submitted

Search for Issues

Leader, auditors, consults with outside experts as required

· Create checklist from support documents. Criteria that is in this list should be objectively based as possible.

· Auditor works on submitted material (probably documents) using source documents, tools, components, rules and procedures, and checklists created an/or provided.

· Auditor records all discrepancies (issues) between source and product. Record methods and environments that were used to inject the fault that produced the fault.

· Auditor record concern or issues that may cause the product to fail (from domain knowledge, outside data etc.

· Auditor records all “personal notes” that the Fault injection team can use internally later on as reference in the project. This notebook is the property of the Inspection team and shall not be distributed or viewed outside of the team.

Logging Meeting
Leader, auditors, consults with outside experts as required

Attention:

· NO NO NO discussion about the issues are allowed at this point, all we are doing is recording the issues.

· Remember that lack of ability of an auditor to understand the developers intent constitutes an issue (the item may not be missing but …)

1. Logs issues (matters that require attention; they may or may not be defects) recorded by the auditors in their notebooks

2. Close log once all issues are recorded

3. (All issues become items once the log book is closed)
4. Classify item in one of three categories

5. Question of Intent

6. Question of Potential Defect

7. Question of Process

8. Review ‘Question of Intent’ items. Open logbook and add additional issues based on internal discussion. Close logbook and classify items added. Continue this step until ‘finished’

9. Identify ways to improve the inspection process. Improvement ideas and comments are sent to the ‘fault injection’ process owner.

Editing

Leader, auditors, consults with outside experts as required, developers, customers, and end-users,

1. The owner (editor) (developer) of the component receives a copy of the logbook.

2. The editor reviews the items in the logs and responds according to the current rules and procedures of engagement.

3. For items that are:

a. Process improvements suggestion

i. The editor shall address the item’s concern in the log.

1. If the item’s suggestion is implemented then a note in the log is recorded as to what steps are or will be taken to implement the improvement.

2. If the item’s suggestion is not implemented a notes shall be added to the log detailing the reasons the implementation would not apply to this case.

b. Question of intent (The editor should take these types of items seriously.)

i. The editor shall:

1. Address why the auditor/tester did not understand the complete issue. Does this item uncover major defects in the component or misapplication of the component and/or

2. Investigate why the auditor/tester did not understand the “real issue” but instead documented a perceived issue. Does this item uncover defects when investigated?

3. In either case 1 and/or 2, the item should be classified as a defect, if in fact it is a defect. If the item is not a defect then a comment or footnote should be added to the log to avoid future misinterpretations.

c. Question of potential defect

i. If the item is a defect the editor should follow the design process procedures that address how to handle defects. This may entail the editor just logging the defect in the software design folder and/or issuing a change request to the real owner of the component. The logbook shall be update to record that action(s) the editor takes

ii. If the item is not a defect the editor shall record the reason the item should not be considered a defect

4. The editor may add defects to the logbook at anytime through out this discovery process

5. The editor himself/herself may make process improvement suggestions on their own to help avoid items that address intent.

6. A copy of the logbook shall be sent to the customer and the end users for comment and inputs. It is at their option for them to review and make comments. All comments are submitted to the Leader who will include the submitted issues into the logbook prior to Follow Up

Follow up

The inspection/testing leader meets with the editor to check that satisfactory editor action has been taken on all logged issues:

1. Address customer and end user issues. Record resolution in logbook

2. Change requests to correct defects have been sent to the component's owner. Item has been addressed if the item has been assigned elsewhere or placed under some type of configuration management to be resolved.

3. All items that have been listed as “defects” have been corrected by the editor. The inspection/testing leader checks to make sure that the editor has taken action to correct all known defect. The inspection/testing leader does not check for correctness. Process improvements should be sent to the process owners.

4. Resubmit logbook to customer and end user if issues were logged

Exit

Inspection/testing leader performs the exit process using application generic and specific exit criteria. For example:

· Follow up must be complete. Customer and End user have no issues

· Checking rates must be within acceptable range

· All Metrics are recorded

· Number of defects left in the component are below a prescribe quality threshold.

· A component must exit as a whole.

· If a component was split up for testing/inspection, all sections of that component shall be exited before the component as a whole can exit.

Release

The component is made available for the next phase.

It has officially “exited” the test/inspection process.

A “warning label” estimates the remaining major defects remaining.

An official copy of the logbook is sent to all.

Metrics made public

4.3.5.5.2.4

Metrics are an objective way to measure the quality of the project. Metric should be collected from Project to Project to uncover organizational/system wide faults. Auditors can use this data to predict the most probable faults likely to appear in future products. Software Assurance can also use this metrics to identify weak or ineffective process. Identified processes can then be improved in a cost effective manner.

Each project should include a suite of metrics specific for project needs (i.e. C++ metrics should not be used in a Java project). In addition, metric can be added for unique project needs. (It is best if metrics are reusable on other projects so that data can be compared across a series of projects.) Below is an example of a Domain Analysis and an associated metric.

 Fault Inject - Conceptual (Domain Analysis)

ID
Fault
Response
Ideal Response
Remarks

1.1
No domain diagram available
If yes, Tester/ Auditor should draw it. If tester/auditor does not understand the problem domain they will be less effective in injecting faults.
No
The domain diagram is the top of the abstraction of the problem domain. Review diagram with end user and customer to make sure you understand the problem domain. Fault inject your own diagram to make sure it is complete. Use in next phase of analysis

1.2
Could the nouns inside the “box” be part of some other noun elsewhere in the diagram?
If yes, state the offending box and which box it is part of.

Developer should remove and redraw
No
Dictates solution does not map the domain. Maps major players and system not a system within a system. Use a high level of abstraction

1.3
Are there abstract nouns missing
If yes Add missing abstracts. Check with customer and end-user to see if this was a missed requirement or left out on purpose. Resolve and document
No
Use Domain experts to determine if nouns are missing. Missing nouns will have a negative affect on the entire solution

1.4
Is the diagram already providing a solution?

If yes, redraw diagram to map problem domain. If solution is already provided, then the best solution may never be discovered.
No
Possible solutions belong in the next phase. This map just maps the problem and its players

1.5
The diagram does not properly and accurately map the problem domain as stated in the request for proposal (RFP)

If yes, take the requirements document delivered by the customer and have developer redraw the diagram
No
Developer did not understand the requirements. Document reason for misunderstand if requirements stand

Players: IV&V auditors, customer rep, domain end user

Documents: RFP/Draft Plans/Preliminary Investigative reports/Defined Requirements/Recorded Key Terms in Glossary

[image: image4.wmf]Conceptual

0

1

2

3

4

1.1

1.2

1.3

1.4

1.5

Standard

Number of Items

Items

Expected

4.3.5.5.2.5 SA Process Improvement (the party)

The Party, also known as Process Improvement, should monitor the proceedings of the developers and the auditors, adjusting the software process as required to help prevent the introduction of faults. In the example above, the SA group would:

1. Assemble a meeting. Meeting members should be the same individuals that were invited to the log meeting. Additional personnel may be added if their experience in the preceding process was relative

2. Hold meeting and log process improvements suggestions (issues). Meeting should last no longer than 30 – 60 minutes.

3. To obtain those process improvement issues, suggested method to use in the meeting is brainstorming.

4. Do NOT place any value judgment on any issue suggested while in the process improvement meeting.

5. Record issues in a quality process improvement log

6. Software process improvement team takes issues and ranks issues according to severity and CTQ (critical-to-quality) mandates (Pareto Analysis). Issues are now items.

7. Select the top 7 ± 2 items for analysis. Brainstorm root causes and process improvements that could be made to prevent the reoccurrence of these items. Record and report finding in quality improvement log.

Modify software process as required based upon the results of the analysis.

4.3.5.5.3
Design

In Design, we will follow the same framework just with more of the abstraction being decomposed into concrete items and ideas. Again the level of importance of this section, dictates close attention to the details.

4.3.5.5.4
Translation

Now we are moving into translation. At this point, if we have followed the preceding procedures, we have discovered a vast majority of the faults. In the coding phase the auditors will be looking for completeness and adequacy (remember this is the final translation of the detailed design requirements to a language and translations can cause errors.) Hardware and Software faults in a “real” system are now becoming apparent.

4.3.5.5.5
Testing

 System testing is not the final stage of IV&V fault injection. It is, however, the phase that validates the developers and the auditor’s ability to eliminate faults. In an ideal world, the system test should have to be executed only once to prove to the customer the quality of the software that sits on top of the hardware. In reality, one or more system test may be regressive, if the developers and auditors did work as a team, the number of time retesting/debugging is required is dramatically reduced. Remember that in this phase the cost of fixing faults is very expensive.

4.3.5.5.6
Operational Life Cycle

The final phase of fault injection. Even after all the work we have done there are still some faults that are undiscovered. It is hoped that the major faults that can cause serious or catastrophic failures have been discovered. Faults discovered in this phase should be corrected within the SA process and metrics should track the faults discovered, cost of fix, etc. This information should be made available to all future projects, auditors, and to the SA process improvement group. (Even if the software is a one-shot one-time” software project “ software metrics collected help the next project avoid the same type of faults.)

4.3.5.6

Off-the-shelf Software

When a software package is developed in-house, you have available the source code for the package you have created. Peers are able to review and evaluate the code for quality, and to determine if the algorithms used are applicable to their own purpose and uses. Since the code is available, the peer’s ability to improve quality and modify algorithms is easily achieved. When source code is available, fault injection can occur at more than just the external interfaces. It can also be used within or between modules.

Examples of off-the-shelf (OTS) software commonly used in systems include:

· Operating systems, such as VxWorks, WindowsNT, or Linux

· Libraries of functions, e.g. graphics, matrix manipulation, or networking communication

· Class libraries, from which new classes are implemented through inheritance.

· Separate programs integrated through “glueware” into the system

· Proprietary, freeware, shareware, and open source software are “off the shelf”

For users of Commercial OTS (COTS) and Government OTS (GOTS) software, the code (written instruction for the computer) is generally not available for viewing, let alone modification. Open source software is the exception to this rule. The advantage of using COTS and GOTS is that for commonly used procedures, algorithms, and graphics, the programmer does not have to rewrite “the code” that already has been developed. Another advantage is that the code has (hopefully) been field tested and improved to a point where most faults have been removed, the algorithm is correct and optimized, and the code is of the highest quality.

Programmers want to take advantage of the “reusable code” that OTS provides, decreasing project costs and increasing the developer’s ability to get his final application to “market*
” faster than if the software had to be written in-house. What should concern both the developer and the customer is the assumption of high quality and low faults. Historical evidence has proven that this assumption about quality, optimization, and the correct algorithm is often incorrect.

As software moves more into the embedded domain, taking over critical functions that were once hardwired, the quality of a software component and the algorithms used become more critical in the engineering process. Damage to property and, more importantly, creating environments that endanger a human’s health and/or well-being are concepts that are not taken lightly by degreed engineers that are held legally responsible for the “system” if it should fail. Visibility into the code to verify and validate is a requirement for many safety-critical systems. For less critical systems, other verification techniques can be used, of which fault injection is one method. Most proprietary software vendors do not provide the source code, though some will make it available for a significant fee. Source code for freeware and shareware programs, software that is no longer maintained, and other types of OTS software may not be available. Open source OTS software is one of few types for which the source code is readily available.

In light of this situation, a software organization needs to verify and validate the OTS component without the source code. What we propose is to verify and validate the OTS as if we had the source code. The question then becomes, “What are we going to use to take the place of the “source code”?” Sources used to replace the “code”, to help the auditor develop and designs testware and test scenarios, include:

· Vender Documentation

· Vendor’s “knowledge base”

· Vendor’s problem reports

· Vendor’s errata sheets

· Knowledge of the Vendors programming practices (CMM type documentation of maturity)

· Type of “contracts” that the component uses to interface with the public.

· Review Vendor’s public stubs (contracts/source code provided by the vendor to be compiled or used by the developer.). This is source code that is publicly available from the vendor. Are they complete? Did they leave a common check out?

· User group threads and databases

· Technical publications (Dr. Dobbs, Ziff Davis , Etc)

· Experienced veteran programmers 5-10+ real life program experience

· Particularly in science and engineering problems, knowledge of the various algorithms that are used and their usability range is important. The individual also needs to know where the crossover to another algorithms has to occur to solve the “problem” correctly.

4.3.6
Flow charts of Fault Injection Framework

Below is a complete flow chart of the framework we will work within to inject faults into the software components used a project:

[image: image5.png]
[image: image6.png]
[image: image7.png]
[image: image8.png]
[image: image9.png][image: image10.png]

APPENDIX A - Definitions

Abstraction – the process of removing detail from a representation. Detail is added as required at lower levels (in the descendents).

Activity Diagrams - An UML diagram that aggregates all possible paths through the logic of a method

Arrival Pattern – the pattern of the arrival of instances of an event’s messages over time

Aperiodic message – instances of an event’s message are bound in time by:

· Minimum inter-arrival time: the time between subsequent arrivals of message instances or

· For random process: the average interval duration and standard deviation or

· For burst messages: an arrival pattern that indicates that the messages tend to clump together in time

Associations – run-time relationship that permits the exchange of messages between objects. Most of the time, this relationship is bi-directional, but for some objects the relationship may be in one direction only

Attribute – data encapsulated within an object

Audit level testing - is a bare bone audit of plans, procedures, and products for adequacy, correctness and compliance to standards

Behavior - Anything that a component does involving action, response to stimulation, response to its environment, or the way in which the component functions or operates. Passive behavior supplies behavior to other objects by providing services that other objects request. Most objects in UML are passive. Active objects form the roots of threads (real-time tasks in embedded systems) and invoke services (behaviors) of the passive objects

Checking – The act of looking for potential faults (defects) in a set of related “source and product” components

Checking-rate – The number of pages studied intensively per individual work hour (in a document) or the number of inputs/outputs studied intensively per individual work hour (in a black box software component).

Checking-time - Total work-hours spent in individual checking of the candidate component. This includes checker’s time to develop checklists, procedures and processes; to review checklists, procedure and rules; official meeting times, checking time, and peer-peer and peer-leader meetings. The leader should also logs his/her time spent on the inspecting/testing the component.

Class – a set of objects that share a common concept. Defines what the members of a set look like. Represents a concept of the problem being solved or a concept in the solution of a problem.

Class Diagram – A UML diagram that represents the individual class definitions and the relationships between classes.

Class Specification – declaration of what each object in the class does.

Class implementation – define how each object in the class implements what it must do. A system or subsystem can be specified as a class that has states, transitions, and an interface.

· Has a set of data members

· Has a set of methods

· Has a set of constructors to initialize a new instance

· Has a destructor

· Has a set of private operations in a private interface. Private operations provide support for the implementation of the public operations

Closed-Looped Control System – is a system in which the action is monitored and sensory data is used to modify the action.

Concurrency - a small set of tasks that are executed simultaneously. On single processor units, this is simulated by implementing a scheduling policy.

Control-time – Total time spent by the leader or anyone else that is involved in any form of planning or control of the inspection/test process. This includes efforts that involve preparation of the master plan, administration, communication, data gathering, and reporting. Control-time includes entry and exit checking, planning, kickoff, and follow-up activities. It does not include time spent in logging meetings, time checking, or in process brainstorming. (Sum of leadership time + kickoff time + follow-up time + exit-time)

Contract Programming – A programming approach that assumes the senders assure the quality of the data. The receiver fully trusts the integrity of the data. Simplifies class testing but complicates interaction testing. Testing must ensure sender meets preconditions of the receiver. See Defensive Programming.

Correct-fix-rate – The percentage of correction attempts which fix a defect and does not introduce any new defects (%: 5 out of 6 is 83%)

Correction-time – Time to fix the default and follow-up time. It is the cost of correcting defects or communicating change requests to component owners and includes the leader’s time to investigate that the task has been completed

COTS – Commercial off-the-self software. This includes compilers, software development components, operating systems, and applications developed by a for-profit entity.

Customer – the organization that is the contracting agent. This organization is responsible for allocation and distribution of money/resources and project management. They may or may not be the end user.

Defect Density - The number of defects per unit in a product. The unit will be defined as the actual number of lines (in 1000 increments) of code that perform a task. The metric shall be measured at defined stages in the development life cycle. Using defect-finding effectiveness and “correct fix rate” metrics to estimate the defect density is a common tool for predicting field defects. Defects/KLOC

Defensive Programming - – A programming approach that assumes the senders may not send good quality of the data. The receiver does not trust the integrity of the data and will check the quality of data itself. Complicates class testing (because all possible outcomes must be addressed) and complicates interaction testing (because all possible outcomes must be properly handled by a sender). Testing must ensure sender meets preconditions of the receiver. See Contract Programming.

Developer – The organization that is responsible for the development of the product based on requirements delivered by the customer. Developers should have relationships with both the end users and the customer to develop the proper solution.

Embedded system – a system that contains a computer that is part of a much larger system. End users are usually not aware of the number or the existence these computers. The hard real-time constraints tend to dominate the computer’s design. Systems have no general/standard computing environments (most are custom) and generally provide services that sense and control an aspect of the larger system’s environment that the end user lives in. The end user does not directly interface with the embedded system itself.

Endgame testing – a highly validation-oriented test, with no influence on requirements or functional design.

End user- The individual(s) that actually uses the product to accomplish a task or assignment. May or may not be a customer.

Full Testing – Starts no later than requirements phase and continues through acceptance testing

GOTS – Government off-the-self software. This includes compilers, software development components, operating systems, and applications developed by any government entity.

Hard Deadline – Performance requirements that absolutely must be meet. A missed deadline constitutes erroneous execution of methods and causes a system failure. Late data (quality of data) is bad data.

Importance – the ‘value’ of the action to ‘correct’ the system’s performance. Controlling an air foil surface on an airplane versus controlling the heater on the coffee carafe on that plane.

Inheritance – the relationship between classes that allows the definition of a new class to be based on the definition of an existing class. This allows reuse of both the specification and the implementation of the preexisting class. Inheritance provides:

· Provide a mechanism by which bugs can be propagated from class to class. Testing a class is very important to find such faults early.

· Provides a mechanism that allows the potential reuse of test cases.

· Models a ‘is a kind of ‘ relationship. Use of inheritance with respect to implementation (code reuse) may lead to maintenance difficulties. Tester/inspectors need to make sure that specifications are inherited not implementation. Better code design and execution test are a result of controlling how inheritance is used and controlling the depth of the inheritance (3 levels deep or more should warn an auditor of possible problems with the mapping of the domain).

Inspection * - Rigorous formal reviews of the software product to detect and identify software component faults (defects). Inspections start at “birth” and continue to the “grave” with the objective to:

· Verify software components satisfy specifications

· Verify software components satisfy applicable standards (software/non-software) as applied to the end-users environment (E1) and the component is being used in. If the environment (E1 morphs to E2) changes or the component is used in a new environment (E3) then a new verification shall be required (for E2 and E3 conditions).

· Identifies deviations form standards, specifications and expected behavior

· Identifies single and multi mode failures of the software component.

· Uses fault injection to aid in the identification of software faults (“breaks” the code)

· Collection of software metrics in a standard format to monitor faults. Metrics also record detection methods and correction of defects..

· Review of software metrics to predict and detect faults

· Used to improve quality of software product. Also used to improve the entire software process and documentation

· Used with Software Testing

Does not:

· Examine code style issues

· Check to see if the code “works”. For design purposes, design reviews, walkthroughs, and other such peer reviews are used to show the customer the code “works”. These reviews focusing on customer/programmer consensus and customer buy-in. These reviews are usually less formal and less effective in identifying code faults.

· Replaces walkthroughs and other such software design reviews.

· See definition for software testing.

Instance – The results of the creation of an object.

Instantiation – the process of creating an instance of an object.

Interface – is an aggregation of behavioral declarations. A set of behaviors grouped together because they are defined by a set of actions. Interfaces are building blocks for specifications that define the public behavior of the module or component. The interface describes a set of behaviors (and syntax) that the end user may or may not use. Interfaces:

· Encapsulate operational specifications that are used as building blocks for a larger widgets.

· Have interfaces with other interface and or components.

· May receive and pass parameters to control behaviors.

· May contain behaviors that are not robust, reliable, or that do not belong. These behaviors can cause “poor design” in the system that the component has been inserted into, because the system implementer has made improper assumptions about the interface’s characteristics. Faults in these cases are difficult to discover.

Invariants – prescribes conditions that must always hold within the lifetime of an object. Class invariant is a set of operating boundaries for an instance of a class (sometime treated as a post-condition). Usually stated in terms of attributes or states.

KLOC – 1000 lines of code. A line of code contains key words/tokens. White space line, comment lines are not counted and multi–line statements that continue to the next line will be count as one line.

Message – is a unit of communication between two objects requesting that an operation be performed by the receiving object(s). Properties of a message include:

· Sender

· List of targets

· Action

· Parameter List/return value

· Arrival Pattern

· Synchronization pattern

A message includes the name of the operation requested and parameter values that will be used by the operation to perform its task. A message receiver (object that acts on the message) may return a value and/or exception to the message sender (object that send the message) and/or forward the message to other objects. Message senders can send messages to themselves. Messages can also be transmitted and received from the Environment (Operating System and Hardware system). The following message issues may have to be addressed:

· A message sender sending out the wrong message, or the right message at the wrong time, causing objects to make incorrect decisions

· A message receiver may not be ready to receive a message and act on the message. The message may not have been received by the object, or the receiver may not handle the message correctly.

· A message’s parameters may be used and/or updated. Objects that are being passed as parameters should be in the correct state before, during, and after the message has been processed.

Method – The actual implementation of an operation.

Object – an operational entity that encapsulates both specific data values and the code that manipulates those values. Object life cycle begins when the object is created, proceeds through a series of states and ends when the object is destroyed. For inspecting/testing an object the following issues need to be addressed:

· Encapsulate- the complete definition (data and methods) of an object that is easy to identify, easy to pass around in the system, and easy to manipulate

· Objects – hide data and changes to the data make it difficult to check test results

· Life Time – objects shall be examined at various points in a life time to determine wither the state of an object is appropriate for that slice of time in the lifecycle. Common source of software faults is the construction of an object to late or the destruction of an object to early.

For programmers an object is an entity that has attributes, data, and behaviors. Objects represent real physical or conceptual real-world entities. Objects usually have:

· Attributes (data)

· Behaviors (operations or methods)

· State (memory)

· Identity

· Responsibility

Open Loop system – is one in which feedback about the performed action is not used to control the action of the system.

Operation – is an action that can be applied to an object to obtain a certain effect. It is the specification of a behavior. Accessor (inspector) operations provide information about an object and do not change the state of the object. Modifier (mutator) operations change the state of an object by setting one or more attributes to have a new value. If an operation does both the accessor and mutator operations, special care should be taken while testing/inspection. (Having an operation do both is not consider good design.)

OTS – Off-the-shelf – This refers to software or hardware that is not developed in-house, but is purchased or acquired from another source. Commercial OTS (COTS) is purchased from a vendor. GOTS is government off-the-shelf, and refers to software or hardware acquired from a government program. OTS usually refers to off-the-shelf software within this document.

Package Diagram - A UML diagram that presents conceptual groupings of classes/items with the dependencies between groups

Periodic messages - Messages that should arrive in a defined pattern, usually once per time increment. The random variation of arrival time within the defined pattern is known as jitter.

Preconditions – prescribes conditions that must hold before an operation can be performed. Usually stated in attributes or parameters of messages

Product – The article(s) that is being submitted for inspection/testing

Public Static Operations – For testing and inspection purposes, these instances are treated as objects since messages can be sent to them in most cases. A test/inspection suite should be created to not only test the instance but the class of operations as well.

Post-conditions - prescribes the conditions that must hold after an operation is performed. Usually in terms of:

· Attributes of the object containing the operation

· Attributes of the actual parameters included in the message that is requesting the operation

· The value of a reply that defines the external “public” behavior of the module or component.

· An exception that is raised by the object or system

Polymorphism - Polymorphism (from the Greek meaning "having multiple forms") is the characteristic of being able to assign a different meaning or usage to something in different contexts. Specifically, to allow an entity such as a variable, a function, or an object to have more than one form. There are several different kinds of polymorphism.

· A variable with a given name may be allowed to have different forms and the program can determine which form of the variable to use at the time of execution. For example, a variable named USERID may be capable of being either an integer (whole number) or a string of characters (perhaps because the programmer wants to allow a user to enter a user ID as either an employee number - an integer - or with a name - a string of characters). By giving the program a way to distinguish which form is being handled in each case, either kind can be recognized and handled.

· A named function can also vary depending on the parameters it is given. For example, if given a variable that is an integer, the function chosen would be to seek a match against a list of employee numbers; if the variable were a string, it would seek a match against a list of names. In either case, both functions would be known in the program by the same name. This type of polymorphism is sometimes known as overloading.

· Polymorphism can mean a data type of "any," such that when specified for a list, a list containing any data types can be processed by a function. (For example, if a function simply determines the length of a list, it doesn't matter what data types are in the list.)

Quality of Data – Define the state of the data. Data can have two states: Good Quality and Bad Quality. Good Quality data is data that is current and valid (the actual value of the data.) for use. Bad Quality data is data that is suspect and may or may not be valid for use. Bad quality data is data that has not been updated as prescribed in a fixed amount of time, a value that does not change as it is suppose to, a value that is out of range (e.g. the meter physically able to read up to 10 but the display is stating the value is 100), or an incorrect value.

Partial testing – begins at any time after functional design has been completed, with less than optimal influence on requirements and functional designs

Priority - the implementation-level solution offered to developers to manage both importance and urgency.

Scheduling Policy - On an embedded system that is not able to process task concurrently, the task must be scheduled. The schedule policy controls when a task executes and how long it will execute uninterrupted. In reality, many processors have the capability of processing only one thread at a time and cannot process multiple threads within the same clock cycle.

Schedulable System - is a system that is able to complete all its actions to all events prior to the stated deadlines and the over-all time budget. This performance is guaranteed to be meet under all circumstances

Sequence Diagram - A UML diagram that records the sequences of messages that represent an algorithm/solution

Source – The articles that have been submitted to and approved by an authorized body as having been tested/inspected and having meet a minimum “quality” standard so these articles could be approved for use by a project. Sources are used in testing and inspection as a baseline to test and inspect the product against. Approved sources for one application are not and may not be assumed as approved sources for other applications or uses

Software – Software is instructional code and data used to instruct a programmable chip to perform or accomplish some task. Included is ALL representations of the instructional code and data. Representations include not only source code and data files, but models, architectures and supporting documents created during the software’s life cycle.

Soft deadlines-Time constraints that can be:

· Missed by a small time deviations

· Occasionally be skipped altogether (the average of the time constraints must be meet generally termed as throughput)

· Late data can be still be good data

Specification - Defines the set of public behaviors of the module or component.

State Diagram - An UML diagram that presents different configurations of data-attribute values and the messages that transform the data from one configuration to another.

State – a condition of existence of a Classifier that persists for a significant period of time and is distinguishable in some way from other conditions of existence on that same Classifier. Distinguishable attributes include:

· Behavior of the object before, during and existing

· Events accepted while in a state

· Subsequent states that are reachable

Classifier usually represents classes and associated use cases

Synchronization patterns – describes how different concurrent actions coordinate and exchange message

Testing* - Testing is dynamic. Like inspection software testing identifies software faults (defects). Usually software testing is one step behind software inspection because testing depends upon available software code. Inspection depends upon software documentation. Software testing objective are:

· To be applied as early as possible in the software process to help control development costs.

· To provide valid and verifiable tests. Testing can only be defined after the requirements/design has been written. Written requirements/design are the baseline source for knowing what expected results of a test execution should be.

· To evaluates software while it is actually performing in its intended environment (E1) (simulated environments (E1’) may be required but can and do introduce their own set of faults.)

· To be used in concert with software inspections

Software testing does not:

· Replace software inspections

· Replace software design reviews

· Expose faults if the testing objective is to show it “works”. For auditors, testing shall include faulty inputs (fault injection) to test the software ability to control itself and controls the environment around it safely. For software developers testing can show that is “works” but that should not be the developers only criteria.

Software inspection and testing do:

· Software inspection examines documents and models while testing evaluates working products. Together they work to identify software faults (defects).

· Both are teaching tools to be used by the software engineer to aid him/her in not inserting any software defect in the code that she/he writes. Both should be use to improve the software process and help control costs.

* See definition for Inspection

Thread – a set of actions executed in sequence. The progress of a thread is to be uncoupled from the progress of other threads on systems that allow concurrency.

Type - Refers to the interface of an object

UML – Unified Modeling Language – a model that is a collection of diagrams. Each diagram represents a specific abstraction of the system.

Urgency – Refers to the nearness of an action to its deadline

Use Diagram - An UML diagram that represents the actors and uses of the system and relationships between the uses.

Validation - the process of evaluating a system or component during or at the end of a development process to determine whether it satisfies specified requirements. It usually involves computer-based process executing the code or simulated mockup to expose faults and gauge and record the resulting errors.

Verification - the process of evaluating a system or component to determine whether the product of a given development phase satisfy the conditions imposed at the start of the phase. It is the evaluation of the “paper” code looking for faults.

APPENDIX B – Common Software Processes

The software process that a developer follows can usually be decomposed into one of four most commonly used high level process models. The four most common models followed by developers are listed below

B.1.1 Ad-Hoc

 Start coding right a way so that you can show the “boss” the project’s progress. Requirements and documentation may or may not catch up later and is in many cases is rarely done. The resulting code is difficult to debug and maintain, even for one-time uses. (Even for one-time use, the code does need to be “maintained” especially if it does not work when fielded.

B.1.2 Waterfall

 The waterfall model is considered the oldest model and is usually associated with structured programming methods. A modified waterfall process allows feedback between steps.

B.1.3 Spiral

The Spiral method became popular during the 1980s and was an effort to model the software design process in a more realistic model that mimicked the “real life” process of software development that could produce a high quality software product. The spiral allows for the major modification of several key processes in a controlled environment within the “software development cycle” before the coding beings. A ”check and balance” system is part of the spiral process to aid the software team in finding faults and missing requirements early in development.

[image: image11.png]
B.1.3 Win-Win

Win-Win is an extension of the original spiral.

[image: image12.png]
APPENDIX C – SEI Process Maturity Model

C.1 Fault injection Testing and SEI Maturity.

Fault injection will be the most effective when statistical controls and statistical processes are implemented. As stated elsewhere in this document, we are unable to test all the documentation/code. Therefore, we must pick and chose areas where we can find the most common faults and the faults most likely to cause the documentation/code to fail. Statistical methods are the best methods we have to date to help us make the decisions to chose one area of documentation/code over another. Statistics that have “meaning”, and are useful for this purpose, are rarely not gather until the organization has reached a Level 3 in the SEI CMM model. A review of the model is in the table below (Table C1)

Level
English
Explanation

1 (Initial)
Anarchy
Unpredictable results and poor/weak controls. Processes not properly documented and controlled. Most organizations think that if they would be evaluated as a Level 3. Most software organizations today are a Level 1

2 (Repeatable)
Folklore
Can repeat previously mastered tasks. Processes documented and followed. Gaps in the process control exist

3(Defined)
Standards
Process characterized, fairly well understood from beginning to end. Other engineers can replicate and duplicate results without any problem.

4 (Managed)
Measurement
Processes are measure and controlled cradle to grave. Effective process improvements are now possible

5 (Optimize)
Optimization
Focus on process improvements and product improvements

Table C1

In studies that have been able to correlate fault injection testing and SEI Maturity, indications are that the cost of audits/test personnel are inversely proportional to the maturity of the software process.

Below are some of the activities required by SEI CMM model for an organization, like a NASA Center, at Level 3:

Level 3 Activity 5

 Software testing is performed according to the project’s defined software process

1. Testing criteria are developed and reviewed with customer and end users

2. Effective methods are used to test the software

3. Testing adequacy is determined by:

a. Level of testing performed (unit, integration, system)

b. Test strategy documented and selected (black box, white box)

c. Test coverage to be selected and achieved (statement coverage, branch coverage

4. For each level of software testing, test readiness criteria are established and used.

5. Regression testing is performed, at each test level, whenever the software being tested or the environment (different OS version, different H/W, different end application) changes.

6. Test plans, procedures, and test cases are managed, maintained and controlled (under CM).

7. Test plans, test procedures, and test cases are changed whenever the system requirements, software requirements, software design or software code being tested are changed

Level 3 Activity 6

 Integration testing of the software is planned and performed according to the project’s defined software process

1. The plans for integration testing are documented and based on the software development plan

2. The integration test cases and test procedures are reviewed with individual responsible for the software requirements, software design, and system and acceptance testing.

3. Integration testing of the software is performed against the designated version of the software requirements document and the software design document.

Level 3 Activity 7

 System and acceptance testing of the software are planned and performed to demonstrate that the software satisfies requirements

1. Resources for testing the software are assigned early enough to provide for adequate test preparation

2. System and acceptance testing are documented in a test plan, which is reviewed with and approved by the customer and end user

3. Test cases and test procedures are planned and prepared by a test team that is independent of the software development team and their chain of command

4. Testing of software is performed against the baselined software and the baselined documentation of the allocated requirements and the software requirements.

5. Problem identified during testing are documented, tracked to closure.

6. Test results are documented and used as the basis for determining whether the software satisfies its requirements

7. Test results are managed and controlled (software organization software metric are updated and analyzed. Results are used to update process and personnel(al) improvement plans

When a project starts the primary tools that the auditors will use will involve verification

Verification planning involves:

· Type of verification to be performed

· The methods to use (inspection, walkthrough, etc)

· The areas of the product that will and will not be verified (documented as to why or why not)

· Risks associated with any areas that are not verified (derived from quality software metrics)

· Resources, scheduled facilities, tools and documented organizational responsibilities

As the software development progress, the verification tasks will shift more toward validation tasks. If the software development team is working together as it should, testware will be imbedded in the “white” code to help auditors find faults as quickly as possible. Validation (includes testware (software designed to test software) and testware design) will include the following tasks be performed:

· Detail planning

· Testware design and development

· Test execution

· Test evaluation

· Testware maintenance

· Test methods

· Facilities

· Test automation

· Test tools

· Support software (share by development and self)

· Configuration management

· Risks (budgets, resources, schedules, training)

APPENDIX D – Auditors Guide to Object Oriented Languages

D.1
Auditors Guide to Object Oriented Languages

This appendix is provided to aid the auditor with a short list of common faults as well as defining common terms use in Object Oriented Languages (OOL). As with any technology some developers will latch on to the technology and “use and abuse” the technology because they can and because the technology will let its self be abused. C and C++ today are the two most commonly abused languages. Many programmers will commonly use pointers pointing to pointers pointing to pointers, which are pointing to pointers. Do these languages allow this? Yes! Is this legal in C and C++? Yes! Does this use of pointers aid the developers in designing fault tolerant code? NO!!! Fact is that most C and C++ faults usually involve the misuse or abuse of pointers. If an experience auditor see or hear that this type of programming was used in C or C++ component he/she is inspecting, red flags, fireworks, sirens should and will go off “loud and clear” that this component will need to be check above and beyond the normal routine component check. In this section, we will introduce some of the author’s front line experience so you may include these in your own checklists. Remember that we usually do not have the code to the component (black box) but we do have access to the code (sometimes termed as wrappers) that uses the component. Java and several other languages have recognized this problem, and have attempted to close the door on programming practices that allow the generation of these types of faults.

D.1.1 Object Oriented Terms and Problem they present an auditor

D1.1.1 Components used within a class

When testing a class that contains a component potential causes of failures are:

· Class specification may not construct and properly initialize the attributes of the new ‘instance’ for itself and/or the component you are using

· Other class may contribute to the failure of the class under test because parameters and message sent to the class and or the component within the class were incorrect

· Class implementation is correct but the specification was incorrect.

· Implementation might not support all required operations or may incorrectly perform some operations

· Class does not check preconditions before sending a message.

D1.1.2 Inheritance

 To enforce inheritance suitability is to constrain behavior changes from class (base class) to subclass (descendents). The behaviors associated with a subclass can be defined as incremental changes to the observable states and operations defined by the base class

The following changes are allowed in defining the associated behavior of the new subclass:

· Preconditions for each operation must be the same or weaker (less constraining from the perspective of the a client

· Post conditions for each operation must be the same or stronger (must do at least as much as defined by the super class

· Class invariants must be the same or stronger (adding more constraints)

· Observable states and all transition between states within the base class shall be preserved by the subclass

· The subclass can add transitions between base class states

· May add observable states as long as each is ether concurrent or a substrate of an existing state.

· Strict use of inclusion polymorphism

DOD studies found that inheriting from an abstract class deeper than three levels deep does lead to the introduction of faults. The auditor should recommend that the class structure be examined and redesigned if there is a constant need to inherit class attributes/functions deeper than three levels deep. Our own experience at one company where we were hired to do IV&V testing to find faults made testing difficult because many of the abstract class went six layers deep before “functional” code actual perform a task. Auditors and Developers spent 6 months getting the system up and running, before they could begin testing. One major problem in this example for auditor/developers was finding which class/function combinations were causing the faults that would not let the system complete initialization. The extensive use of inheritance on this project meant the auditors/developers spent 45 minutes to an hour thumbing through abstract classes before they found the class that was providing the incorrect output. The end result was the project was over-run by millions of dollars (reportedly by a factor of 2) and the auditing was never really started, and faults in the software were to corrected in the field because the this international company had to ship the system.

Abstractions do allow the testing/inspection of the software product sooner. These early IV&V tests/inspections are usually more accurate and more effective than waiting to the “end” to perform IV& V (after the code has gone “gold” and is ready to ship and political forces have enter the picture).

D1.1.3 Polymorphism

Polymorphism is the characteristic of being able to assign a different meaning or usage to something in different contexts - specifically, to allow an entity such as a variable, a function/module/component, or an object to have more than one form. There are several different kinds of polymorphism.

 Method of implementing inclusion polymorphism is:

· Base class is an abstract class

· Concrete class derived from abstract class

Changes to a concrete class do not require changes to abstract class or the class that is calling the abstract class. The behavior is preserved as classes are added, extending the base class. Each subclass is a subtype – the specification for the subclass shall meet all specifications of its direct ancestor. These concepts are enforceable when the following rules are applied:

· The method in the sender class is written to satisfy the preconditions of the operation being called in the abstract receiver class. The concrete classes that service the abstract receiver class must not add any new conditions to those required by the operation in the receiver class. (or we would have to modified the receiver class and the calling class to accommodate the concrete class and now have an ideal way to introduce and hide new faults)

· The invariants defined for the receiver class must still be true in the concrete classes. Additional variants may be added to the concrete classes (many programmers have a tendency to violate this rule and not explore all the ramification, again the likelihood of introducing a fault is great)

Preconditions set the obligations of the any sender and the post conditions and class invariants set the obligations of the receiver of any interface.

Parametric Polymorphism

 Is the capability to define a type in terms of one or more parameters. C++ templates are an example (Standard Template Library). If the template works for one instantiation, there is no guarantee it will work for another instantiation. Template implementation might assume the correct implementation of operations such as deep copies and destructor. This type of programming is not recommended as good programming method to use for general purposes.

Component that are “polymorphic” are useful in programming, however they may be an auditors worst nightmare if not developed with auditing in mind. The “component” will usually not indicate which function is truly being used so fault injection the component and making sure the all the function inside the component has been thoroughly tested, without any sort of a “trace”, is nearly impossible. National Instrument’s has a polymorphic VI that provides a contract interface between device drivers from various manufactures of data acquisition board and the National Instrument’s GUI. The faults that appear during programming in the dialog box may or may not indicate the fault properly and which VI and/or the specific device driver attached to the VI or another component (hidden inside the GUI or expose) is the problem. The auditor from the GUI viewpoint, does not have any idea which specific driver is associated with that VI, which VI functions are or are not being used and which VI function is complaining about the interface.

Common Attributes to Include in Check Lists or Items to think about

Java

 Does background process stop?

Thread management

 Thread runs in an unpredictable manner

 Do threads share methods that over right each other’s values in that method while they are both running (locks are needed to prevent one method from over righting the other)?

 Are the threads using synchronization properly?

 (Synchronization locks code) java uses key word synchronized to lock sections of code. Allow only one thread in a module at a time, have the others wait.

 Is there a racing condition?

 Is the thread being used properly? (Are threads being used to allow the program to perform other tasks while a slower task is ‘working’ (proper use))?

Thread states correct

Thread priority correct

Thread scheduling

Thread blocking or yielding at proper times

Use of polite flag (that allows other process of same or higher to run)

 Allows process to alternate

 If not set then process complete thread until finished. Is this the right behavior?

Does the thread execute?

Are the thread executions predictable?

Does the thread have enough time to perform its task in a timely manner?

Are threads allowed to interrupt other thread even after executing only a single instruction?

A set of threads might execute flawlessly hundreds of times before seeing pernicious behavior. If threads were able to trample over each other the fault would be embedded deep inside that set Java programs. The tester/auditor would have the worst type of computer bugs—an unpredictable, possibly fatal error that cannot be easily reproduced and difficult to find.

Use of

 If then else

Catch all exceptions (system, language and programmer)

Use of:

 Try

 Test parameter that have been passed

 Executable code: widget = widget1 + widget2

 Catch

 Catch error one that is expected

 Catch

 Catch error two that is expected

 Catch

 Catch general error that are not expected

 Finally

 Always will execute this statement

 Blocks to catch exceptions. Always have a general catch to catch ones you do not expect catch

C –strongly static typed - interface errors between classes reduced with help of compiler

Java – strongly dynamic typed – interface errors between classes possible compiler less effective

Smalltalk, Fourth – not strongly typed – effort required to ensure design and implementation

Do not harbor interface errors (wrong interface parameters)

C – pointer and dangling references

Java and Smalltalk use garbage collection to eliminate pointer errors

Tools

Rational
www.rational.com

ILogix
www.ilogix.com
APPENDIX E – Application Use Case

E.1
Application Use Case

E1.1 Introduction

 Use Cases express levels of abstraction and concrete items. The higher levels Use Cases are more abstractive in nature. As the developer progresses through the phases and refines the Use Cases, the level of abstraction decreases being replaced by “concrete” items and ideas. The primary purpose of a Use Case is to capture details such as performance and interface requirements (detailed items the end user for the most part could care less about, but items that have direct effects on the user experience, which the end user does care about). When testing software components the auditors should be particularly interested in the “contract” of the interfaces.

E1.2 Getting Started

In general:

· Use Cases are extended from the Problem Domain via Requirements Analysis

· No How To(s) (i.e. How to start the system)

· Major sub-systems are identified (extending from the Problem Domain Use Case)

· Performance requirements

· Interface requirements

· Captures most of the requirements for that subsystem, remember Use Cases represent the requirements.

· Use Cases should be in a hierarchically relationship using two relationships:

· Uses and extends.

· Higher level Use Cases should point to lower more specialize cases.

· Use Cases will be used to aid the generation of fault injection test in analysis and design model phases, it is therefore important that artifacts in this phase be prepared and documented completely and accurately.

· Scenarios under a Use Case may be generated as required to show a particular application or instantiation.

The work break down should look like this:

· Requirement Analysis then

· High level Use Cases – very brief descriptions (2-3 sentences) of the process and then

· Expanded use Case – long narrative that describe the process. Be careful not to make them so long that they become useless.

Auditors are auditing

· Most critical and important use cases should be developed first.

· In many development environments, developers will illustrate the detail uses cases first and then go back and do the high-level diagram to fulfill a contract requirement. This defeats the purpose of the high-level use case.

· Be careful of complexity overload.

· Be careful of incomplete or misleading information.

· There is a good chance that the requirements may still be a moving target.

· Be careful not to move into the design model just yet.

· Most Use Cases will have children. It will be very rare that a Use Case at this level will not have a child (validate the reason if a use case does not have a child)

The diagram (Figure E1) below is a typical high level work process flow that would normally occur during the early stages of developing the Application requirements and Use Cases.

Map of Interactions During Application/Requirement Phase

Figure E1

E1.3 Decomposing the Problem – Requirement Analysis

Getting started at the system level to decompose a problem may be difficult at times. A process that may be used to decompose the system requirements is demonstrated below. This process has the developer or auditor identify the problem domain attributes into four general areas:

· Problem Domain

· Service Object

· Persistence

· Presentation

 The developer or audit should first parse the requirements document looking for attributes that fit in on these four areas. We will diagram the high level attributes as in the example below

System Process Re-Entry Vehicle

Problem Domain Objects

Service Objects

Persistence (Storage)

Presentation

For the auditors the primary objects of interest/focus are:

· Primary Focus: Problem Domain Objects

· Secondary Focus: Service Domain Objects

· Minor Focus: Storage and Presentation; Discuss Interface between these item and Domain objects. The auditor should transfer the composition of GUI to a Human Factors Engineer (HFE) or type of storage and other hardware issues to a hardware engineer. The GUI composition is an import interface!!! Man-machine interfaces should not be taken lightly, the accuracy of the human input is directly related to the composition of the screen, the grouping of the inputs and outputs, and other factors. An untrained individual will not catch the many HFE attributes that affect the man-machine interface (Red meaning go and Green meaning Stop are obvious but the 3 groups of 3 or the 7 +- 2 rules are more subtle.)

E1.3.1 Parse Requirements Document

Parsing the requirements documents for artifacts is very import preliminary software development activity. This activity may take several days to several weeks to accomplish, but the ROI make this activity worthwhile (both in terms of litigation, in-house politics and turf wars). These artifacts will serve as a baseline for many of the other auditor document artifacts to be created and use during the development cycle. When parsing the requirement document look for:

Overview Statement:

 The goal of this project is to xxxxxxxx to be used xxxxxxxx

Identify customers (Controls contract/business aspects of the project)

 GRC OSAT

Identify End users (Actual user of the software/item. May also play the role of the customer)

 GRC Wind Tunnel 6x 8 group (end user) that hired OSAT (customer) to manage the project

Identify other affected groups that affect either the development or deployment

Identify Goals; Make a short list of major goals

 Goal 1 is to improve xxx accuracy

 Goal 2 is to automate xxx

 .

 .

 .

 Goal n is to increase throughput

Identify assumptions - things that are assumed or assumed true (i.e. 1=> On and True)

Identify items that do not follow accepted perceived Standards (i.e. 1=> On and True - control systems vs programming logic true false logical values)

Identify Risks – things which lead to delays or failures

Identify dependencies – other parties, systems, products that the project depends upon for completion or operation

E1.3.1.1 Parsing System Functions

(what is the system suppose to do. List in logical cohesive groupings. The system should do xxx. Be careful not to identify attributes(system should be painted the color red)) Fill in this portion of the database

Categorize functions under these categories

· Evident – Functions that are performed and user is cognizant that function is being performed

· Hidden – Function should be performed and user is not aware function is being performed. Usually an underlying service is being performed such as persistence storage. Note: Hidden functions are often missed during the requirement gathering process

· Optional – A frill, a nice to have that does not add significant cost to the project or does not affect other functions. An add-on.

This table will be reused and expand after the attributes have been discovered. Example layout for grouping functions is demonstrated below:

Xxxx Functions (Logical Grouping of Functions, ie Guidance Functions)

Ref #
Function
Category
Requirements Doc Ref #

R.1.1
Record xxx
evident
Req doc 1 para 1.1.5

R.1.2
Capture xxx
evident
Req doc 1 para 1.1.8

R.1.3
Calculate xxx
evident
Req doc 1 para 1.2.5

R.1.4
Display xxxx
evident
Req doc 1 para 9.1.5

R.1.5
Log xxx
evident
Req doc 2 para 1.1.4

R.1.6
Log yyy
hidden
Req doc 2 para 1.1.6

R.1.7
Provide storage for xxx
hidden
Req doc 2 para 2.2.5

R.1.8
Provide inter-process, intra- process, inter-system communications mechanisms
hidden
Req doc 2 para 4.1.5

R.1.8
Handle
optional
Req doc 2 para 4.1.5

Nnnn Functions

Ref #
Function
Category
Requirements Doc Ref #

R.2.1
Record xxx
evident
Req doc 1 para 1.2.5

R.2.2
Handle xxx
evident
Req doc 1 para 3.1.8

E1.3.1.2

Proceed to identify the attributes(characteristics and dimensions) and add them to the database. Some may cut across all functions others may be specific to a function. Example list may be added to. Attributes usually answer these questions:

Attributes

Ease of use

Interface

Interface Metaphor (GUI – Forms, Text, etc)

Fault tolerance

End user costs

Response times

Platforms (OS related)

Technologies (Middleware, languages related)

Nnnnn xxxxx

……………..

Attributes can be categorized as:

· Detail

· Discrete, fuzzy, or symbolic values of the attribute

· Boundary Constraint

· Mandatory boundary conditions that set a value, a range of acceptable values, a maximum, a minimum or the appearance of such values (the appearance of a real-time affect. For example, hit a key and the icon appears before you left your hand off the keyboard)

The attributes must also be categorized as either:

· Want

· Must

The whole table look like the example below:

Ref #
Function
Category
Attribute
Detail or

Constraint
Description
Category
Requirements Doc Ref #

R.2.1
Record xxx
Evident
Interface
Detail
Holograph printout
Want
Req doc 1 para 1.2.5

R.2.2
Display xxx
Evident
Interface

Metaphor

Response
Detail

Constraint
Text in Edit field

Display in .250 sec

Must

Must
Req doc 1 para 3.1.8

Remember that it is during this requirement phase that 56% of the faults will be introduced into the system. Questioning the “requirement” by injecting faults into the “system” will help uncover introduced faults. All interested parties (i.e. customer, end-user, auditor, developers) should agree and come to a common understanding (viewing the same view from different vantage points) at this phase that the requirements are complete enough to proceed.

E1.3.2 Requirement Analysis to UML diagrams

The Requirement Analysis becomes the baseline document for the UML diagrams. We will use the UML diagrams as a tool to help us detect faults in our “understanding” of the problem domain. Most objects in UML are passive. Look for Active Objects, these Active Objects are the root basis for forming threads or tasks (in embedded RTOS systems). Note of caution, the Active Objects should be very few in number (by default there is always one). A large number of active objects in a project is usually an indication of a poor “design”, indicating that the developers should rethink the approach (a system fault).

Objects will have three types of behaviors:

· Simple – Also called primitive. The object performs services on a request keeping no memory of previous requests. Each action is atomic and complete. (i.e. math functions such as cos(x))

· State – Also called reactive objects, finite state automation or finite state machine (FSM). The object possesses bounded (finite) set of conditions of existence (states). The object must be in one and only one state at a time (exhibits modal behavior). A state is a mutually exclusive condition of existence defined by a set of events it processes and it reactions to those events in a well defined scope (i.e. A/D converter has four states enabled, sampling, holding, disabled)

· Continuous - An object with unbounded, infinite set of existence conditions. Such objects include algorithmic objects that operate on an infinite data stream (moving average) or objects with a continuous behavior based on past inputs but the dependency is continuous (Fuzzy logic, PID, digital filters neural nets).

E1.3.2.1 Messages

 A message is the logical interface between objects. Examples of message implementations are functions calls, mail (RTOS), events (RTOS), interrupts, a semaphore protected shared resource, and a remote procedure calls (RPC) in a distributed environment. A “system” will use a combination of hardware and software messages to trigger components. During analysis, the key messages are identified. During design, the design will refine and define implementation (synchronizations, timing, etc.) of these messages. Object interfaces are defined by a set of protocols (a contract) agreed to by all the objects. Interface protocols consist of three phases:

· Precondition – are a set of conditions guaranteed to be true before the message is sent or received. Preconditions are generally the responsibility of the object sending the message. Auditors need to be aware of the responsible entity and make sure the contract is keep. Unfulfilled contracts (a fault) can cause large errors if they remain undetected.

· Signature – is the exact mechanism used to transfer the message (i.e. function call with parameter and return types or a RTOS message post/pend pair). Auditors need to be aware of the responsible entity to make sure the message is transferred timely and correctly. An incomplete or untimely message (a fault) can cause large errors if they remain undetected.

· Postconditions – are the set of conditions guaranteed to be true by the time the message is processed and are the responsibility of the receiver of the message. Auditors need to be aware of the responsible entity and make sure the contract is keep. Unfulfilled contracts (a fault) can cause large errors if they remain undetected.

Message associations may not always be bi-directional. In cases were the association is uni-directional, the developer should note such association. (Mouse message to an OS system). The message is responsible for itself, its creation and its destruction is similar to a client server relationship (Keyboard chip-set programmed for one way communication with a “computer” or other entity attached at the other end. The keyboard is responsible for it’s self).

Auditors need to be concerned on two fronts here. For bi directional communications, the messages need to be delivered accurately, timely and reliably. If the interface protocol breaks in one of the three phases (“Bad Data” inputs result) then the output of the component may very well be in error (a fault exist that allows the Bad Data).

E1.3.3.1 Use Cases

Up to this point you have been gathering most of the pieces of the puzzle (the problem domain) and have been sorting and organizing those pieces into a system for quick reference, now it is time to start putting the puzzle pieces together.

Uses Cases describe the use of a system by actors, to perform a task or describe a sequence of events (a process) that the actor using the system must complete (start to finish). Auditor should note that many developers have problems with the “finish” part, particularly if the developer is developing only a “subsystem of” the system. The use case is usually applied only to the system as a whole, but may in larger projects be applied to subsystem and classes. Particularly at high levels of abstraction, the auditor must make sure the developers is mapping an end to end process description and does not map individual steps, operations or transactions (i.e. Print report not Print Report 12 point starting 1 inch from upper left hand corner). Use Cases do not reveal implementation details, particularly in the requirement stage. Here are some of the “Do Not’s”:

· Fault - Single message or event is diagramed. The auditor should look for a “larger” use case. The developer may already be mapping a solution to the problem and not the problem domain. To map a solution you must first map the problem domain so you can view what solutions options you may want to investigate.

· Fault – Interface between actor and system may be low level commands issued by the system or by detailed functions. Auditors should remember that mapping at the requirements level is not worried about how it is done but why, and the interfaces that are required

· Fault- Verify that all functions have been covered. These functions will provide the based-line for developers development and the auditor’s testware and test cases.

· Fault – Is trace ability being maintained(developers implementation, auditors audits) back to the requirements.

Actors are external entities outside the scope of the system under consideration that in some way, participates, influences or stimulates the system with input events or receives outputs. Kinds of actors are:

· Roles humans play

· Roles that other systems outside the scope of the problem domain play (other computer systems.)

· Electro/mechanical devices/systems

Some or all the actors may be included in each use case

Autonomous behavior of embedded systems may also be considered as an “actor”

E1.3.3.2 Classifying Requirements via Use Cases

 The Functional Requirements will usually be represented by the use case itself carrying out a capability that is of primary concern to the actor (validation of user is secondary to user obtaining a result from the requested function). The Use Case is usually actor based. These types of Use Cases are identified by how an actor relates to the system or organization. For each actor the developer should have identified the process that the actor initiates, participates in, or receives input from. Auditors should be looking for proper use of the actors and making sure that other use cases/solutions are not embedded in this use case.

A real big issue that comes to the forefront of the real-time developer is Quality of Service (QoS). Real-time OS (RTOS) and their “applications” worry about, how well does the “use case” perform? Embedded RTOS usually have “heavy” constraints placed on their performance. Common RTOS QoS requirements are:

· Speed

· Timeliness

· Throughput

· Capacity

· Predictability

· Reliability

· Safety

· Security

· Fault-Tolerance

QoS Use Cases are usually event driven. Developers should identify the external events that the system has to respond to or meet. Developers should also relate the events to actors and the other use cases under investigation.

As the software development progress through the various phases of development, the Auditor should see the progressive development, benefit and use of Use Case as listed in the table below.

Phases
Application of Use Case

Analysis
Partitioning of Domain

Structured methodology for analyzing and documenting objects

Clarifies system and object responsibilities

Captures and clarifies new features as they are added to the project during development

Allows validation of model of the system (Auditor)

Design
Validate the elaboration of the model in the presence of design objects(Auditor)

Coding
Clarifies purpose and role of classes/tasks for coders

Provide template for coder

Focuses coding effort on problem (less fault introduce into the code is the result). Auditor smiles because most of his/her work is done (83% completed).

Testing
Provides primary and secondary test scenarios for system IV&V (validation) (Auditor) If the developers and the auditors have done their jobs, this is a one pass formality in an ideal situation. “The ultimate goal” has been reached

Suggest iterative prototypes for spiral development

Deployment
Code is fault-tolerant. Remember that faults in the code are still present but the number should be small and although an inconvenience for the end-user they should not be “show stoppers”. Product maintains a respectable standing in the end-user’s community.

Sample: High Level Use Case Diagram

Pilot

 Ground Control

Notes:

Boundary – is the method used to determine external and internal responsibilities

Ovals- represent Use Case and sub use cases

Stick man or rectangles are use to represent input or outputs into the system. Preconditions are drawn on the left side of the boundary, post conditions are on the right side of the boundary.

Use of this type of diagram is recommended because as humans we interpret graphic more accurately than we do text.

E1.3.3.3 Documenting Use Cases

After the Use Cases have been laid out the “team” needs to agree on defining the “importance” and the “type” of Use Cases that were documented. The Use Case importance should be defined and cataloged as:

· Primary – represents major common process, usually high visible if it does not work

· Secondary – represents minor, rare, back end processes that have low visibility. Failure or exclusion of this process may affect the overall quality of the service being provided but rarely contributes to an outright failure of the system.

· Optional – represents processes that may or may not be features included in this development. They are nice to haves but not necessary at all for the system to run and perform its task.

To define the type of Use Case the team needs to decide wither the Use Case is:

· Conceptual – expanded use cases that express an ideal remaining relatively free of a requirement for a specific technology or implementation details, designed decisions are deferred, especially those that relate to GUI (Pilot identify themselves – Pilot presented with options)

· Real – concretely describes the process in terms of the real design or commits to a specific input, output, or control technology (Pilot identify themselves by ACME Smartcards –Computer displays prompt for PIN. Pilot enters PIN. Computer presents options to start the ACME SpaceShip Model 11111111)

E1.3.3.3.1 Scenarios and Use Cases.

 Scenarios are actor-system interactions corresponding to a particular use case. Two types of scenarios are sequence and collaboration. Scenarios are also an order dependent. Detailing messaging sequences among identified objects will produce a system behavior. A Use Case may have several permutations of that object’s interactions. When completed, both Scenarios and Use Cases should be reviewed by end users and domain experts (who can easily do a walkthrough because no coding is involved) as well as the auditor. The walkthrough should have the following benefits in discovering and preventing faults (Remember that 57% of the faults enter the code in this phase). Domain experts and end users:

· can explain each step (the how to’s and whys)

· indicate which actor(s) starts it

· indicate which actor(s) receive the results

· can inform analyst which response(s) are the correct response(s), which response(s) are incorrect

· explain what can go wrong (highly valued information usually not in the requirements document)

· disclose important facets of system behavior that can not be uncover by other means and are not stated in the requirements document

· uncover less obvious, hidden or forgotten requirements/use cases/scenarios not included in the requirements due to the action being performed automatically by the actor/”common sense assumption” being made when documenting the requirements. These requirements usually cannot be deduced from the requirements document.

· and validate user expectations against the perceived problem domain solution

In addition the auditor can test the object structure ensuring that appropriate participation by each concerned object is involved in the scenario

Medium size project can have several 3-24 use case, with each case having 2-34 scenarios. The trick is to discover and document those cases that are interestingly different (that capture different functional requirements). Auditor must be careful not to get caught by a common development problem where all Use Cases have all “sunny day scenarios” (primary) and many extended scenarios(secondary) variants follow the “sunny day” vain. To insure completeness several “dark rainy day” scenarios should also be documented.

Remember that Scenarios and Use Cases do not represent the software, they represent the requirements that the software must meet. Requirements provide the baseline and will play in important role in testing and later audits, making getting these Use Cases correct is very important (baseline for testware and testing scenarios).

E1.3.3.3.1 Example of Scenarios and Use Cases

The newer automated tools document and keep Scenarios and Use Cases in a database so they can be manipulated and some claim vendors claim the can even test them against virtual hardware. A typical Scenarios and Use Case should look something like the example below:

Use Case and Scenarios

Use Case:
Fly by Wire

Section: Main

Use Case: Fly by Wire

Actor: Pilot/Flight computer/servo

Purpose: To control Flight Direction

Overview: Flight surfaces must be controlled in manner that allows the spacecraft to fly safely in both space and earth environments

Importance: Primary

Type: Conceptual

Cross References: R2.5, R2.6.1.2

Constraints/Preconditions:

Pilot must be rated for this aircraft

Post Condition

Output must be sent to telemetry computer

Typical Course of events

Actor Actions
System Response

1. Pilot inputs direction

2. Compute Direction

3. Send computed direction to Inertial Adjust and Rocket Adjust (See Section)

4. Receive conformation of adjustment

5. Post to Glass Avionics

6. Pilot reads output on Glass Avionics Panel

Alternate Courses

Line Number
Course Change

3.
No input from pilot (Bad Data condition) Pilot may be blackout. Computer may need to take control

 Physical communication link is broken. May need to go to backup

Section: Adjust Rockets

Typical Course of events

Actor Actions
System Response

1. Pilots inputs direction via flight computer flight computer sends message

2. Rocket System receives datagram

3. Datagram validated

4. Parse Servo data from datagram

5. Send data to servos

6. Validate servos performed direction change

7. Send confirming message to flight computer

Alternate Courses

Line
Course Change

1.
Data is not being sent from flight computer (Bas Data). May have to switch to N+1 backup

….. continue with other case(s)

Taking these charts a graphical representation may now be constructed. Remember again, that human are graphical beings and the faults will be easier to discover in a graphical format

Notes:

Use Cases

· Rank use cases according to importance the A1 case is the main case or a primary case

· For Type most of the time the type should be conceptual. Real may be used at the requirement level but sparingly. Real is used more during the design phases

Sequence Diagrams

· Most diagrams are Sequence diagrams which show the sequence of messages to be passes between objects

· QoS issues and other such items should be annotated outside the diagram. State of an object, timing marks, and messages are included in the diagram

· Period and mean jitter are usually listed as constraints

· Used with collaboration

· for developers

· analysis and design

· for Fault injection

· auditing models and capturing audit results of a fault injection execution (State of object, sequence of messages and correct output).

· Captures a single trace through a set of object interactions. Do not use for iteration and concurrency (use an activity diagram(flow chart/ petri net) for these methods)

· After fault is injected look for violation of contract, failure to create objects of the correct class, and sending messages to classes, for which no navigability is documented between sender and receiver

Class Diagrams

The class diagram presents a graphical view of a set of classes and the relationships between the classes. These are where the auditor should look next for a large set of faults. This diagrams will also help developers grasp a “global” view of their intend class structure and if it is overly complicated and unmaintainable.

APPENDIX F – Auditors Guide to Object Oriented Languages

F.1
Auditors Guide to Object Oriented Languages

F1.1.2. Software Component Aggregation

Software component have become more prevalent within the past 10 years. Their use has speeded up development and help reduce some common programming faults, however, they themselves are a software product programmed by humans. Most of the component use is occurring in object orient arenas. The software components can range from drivers development kits to application graphics. The closer the software component is to the hardware the greater the urgency to the developer that the stated quality of the software component is in fact the quality of that component. Failure of a critical COTS component included in a low level OS services can cause faults within the whole system that may not be tolerable to the customer.

Aggregation associations are when one object is contained within another object (Widgets like scroll bars inside the GUI windows) were the owner object is responsible for the creation and destruction of the ‘part’ object. Auditors need to be aware where and when COTs softeware components are being used and how they are being aggregated. This section will discuss some rules of thumbs that will aid the auditor in recognizing conditions in which should set the auditor’s “flag” off that a area of code may harbor a fault

Below is a list of some common principles use in object oriented languages

Composition- is strong aggregation that creates a component. Components cannot be share and have only one ‘owner’.

Generalization - the relationship between two classes when one of the classes is a specialization of the other. Must have:

· LSP (Liskov Substitution Principle) – class must act as though it is an instance of the parent class. The class must not block or selectively inherit properties from the parent.

· Whatever structure the parent has the child will have them also. If the parent has a get_sensor_reading operation then all children will have a get_sensor_reading operation

· Dependency - a relationship were some set of the model elements requires the presences of another set of model elements for completeness or correctness. Used to take a generic incomplete class specification and creating from it an insatiable class

Collection class is one that aggregates many component objects

APPENDIX G – Auditors Guide to Real Time Embedded System

G.1
Auditors Guide to Real Time Embedded System

G1.1

Many common programming terms have special meaning to Real time system and their associated tasks.

We will attempt to provide a quick reference to common RTOS terms and possible faults that RTOS system experience.

G1.2 Message Properties

Types of messages

· Signal – is always asynchronous, usually cause a transition in the state machines

· Operational Call – may be asynchronous or synchronous, usually do not cause a transition in the state machines
Common Faults

· A message sender sending out the wrong message or the right message at the wrong time, making objects make incorrect decisions

· A message receiver may not be ready to receive a message and act on the message.

· The message may not have been received by the object

· The receiver may not handle the message correctly.

· A message’s parameters may be used and or updated. Objects that are being passed as parameters must be in the correct state before, during, and after the message has been processed. (The object shall implement the interface that was requested by the message correctly.) Does the object execute correctly? Are the parameters ‘locked’ (stable) during the execution of this object?

· Synchronous calls that trigger transitions on state machines can cause the state machine to enter into race conditions and or deadlocks (particularly if asynchronous and synchronous events are mixed in the same state machine)

G1.3 Time and timeliness

In real-time systems external timeliness requirements are critical to the problem domain.

Time requirements arise from the need for accuracy or fault tolerance. Most time requirements are derived (not primary requirements). Time requirements that are derived are commonly missed by developers. Missed time requirements lead to unstable systems (i.e. watchdog timers resetting the whole system during initialization and before a ‘useful’ operation is able to be executed) and or unstable system performance (collection of some real time data is missed because CPU is not available).

QoS requirements are usually captured as constraints applied against an action(s) or messages

Time values that are estimates that are used for the purpose of analysis should also be identified (usually captured as tagged values (timestamp attribute = a time value)). Tagged values are usually user added properties of a model element and are annotated in text notes.

Parameters specifying Time Requirements (possible faults if missing)

 Incoming messages must have their timing characterized

· Periodic- period and jitter must be identified

· Aperiodic- Appropriate values such as minimum inter-arrival time, maximum inter-arrival time, and average rates must be defined.

 System Response are usually define in terms of deadlines. Common terms are define below:

· Hard deadline - a dead line that must be meet, not meeting the deadline constitutes a system failure

· Soft deadline - the average through-put must be specified. System is allowed to lag some but the system is excepted to maintain an average through-put or system response.

· Firm deadline – must state both hard and average through-put requirements

Combination of Timing requirement usually encountered

· Worst-case - have hard deadlines and average response. Some performance requirement must be met only in the long run and occasionally missing deadlines creates no difficulties. Soft deadlines are defined as average response times or bounded mead lateness. Firm deadline must state both hard and a shorter average response time requirement.

· Complex Timing - Timing requirements that are not necessarily scalar and or where intermediate timing requirements may be important as overall timing requirements. Emergency shutdowns (i.e. nuclear reactor overheats), control loops, PID (even if the system response asymptotically converges much later).

System-response time requirements are important because they define the performance budget for the system. As objects and classes are defined sub-budget and system budgets are shaped. The sum of sub-budgets of operations that perform a task must not exceed the system’s performance budget for that task.

Types of time constraints on software that are commonly used:

 Hard: the correctness of response to an event includes timeliness. A late answer is considered incorrect and constitutes a system failure. All sensor/action events are one time occurrences, a point in the time line of space and time, and they can not be repeated.

Actions to an event MUST occur on or before a fixed interval of time has expired.

Soft: Soft time requirements are specified as time constraints that may be violated to some degree without affecting the correctness of the systems behavior. A single action to an event may be late and not affect the behavior of the whole system, however if the action to an event is constantly late the system will fail. Throughput is used as a measure to specify an average response time, bandwidth, or bounded mean-lateness that the system can tolerate without causing a failure.

Firm: Deadlines that are a combination of both hard and soft timeliness requirements. Usually the soft requirements are shorter than the hard requirements which are usually longer. The hard requirements are usually governed by the mechanical latency of the system for which the soft requirements are shorten to compensate the hard realities of the system.

Arrival patterns of messages in time do not provide enough information to calculate a schedulable system. Also have a need to know how long it takes for the processor to process an action to an event message.

Arrival patterns that are Bursty are characterized by a Poisson distribution and do not have a standard deviation but do have an average interarrival time.

Design of absolute schedulable systems is designed by using worst-case execution time in the analysis. Disadvantage is the under utilization of system resources particularly in system that can tolerate occasional lateness (lateness is rare or tolerable)

Soft real-time systems use the average execution time to determine a metric called mean lateness. The advantage is that system resource are more fully realize, but the disadvantage is that actions runt the risk of not being service in a timely manner.

Hardware timers/software watchdogs disabled to allow programs to run creating a situation that where the CPU can lock and not get reset scheduling policies where the fault discovered

System with CPUs loaded no more than 30% have failed due to poor scheduling policies

Many Operating system use a scheduling task/executive that schedules actions that allow developers to assign a priority (remember that priority manages both urgency and importance)

Blocking calls of lower priority task may block actions of higher priority. This blocking action must be computed into the execution time of the action that requires use of the resource and has to wait the “full” block time before service to that resource is available.

Types of synchronizing calls

· Synchronous call – the caller blocks and waits for the completion of the execution of an action

· Function call – a synchronous action that executes in the same stack as the calling process

· Asynchronous call – the caller does not wait for the completion of the called action

· Balking (rendezvous) call – the caller aborts the attempt to send the message if the receiver object cannot service the message immediately.

· Time Wait – the caller waits for the receiver object to accept the message but only for a short duration, after the short duration the caller aborts sending the message if it has not been accepted

OS

Time slicing

 Are states pushed and popped properly? (context switching)

Maps to

50% or more faults enter here

Write Code Wrapper

Design Model

Requirement & Analysis Models

Start IV&V

White Entity

Rules Standards

Procedures (Inspection)

Entry Criteria

Exit Criteria

Inspection

Testing

Rules Standards

Procedures (Test)

Entry Criteria

Exit Criteria

Gold -

Release Component

Start

Source Documents

Black code

Test process

Code Process Fault Injection Improvement

Testing

Inspection process

Product Process Inspection Improvement

Test Faults

Inspection Faults

All Faults

Maps to

Test./Inspect Analysis & Req. Model

Test./Inspect Design Model

Test./Inspect Wrapper Code and Object

Refine test

Refine test

Remove 50% or more faults here

27% or more faults enter here

7% or more faults enter here

Remove 27% or more faults here

Remove 7% or more faults here

T0 Tn

Requirements

Specification

Requirements

Verification

Internal Design Specification

Internal Design

Verification

Functional Design

Specification

Functional Design

Verification

Code Spec. Modification

Function

Verification

Code Spec. Modification

System & acceptance

Verification

Product Simulation

Usability & Maintainability Validation

Code

Code

Verification

Code Spec. Modification

Integration

Verification

Code Spec. Modification

Unit

Verification

Players

Pilot and Flight Crew

Problem Domain

Reusable Entry Vehicle

Physical Object(s)

Reentry Vehicle

Requirements

Design

Code

Test

Implement

Preliminary Investigation Report

Prototypes

Budgets, Schedules

Requirements Specifications

Glossary

Conceptual Model

Use Case Diagrams

Project Members

Exit: Most all cases have child dependencies

Use Cases:

A. High level

B. Essential Expanded

Guidance system

Life Support System

Database Manager

Network Manager

Database

Cache

System Registered App Variables

Flat File

Start

Exit

Acme Spacecraft

<<includes>> <includes>>

 <<extends>>

 ext.pt. Compression tends

 <<extends>>

 ext.pt. Security

Telemetry

Link

Compression

Security

Glass Avionics

And HUD

Fly by wire

Adjust Attitude

Rocket Adjustment

Command Validation

Compression

Inertial Adjustment

� Ad-hoc programming is not a valid program method for SAFE. Note that according to reports, 75% of corporate America and the Government have chosen ad-hoc as their preferred coding method.

� It is recommended that developers on one project be part of the auditing team on another project to avoid the enterprise stereotyping that all auditors “destroy all code” or auditors have the flunky jobs. The best auditor is your best developers, whose current assignment and objective is to aid code developers in developing the best production code possible.

� If not, the product will be difficult and expensive to code, debug and or maintain.

� Market: Generic term to identify that the application has been delivered to the customer. Both the seller and the customer may be government entities.

NASA - Glenn Research Center

Cleveland, OH 44135

Printed copies are uncontrolled and are not to be used for operational purposes.

Printed copies are uncontrolled and are not to be used for operational purposes.

Page 19 of 1

_1077520463

_1075638038.xls
Chart1

		1.1		1.1

		1.2		1.2

		1.3		1.3

		1.4		1.4

		1.5		1.5

Items

Expected

Standard

Number of Items

Conceptual

0

0

1

0

1

0

3

0

3

0

Graph

		

Graph

		1.1		1.1

		1.2		1.2

		1.3		1.3

		1.4		1.4

		1.5		1.5

Items

Expected

Standard

Number of Items

Conceptual

0

0

1

0

1

0

3

0

3

0

Data

		

				Fault ID Field		NumberOfFaults		Response		Ideal Response				FaultsOnResponse				True Response

				1.1		1		0		0				0				0

				1.2		1		1		0				1				0

				1.3		1		1		0				1				0

				1.4		3		1		0				3				0

				1.5		3		1		0				3				0

Sheet3

		

