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1. Introduction 
 

This report extends the Bayesian Hypothesis Testing framework for software 

reliability certification presented in the project's final report of FY2001.  The basic 

statistical framework is described in Section 2.  The other sections of this report describe 

our newly developed features.  Section 3 presents testing requirements when observed 

faults fall into different severity classes.  Section 4 introduces the cost functions 

measuring potential losses if wrong decisions pertinent to software system release are 

made.  Section 5 presents the theory of determining the number of tests under the 

constraint of minimizing operational risks for the deployed system.  The current version 

of the report is theoretical in nature and presents complex statistical derivations.  

However, the consequences of these results are poised to radically change the practice of 

software certification.  Practical implications of the proposed methodology will be 

described in detail in the future reports.    
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2.  Bayesian Hypothesis Testing Framework 
Let r denote the number of failures in n tests and θ be the probability of failure. 

We want to determine n such that P(θ ≤ θo | r, n ) = Cο  where 0< θ0< 1 is a given 

constant.. That is we want to find the number of tests such that when in n tests there is no 

failure then we are Co100% confident that  the failure probability is  less than or equal to 

some specified threshold value. 

We consider testing the null hypothesis 

Ho :   θ ≤ θo   

against the alternative hypothesis 

H1 :  :  θ > θo 

for some given constant 0< θ0< 1 

In Bayesian analysis posterior probability P( Ho | r, n ) is used to decide between H0 and 

H1 . It represents the probability of the null hypothesis in light of the data and prior 

knowledge.  Let P(Ho ) and P(H1), where P(Ho)+P(H1)=1, denote the prior probabilities 

assigned to null and the alternative hypothesis, 

O( Ho )= P( Ho ) / P( H1 )            (1)  

is called the prior odds of Ho to H1 and 

O (Ho | r, n )= P ( Ho | r, n ) / P (H1 | r, n ) = P(θ ≤ θo | r, n ) / P ( θ > θo | r, n )                 

(2) 

is called the posterior odds ratio of Ho to H1.  The Bayes factor F(Ho, H1 ) is defined as 

the ratio of posterior odds to prior odds in favor of the null hypothesis, 

F(Ho, H1)= O (Ho | r, n ) / O( Ho)                              

(3) 

The Bayes factor depends on the prior probability density function g(θ ) of θ and g(θ ) is 

 P(Ho) g0(θ)    if  θ ≤ θo 

g(θ)=                  (4)  

 P(H1) g1(θ)     if  θ > θo 
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where go and g1 are proper probability density functions ( go(θ)>0, g0 (θ )
0

θ0

∫ dθ = 1, 

g1(θ)>0, g1(θ )
θ0

1

∫ dθ = 1 ) . They describe the distribution of θ over the two hypotheses.  

The probability mass function of r given n and θ is the binomial probability  

f (r |θ,n) = Cr
nθr (1− θ)n− r    if r=0,1,…,n and zero elsewhere,  Cr

n =
n!

r!(n − r)!
 . It can be 

shown that the Bayes factor is 

 

F(H0, H1 ) =
f (r |θ,n)go (θ )dθ

0

θo

∫

f (r |θ ,n)g1(θ)dθ
θo

1

∫
             (5) 

In the numerator, f(r | θ, n) is weighted by the prior distribution of θ under the null 

hypothesis and in the denominator it is weighted by the prior distribution of θ under the 

alternative hypothesis. If F( Ho, H1) > 1 then the data gives evidence in favor of Ho and if 

F( Ho, H1) < 1 then we have evidence against Ho . 

 If we require P(θ ≤ θo | r, n ) = Cο ,  this is equivalent to requiring  

F(Ho, H1) =
Co

1− Co

 

 
  

 
 P(H1)

P(Ho )
 .                       (6) 

       

If θ has a prior distribution on the interval (a, b) where a<b, with the following 

probability density function 

f (θ | α ,β) =
1

B(α ,β)(b − a)α +β −1 (θ − a)α −1(b −θ )β −1           (7)  

where α>0, β>0 ,  B(α, β) = Γ(α) Γ(β) / Γ(α+β) , then it is said to have a Beta 

distribution on (a,b) with parameters α and β . Symbolically we write 

θ~Beta(a.b) (α,β ) .  The tractable and rich family of probability distributions for θ under 

Ho and H1 are Beta(0,θo ) (α o,βo )  and Beta(θo ,1) (α 1,β1)  distributions. If αo=βo=1 then θ has 

a uniform distribution on (0, θo) under Ho , go(θ)=1/θo  if 0<θ<θo and zero elsewhere. 

Similarly if If α1=β1=1 then θ has a uniform distribution on (θo, 1) under H1 ,  
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g1(θ)=1/(1-θo ) if θo <θ <1 and zero elsewhere. 

 

 Suppose no failures encountered during testing (r=0), we want to determine the 

number of tests required so that we are 100Co% confident that θ ≤ θo . That  is we want to 

determine n such that P(θ ≤ θo | r, n ) = Co ,  for some Co close to one. Suppose we take 

non-informative uniform prior distributions for θ under Ho and H1 .  

θ | Ho ~ Uniform (0, θo)  and θ | H1 ~Uniform(θo,1) . Bayes factor when r=0 is 

F(Ho, H1) =
(1− θo )[1 − (1 −θo )n+1]

θo (1 −θo )n+1             (8) 

     

Since  P(θ ≤ θo | r, n ) = Cο  if and only if F(Ho, H1) =
Co

1− Co

 

 
  

 
 P(H1)

P(Ho )
 we need to solve 

(1 −θo )[1− (1−θo )n+1 ]
θo(1 −θo )n+1 =

Co

1 − Co

 

 
  

 
 P(H1 )

P(Ho)
 for n. We have 

n = −
ln[

Coθo P(H1)
(1− Co )(1 −θo)P(Ho )

+1]

ln(1−θo )
−1.           (9) 

Table I gives the number of tests for Co=0.99and various values of θo and P(Ho). 

 

Table I. Number of Tests When There is no Failure. 

 

θo   P(Ho)  n 

_________________________________ 

.01   .01  457 

.001   .01  2378 

.0001   .01  6831 

.00001   .01  9349 

.000001  .01  9752 

 

.01   .02  388 

.001   .02  1766 
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.0001   .02  3954 

.00001   .02  4736 

.000001  .02  4838 

 

.01   .1  228 

.001   .1  636 

.0001   .1  853 

.00001   .1  886 

.000001  .1  890 

.01   .2  159 

.001   .2  333 

.0001   .2  387 

.00001   .2  394 

.000001  .2  395 

 

 

.01   .3  119 

.001   .3  207 

.0001   .3  227 

.00001   .3  230 

.000001  .3  230 

 

.01   .4  90 

.001   .4  138 

.0001   .4  146 

.00001   .4  147 

.000001  .4  147 

 

.01   .5  68 

.001   .5  93 

.0001   .5  98 
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.00001   .5  98 

.000001  .5  98 

 

.01   .6  50 

.001   .6  63 

.0001   .6  65 

.00001   .6  65 

.000001  .6  65 

 

.01   .7  34 

.001   .7  41 

.0001   .7  41 

.00001   .7  41 

.000001  .7  41 

 

.01   .8  21 

.001   .8  23 

.0001   .8  24 

.00001   .8  24 

.000001  .8  24 

 

.01   .9  9 

.001   .9  10 

.0001   .9  10 

.00001   .9  10 

.000001  .9  10 

_________________________________ 

 

 

Furthermore if P(Ho)=θo, P(H1)=1-θo then 
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n =
ln(1− C0 )
ln(1 −θo )

−1            (10) 

This result in (10) is previously obtained by Bojan ( ), by taking a uniform prior 

distribution for θ on (0, 1).  If g(θ)=1 for 0<θ<1 and zero elsewhere then, this implies that 

P(Ho)=θo , P(H1)=1-θo and from (4),  go(θ) P(Ho)=1 for 0<θ<θo and ,  g1(θ) P(H1)=1 for 

θo<θ<1 or that θ has uniform distribution on ( 0, θo) under Ho and a uniform distribution 

on (θo, 1) under H1 . Hence (10) is a special case of (9). Since θo is a number close to zero 

( such as 10-3 , 10-4 etc ) and since taking a uniform distribution on (0,1) for θ implies 

P(Ho)=θo ( very small prior probability is assigned to Ho ), it will require a very large n to 

achieve P(θ ≤ θo | r=0 , n ) = Cο   when Co is large , Co=0.95, 0.99 etc.   

 In our derivation of the number of necessary tests given by (9), taking Uniform(0, 

θo) distribution for θ under Ho makes sense especially when θo is very small. However 

taking uniform (θo, 1) distribution for θ under H1 may not be appropriate. If H1 was true, 

we probably feel that expected value of θ under H1 is close to θo and not equal to θo+(1-

θo)/2 as is the case with Uniform (θo, 1) distribution. If θ |H1 ~ Beta(θo ,1) (α 1,β1)   then 

the prior expected value of θ is  E(θ | H1) = θo +(1− θo )
α 1

α1 + β1

. If we take α1=1 and for 

some small δ take E(θ |H1 )= θo+ δ then  β1 is 
1 −θo

δ
−1 and the necessary number of 

tests is given by the solution of the following equation for n. 

 

[(n −1)δ + (1 −θo )][1− (1 −θo )n+1 ]
θo(n +1)(1− θo −δ )(1− θo )n = (

Co

1 − Co

)
P(H1)
P(Ho )

                    (11) 

 

If no restrictions on αo, βo, α1, β1, are imposed then we need to solve the following 

equation for n, 

B(α1, β1)
B(αo, βo)

(1−θo )
Ci

n

i =0

n

∑ (−θo )i B(i + α o + βo)

B(α 1, n + β1)
= (

Co

1− Co

)
P(H1 )
P(Ho )

                                       (12) 
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If at least one failure is encountered during testing ( r >0 ) and no restrictions on αo, βo, 

α1, β1, are imposed then we need to solve the following equation for n, 

 

B(α1, β1)
B(αo, βo)

θo
r

(1−θo )n− r

Ci
n− r (−θo )i B(i +α o ,βo

i =0

n− r

∑ )

Ci
rθo

r− i

i =0

r

∑ (1 −θo )i B(α1 + i,n − r + β1 )
= (

Co

1 − Co

)
P(H1 )
P(Ho )

                 (13) 

 

. In Table 2. We give the number of tests when no failure encountered, one failure 

encountered and when two failures are encountered, for some selected values of θo and 

P(Ho). For example, for θο=10-2 , P(H0)=0.4, if after 90 tests there is no failure then we 

are 99% confident that θ≤10-2. If after 128 tests there is one failure then we are 99% 

confident that θ≤10-2 . If after 167 tests there are 2 failures then we are 99% confident 

that θ≤10-2 . The Table 2. may also be used in a sequential way: Again suppose that 

θο=10-2 , P(H0)=0.4 . Perform one failure is encountered then continue testing, if after 

128 tests there is one failure then stop,  we are 99% confident that θ≤10-2. If in 128 tests 

two failures are observed then continue testing, if after 167 tests there are two failures 

encountered then stop, we are 99% confident that θ≤10-2 

 

Table 2. The number of tests in certification testing. 

θθθθοοοο     

  

 P(Ho)   no   n1  n2 
 
10-2  0.01   457   476  497 
10-3  0.01   2378   2671  2975 
10-4  0.01   6831   10648  14501 
10-5  0.01   9349   33176  63649 
10-6  0.01   9752   101273 282007 
 
10-2  0.02   388   410  433 
10-3  0.02   1766   2098  2438 
10-4  0.02   3954   7549  11315 
10-5  0.02   4736   23037  49499 
10-6  0.02   4838   70800  221022 
 
10-2  0.1   228   258  289 
10-3  0.1   636   1017  1402 
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10-4  0.1   853   3157  6150 
10-5  0.1   886   9646  27281 
10-6  0.1   890   30067  123725 
 
10-2  0.4   90   128  167 
10-3  0.4   138   411  739 
10-4  0.4   146   1251  3260 
10-5  0.4   147   3889  14724 
10-6  0.4   147   12222  67468 
 
10-2  0.6   50   87  126 
10-3  0.6   63   269  552 
10-4  0.6   65   827  2458 
10-5  0.6   65   2584  11173 
10-6  0.6   65   8139  51351 
 

n0 : Number of tests when no failure  encountered 
n1 : Number of tests when one failure is encountered 
n2 : Number of tests when two failures are encountered 

 

 

3. Determining the number of tests when there are faults with different 

severity levels. 
 

We will incorpoarate the level of severity of the faults in the determination of the 

number of tests. Several levels of severity can be identified such as catastrophic , major 

and minor depending on their impacts to the system service. The definition of severity 

varies from system to system. Let θIi denote the probability of failure due to type i fault, 

i=1,2,…,k . 

We consider testing the null hypothesis 

Ho : θ1≤θ1o,…,θk≤θko 

against the alternative hypothesis 

H1: At least one inequality does not hold 

for some given constants 0< θιο< 1, i=1,2,…,k . Let ri denote the number of failures due 

to type i fault in n tests. We want to find n such that  
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P(θ1≤θ1o,…,θk≤θko | r1=0, …, rk=0, n)=Co . That is we want to find the number of tests 

such that when in n tests there is no failure due to any type of fault then we are Co 100% 

confident that each of the failure probabilities of different types of failures are less than 

or equal to some specified threshold values. 

 We take the following prior distribution for ( θ1,…,θk ), 

 

  P(Ho) g0(θ1,…,θk)    if  (θ1,…,θk) ∈ Ho 

g(θ1,…,θk)=               (14)     

  

  P(H1) g1(θ1,…,θk)     if  (θ1,…,θk) ∈ H1 

where g0(θ1,…,θk) and g1(θ1,…,θk) are the uniform prior probability density functions 

under Ho and H1 , 

g0(θ1,…,θk)=
1

θio
i=1

k

∏
   ,   g1(θ1,…,θk)=

1

( 1
k!

− θio
i=1

k

∏ )
 .         (15) 

 

The joint probability mass function of r1,…rk  given n and θ1,...,θκ is the multinomial  

probability,

f (r1,..., rk |θ1, ...,θk ,n) = 1
r1!...rk!(n − r1 − ... −rk )!

θ1
r1 ...θk

rk (1−θ1 − ...−θk )n−r1−...−rk   

 It can be shown that the Bayes factor for testing Ho against H1 is , 

 

F(Ho ,H1) =
( 1
k!

− θ io
i=1

k

∏ )(1+ SUM)

( θio )
i=1

k

∏ (
n! (n + i)

i=1

k

∏
(n +k )!

−1− SUM)

         (16) 

 

where, 
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SUM = (−1) j

j=1

k

∑ (1−θi1o
j

∑ − ...−θijo )n+k
         (17) 

in which the summation 
j

∑ is over all values of ( i1,…,  ij   ) such that i1=1,…k,…., 

ij=1,…k and i1<i2<…<ij . For k=1, SUM = −(1−θ10 )n+1
 ,  for k=2, 

SUM = −(1−θ10 )n+2 − (1−θ20 )n+2 +(1−θ10 −θ20 )n+2
 

and for k=3, 

SUM = −(1−θ1o )n+3 − (1−θ20 )n+3 − (1−θ30 )n+3

+(1−θ10 −θ20 )n+3 +(1−θ10 −θ30 )n+3 + (1−θ20 −θ30 )n+3

−(1−θ10 −θ20 −θ30 )n+3

 

Note that for k=1, equation in (16) is same as the one in (8). 

 

Requiring P(θ1≤θ1o,…,θk≤θko | r1=0, …, rk=0, n)=Co is equivalent to 

requiring F(Ho, H1) =
Co

1− Co

 

 
  

 
 P(H1)

P(Ho )
 . We can find the necessary number of tests by 

solving this equation for n. 

 

4. The relationship between Co and the losses under incorrect decisions. 
 

If we take action a when the probability of a fault occurring is θ then the loss that 

will be incurred is denoted by L( θ, a). Let ao and a1 denote the actions of accepting  the 

null hypothesis Ho :θ ≤ θo   the alternative hypothesis H1 :  θ > θo respectively. Ho states 

that the software is reliable where as H1 states that it is not reliable. Suppose the amount 

of loss is Ko ( in dollars) when we decide that the software as reliable ( accept Ho) when it 

is not reliable( H1 is true) and the amount of loss is K1 when we decide that the software 

is not reliable (accept H1) when in fact it is reliable ( Ho is true). The loss function is 

  0 if θ≤θo 

L( θ, ao )= 

  Ko if θ>θo 
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                (18) 

 

  K1 if θ≤θo 

L( θ, a1 )= 

  0 if θ>θo 

 

We choose the action which has the smaller posterior expectation. Since the posterior 

expected value of loss for action ao is Ko P(θ >θo | r, n ) and the posterior expected value 

of loss for action a1 is K1 P(θ ≤ θo | r, n ), action ao will be taken (Ho will be accepted) if 

Ko P(θ >θo | r, n ) < K1 P(θ ≤ θo | r, n). That is we accept Ho if   

P(θ ≤ θo | r, n)>Ko / (Ko + K1 ) . Since we want  P(θ ≤ θo | r, n )=Co , we have  

Co= Ko / (Ko + K1 )  which shows the relationship between Co and the losses. 

 

5. Determining the number of tests by minimizing risk 
 

Let r denote the number of failures in n tests and θ be the probability of failure 

and consider  testing the null hypothesis Ho :θ ≤ θo  against the alternative hypothesis H1 : 

θ > θo for some given constant 0< θ0< 1. Let δ=δ ( r ) denote a decision rule. If we 

observe r failures in n tests then δ is the action that will be taken.  Bayes risk of a 

decision rule with respect to a prior distribution on θ is defined as  

 

BR(δ) = Eθ[R(θ,δ)] = R(θ,δ)g(θ)dθ∫

= Er |n[Eθ|r,n L(θ,δ,n)] = L(θ,δ,n)g(θ | r,n)dθh(r)∫
r=0

n

∑
       (19) 

where R( θ, δ ) is the risk function 

R(θ,δ ) = Er |n,θ[L(θ,δ,n)] = L(θ,δ,n) f (r | n,θ)
r=0

n

∑  

and 

f (r |θ,n) = Cr
nθr (1−θ)n−r
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h(r) = f (r | n,θ)g(θ)dθ∫  

 

and L(θ, δ, n) is the overall loss function. The overall loss is the sum of the loss due to 

decision and the cost of testing the sofware. 

L(θ, δ, n)= L(θ, δ) + C(n)             (20) 

where L(θ, δ) is the decision loss and C(n) is the cost of testing. 

The decision rule which minimizes BR(δ) is optimal and it is called Bayes decision rule 

and we will denote it by δ* . The quantity BR(δ* ) is called the Bayes risk. Let the actions 

ao and a1 denote accepting Ho and H1 respectively. The Bayes decision rule is to accept ao 

if the posterior expected decision loss of ao is smaller than that of a1 , that is if 

L(θ,ao
θo

1

∫ )g(θ | r,n)dθ < L(θ,a1
0

θo

∫ )g(θ | r,n)dθ  

The above inequality implies that we accept Ho if 

L(θ,ao
θo

1

∫ )θr (1−θ)n−r g(θ)dθ < L(θ,a1
0

θo

∫ )θr (1−θ)n−r g(θ)dθ       (21) 

The above inequality holds if r<W(n) for some constant W(n). We accept H1 when 

r>W(n) and W(n) satisfies the following equality, 

 

L(θ,ao
θo

1

∫ )θW (n)(1−θ)n−W (n) g(θ)dθ = L(θ,a1
0

θo

∫ )θW(n) (1−θ)n−W(n)g(θ)dθ

 

The Bayes rule δ* is to accept Ho when r<W(n), accept H1 when r>W(n) and do not take 

any action if r=W(n). The decision risk of δ* is 

 

  L(θ,ao) P[r<W(n) | θ, n ]     if θ>θo 

R( θ, δ*)= 

  L(θ,a1) [ 1- P[r<W(n) | θ, n]  if θ≤θo 
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The Bayes risk is 

 

BR(δ* ) = L(θ,ao
θo

1

∫ )P[r < W(n) |θ,n]g(θ)dθ

+ L(θ,a1
0

θo

∫ )[1− P[r < W(n) |θ,n]g(θ)dθ

+C(n)

                    (22) 

The optimal number of tests is found by minimizing (22) with respect to n. If in particular 

we take C(n)=n , that is each test costs c, and 

  0 if θ≤θo 

L( θ, ao )= 

  Ko if θ>θo 

                

 

  K1 if θ≤θo 

L( θ, a1 )= 

  0 if θ>θo 

 

 

 

    P(Ho) / θo         if  θ ≤ θo 

g(θ)=                   

   P(H1) / (1-θo)    if  θ > θo 

 

then, 
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BR(δ* ) = P(H1)Ko

(1−θo )
n!

r!(n −r)!θo

1

∫
r<W(n)
∑ θr (1−θ)n−r dθ

+
P(Ho )K1

θo

n!
r!(n − r)!0

θo

∫
r>W (n)
∑ θr (1−θ)n−r dθ

+nc

                             (23) 

 

where W(n) satisfies, 

 

P(H1)Ko

(1−θo ) θo

1

∫ θ W(n) (1−θ)n−W (n)dθ =
P(Ho )K1

θo 0

θo

∫ θ W(n) (1−θ)n−W (n)dθ  

(24) 

 

For given θo, P(Ho), P(H1), Ko and K1, we first use the above equality to find W(n) for 

given n (n=1, 2, 3,…) then compute BR(δ*,n) using (23) and examine it to see for what 

value of n it is minimized. 

 

 

 

 

 

 

 

 

 

 

 


