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Abstract

The existence of software faults in safety-critical systems is not tolerable. Goals of software reliability assessment
are estimating the failure probability of the program, θ, and gaining statistical confidence that θ  is realistic.  While
in most cases reliability assessment is performed prior to the deployment of the system, there are circumstances
when reliability assessment is needed in the process of (re)evaluation of the fielded (deployed) system.  Post
deployment reliability assessment provides reassurance that the expected dependability characteristics of the system
have been achieved.  It may be used as a basis of the recommendation for maintenance and further improvement, or
the recommendation to discontinue the use of the system.

The white paper presents a statistical framework which allows the incorporation of rigorous verification and
validation activities into the reliability assessment.  These verification and validation activities may include informal
as well as the formal methods in software engineering.  The net effect of combining various V&V techniques with
random testing is a drastic reduction (several orders of magnitude) in the number of required test cases for
reliability assessment.  The framework also permits post deployment reliability assessment, thus providing
reassurance that the expected dependability characteristics of the system have been met.  NASA's Day-of-Launch I-
Load Update (DOLILU II) system is used as a case study.

1. Introduction

Quality assurance of software is a notoriously difficult problem. Due to the complexity of software systems and to
the issue of scalability, most techniques that are sufficiently precise to ensure quality are too cumbersome to scale
up.  Therefore, the use of software in safety-critical systems remains a somewhat paradoxical issue. The properties
of software that can be exploited to improve the control and safety functions in critical applications, are exactly the
qualities that lead to our concern about the reliability of the systems that are being produced.

In this study, we present practical problems and challenges encountered in an experiment to assess software
reliability of NASA’s Day-of-Launch I-Load Update (DOLILU II) system. The Day-of-Launch I-Load Update
system for the Space Shuttle program has been developed to allow modification of the Shuttle’s first stage guidance
commands based on actual wind conditions measured in hours preceding the launch.  This system consists of the
trajectory validation software required to generate and verify the new I-Loads, to evaluate wind and trajectory



conditions, and to recommend decisions to fly (or not to fly) with the new I-Loads.  From this short description, it is
apparent that DOLILU II is a high consequence system, i.e., a very high cost is associated with eventual occurrence
of a failure.

Interestingly, this system has been in use for several years and no failures have been observed. Reliability
assessment of DOLILU II has been prompted by the increasing organizational pressures to provide meaningful
quantification of software assessment process. DOLILU system has undergone independent software verification
and validation (IV&V) process [3] throughout its development life-cycle.  However, the results of IV&V are
qualitative in nature, and cannot be easily quantified.  Therefore, one of the goals of our study is to assess the
feasibility of software reliability measurement for mission critical systems.

Software reliability is a quantitative measure of software quality.  It is defined as a probability of failure free
execution given a specific environment and a fixed time interval.  The goal of software reliability assessment is not
just to estimate the failure probability of the program, θ, but to gain statistical confidence that θ  is realistic. In
practice, the required failure probability θ0  and the confidence level C are application specific and predefined. In
most life critical applications, one has to establish that software reliability is indeed high. Butler and Finelli [2]
classify software systems with respect to their reliability into three types.  These are

•  Ultrahigh reliability: < 10-7 failures/hour,

•  Moderate reliability: 10-3 – 10-7 failures/hour,

•  Low reliability: > 10-3 failures/hour.

Unlike hardware, where reliability is associated with physical faults and aging of materials, the leading cause of
software unreliability are design faults introduced throughout the development and maintenance life cycle, starting
with the requirements documents.  In the reliability certification phase, we consider software system as an entity,
subjecting it to inputs and observing the outputs.  In each execution, the system either produces a correct or an
incorrect result. This may be viewed as a stochastic process, where software executions result in failures in a
stochastic manner [2].

In principle, software reliability can be quantified through program verification or statistical testing. The
requirements specification for DOLILU system is written in English and no attempt has been made to formalize it
with any form of mathematical notation. The size and the complexity of the specification documents make formal
program verification virtually impossible at this point in time. Therefore, the reliability assessment of DOLILU
system is to be obtained from program testing.

Traditionally, software creation involves a development life-cycle, where the software is created, then sufficiently
tested. When a failure is observed, the fault causing it is fixed and the software is tested again. This forms the basis
for Reliability Growth Models (RGM).  The goal for these models is to fit mathematical functions through the inter-
failure time observations and predict the post-testing reliability of the final version of the software.  There are
numerous RGMs, the reader may refer to [11] for a concise description of some of them1.

There are several problems in potential application of reliability growth models in the assessment of DOLILU II.
When considering RGMs, the mean time between failures needs to increase and, consequently, the failure
probability decreases as more and more faults are fixed.  However, one should ask what should be an acceptable
time frame before the model can achieve ultrahigh reliability?  Keiller and Miller [5] observe that the necessary time
is prohibitively long. Another problem arises when the software itself doesn’t exhibit failures in system level
(acceptance) testing. This is not rare for safety-critical software, and, indeed, is the case with testing of DOLILU II.
How could one fit an interfailure time distribution with no observed failures during acceptance testing?  Therefore,
instead of RGMs the applicable models of software reliability assessment are input domain models, such as the
sampling model [1].  Repeated failure-free execution of the program provides a certain level of confidence that the
required reliability level has been successfully achieved.  The practicality of the sampling model has been
questioned, due to the very large number of required tests.  Nevertheless, in the case of DOLILU II, we demonstrate
that test requirements are realistically achievable.

Interestingly, prior to our reliability assessment effort, DOLILU II system has been in operational use by NASA
for several years. This fact distinguishes our study from most other reported case studies in software reliability
engineering.  Rigorous quality assurance procedures, described in [12], had been performed prior to the deployment
of DOLILU. These include fault based testing, stress testing, and several other white-box testing techniques. No

                                                
1 Detection of a failure and identification of its cause, the fault, is usually far from trivial.  Most reliability growth models assume
that faults are successfully identified and removed.



assumptions were drawn concerning the distribution of the remaining faults in the program, since any such
prediction would have been very difficult to justify.  One of our long-term goals is to build the theory allowing the
incorporation of various verification and validation techniques into the reliability prediction.

The central question investigated in this report is the estimation of the amount of testing, represented by the
number of statistically independent test cases, needed to establish with sufficient confidence that the required
reliability level is achieved. We start the rest of the report by briefly describing the features of the application that
prompted this study, DOLILU II.  Section 3 defines the strengths and weaknesses of the sampling model and
provides an estimate on the number of tests needed for reliability assessment of DOLILU II.  Section 4 introduces
Bayesian statistics framework for reliability assessment, which allows counting of failure free system executions
during its operational usage as tests for the purpose of reliability assessment.  Section 5 expands the Bayesian
framework by allowing non-ignorance prior assumptions, allowing for the inclusion of the evidence that reflects
extensive verification and validation activities performed during system development.  Summary and brief
description of our current and future research efforts are given in Section 6.

2. Description of DOLILU System
The DOLILU II system diagram is shown in Figure 1. In order to increase fault detection capabilities, DOLILU II
system consists of two independently developed computational lanes (Primary and Secondary System).  Guidance
commands are considered valid only if the outputs of both computational lanes are the same.  For the purpose of this
study, we are interested in the reliability assessment of the primary system.

The DOLILU II system functions as follows. When provided with the wind and atmospheric data, the executive
module invokes the Day-of-Launch Ascent Design System (DADS). DADS module generates guidance commands
for the day of launch condition. Guidance commands are passed to the Space Vehicle Dynamic Simulation (SVDS)
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Processor. It generates trajectories for reference winds and atmospheric conditions. Only successfully simulated
trajectories are forwarded to the verification module.

Near real-time verification is the most critical function of the DOLILU II system. Successfully simulated
trajectories and their corresponding I-Loads are verified for conformance with safety related rules, called envelopes.
The envelopes have been derived from previous experience (experience envelopes), and known system constraints
(system envelopes). If any of the system constraint rules is violated, the violation must be reported and the trajectory
must be dismissed. The Day of Launch I-Load Verification Table (DIVDT) Processor performs trajectory
verification, and it should detect all potentially unsafe flight conditions [13].  Therefore, the reliability quantification
of the DIVDT processor is highly desirable. Since it verifies the outputs of all the other modules of DOLILU II
system, our study in limited to the testing of DIVDT processor.

3. Assessment of reliability: The random sampling model
Dynamic testing is a conventional method of program checking. A program under test is executed with different

combinations of input data, and the results are compared with the expected values. The outcome of testing is used to
predict the reliability of the program.  Note, however, that software reliability depends on the software quality as
well as on its operational usage.  Since testing cannot guarantee the absence of faults, exposing the program to the
operations anticipated to be the most frequently used should catch the failures that are the most likely to appear in
field use. It is assumed that these failures, if detected, are the ones that count the most to the user. The quantitative
approximation of the system's field use is called the operational profile [10].

A sound foundation for reliability assessment in the input domain is provided by statistical sampling theory [1].
Practical drawbacks of the sampling model of software reliability assessment are the following:

1. A large number of test cases is required,

2. Reliability estimation depends upon the ability to closely approximate/predict the operational profile of the field
use, and

3. The existence of a test oracle is assumed.

Our discussions with NASA IV&V (Independent Verification and Validation) personnel revealed that DOLILU II
system requires demonstration of failure probability to be under 10-4. Due to the criticality of the program, required
confidence level should surpass 0.99.  In other words, reliability assessment process needs to provide evidence that
there will be less than one in a hundred chance of encountering a system failure in ten thousand executions.  The
state of the practice in software reliability engineering states that these reliability levels are practically achievable [2,
6].

Let θ0 denote the required probability of failure for the given program, and let C represent the confidence level
that is.  Since the system in its present usage requires a demonstration of failure probability of under 10-4, this can be
denoted as

.)|10( 4 CTestDataP ≥< −θ          (3.1)

The remaining question is how much testing needs to be done to satisfy these reliability requirements.  In case of
the sampling model, assuming statistical independence of test cases and failure free executions, the number of tests
U can be calculated from the following expression [9]:
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Substituting in (3.2) the values specific for the assessment of DOLILU II, we get
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Tables 1 and 2 provide a better insight into the required number of test cases as a function of reliability
requirements. Table 1 indicates that an order of magnitude increase in required reliability causes an order of
magnitude increase in the number of tests. The confidence level in Table 1 is constant, set to C=0.99.

            Value of  θ0 Number of Test cases
10-2 458
10-3 4,602
10-4 46,048
10-5 460,514
10-6 4,605,167

Table 1: Number of test cases as a function of required failure rate, with C=0.99

In Table 2, the required failure rate of the program is set to a constant, θ0 =10-4, while the confidence level varies
between 0.92 and 0.999.

          Value of C Number of Test Cases
0.92 25,255
0.94 28,132
0.96 32,187
0.98 39,118
0.99 46,048
0.999 69,074

Table 2: Number of test cases as a function of required confidence level C, with θθθθ0 = 10-4

In case of DOLILU II system, while very expensive, the amount of testing defined above is not prohibitive.  But, the
sampling approach does not take into account successful use of the deployed system.  This can be addressed in the
Bayesian approach, described below.

4. Bayesian approach with ignorance priors

The cornerstone of Bayesian inference is the notion of subjective probability. Such a notion contrasts with the
well-perceived notion of frequency for probability estimation. The axiom of probability states that the probability of
a binary event has to be estimated by determining the success ratio.  To attest toward this empirical estimation, one
has to conduct trials in which the event occurs repetitively.

Subjective probability deals not only with the events but with propositions as well. A proposition is formulated
from a collection of events that contribute towards the estimation based on observed behavior, or the reflection of
one’s belief in the system. In statistical terms, we hypothesize that the event does occur with the estimated
probability. As evidence relevant to the hypothesis increases, we may change the degree of belief in the hypothesis.
Interestingly, some argue that subjective probabilities assigned to a particular hypothesis may indeed be quite
individualistic [8]. In other words, the probabilities assigned by different individuals would reflect different beliefs
yielding different results. Bayesian inference theory circumvents this in the posterior analysis where our degree of
belief changes with the observations made. However, egregious probability assumptions are not permissible.

Bayesian approach to software reliability prediction, described by Miller, et. al. [9] and Littlewood [8], forms an
effective framework for the quantification of software quality. It allowed us to take into account failure-free
executions of DOLILU II system that were observed in its operational environment.  Due to its ability to take into
account prior information, the Bayesian reliability assessment framework allowed reduction in the number of
required test cases for reliability reassessment, when compared with the number of test cases inferred from the
statistical sampling theory, for the same reliability goal.

Choice of the distribution that can accurately reflect prior beliefs is very important. In our study, we chose beta
distribution [4, 8]. There are two primary reasons for choosing this distribution.



•  By proper choice of the parameters, it is possible to depict any type of distribution that may be exhibited by the
system.

•  Beta distributions form a conjugate family. The conjugate family has the property that both the prior and
posterior distributions will be members of the same parametric family of distributions.  Intuitively, this
represents a kind of homogeneity in the way in which our beliefs are represented, and how they change as we
receive extra information [7].

Within the Bayesian framework prior knowledge about the parameter of interest, here the probability of failure on
demand denoted as θ, is represented by the prior distribution. The probability density function f(θ)  is

f
B p q

p q
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θ
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     (4.4)

where B(p,q) is the complete beta function with p>0, q>0. Parameters p and q can be adjusted to reflect prior beliefs
about the reliability of software under test. The assumption of ignorance prior implies that measured failure rate θ is
uniformly distributed within the range [0.0, 1.0].  Setting the values of p and q to the constant 1 (p=q=1), reflects
ignorance prior [4]. Thus, a rectangular function represents the distribution of θ (θ can assume any value between
0.0 and 1.0 with equal probability), as shown by the following formula
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A practical way to incorporate prior information (gathered through software inspection, for example [9]) into
Bayesian reliability estimation is through the assumption that given information corresponds to a certain number or
successfully executed random tests. In general, any prior assumption that is based on justifiable prediction of a mean
and a variance for θ can be converted into values of parameters p and q, as will be discussed later.

The posterior distribution can be formed after the results of software tests become known.  If the system has
executed n demands encountering r failures, the posterior distribution f(θ) is
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Assuming the ignorance prior (p=q=1),
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If during system testing U statistically independent demands are executed without encountering a failure then
n=U  and  r=0.  Consequently,

f U
B U

U

( | , , , )
( )
( , )

θ
θ

0 11
1
11

=
−

+
.        (4.8)

B(1,1+U) is the complete beta function. The generalized form is
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Therefore, B(1,1+U) is given by
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From the reliability assessment point of view, we are interested in bounding the system failure rate θ  to the interval
between 0 and  θ0 , where θ0  denotes the known (required) upper bound of the probability of failure the system
under test may exhibit in the operational environment.  The probability that the real failure rate, θ, is lower than the
required probability of failure θ0, Prob(θ<θ0), is the cumulative density function given by
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When the specified confidence level C needs to be demonstrated,
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With some substitutions, the following relation must hold:
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Substituting for f(θ|U,0,1,1) from equation (4.8),
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By combining equations (4.10) and (4.14), and integrating the Beta function, we get
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When the above equation is solved for U as an equality, the result has the following form
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When boundary conditions are included,
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0 )1(1 θ .        (4.17)

The total number of test cases, required to say with confidence C that the reliability requirement p0 is satisfied, is

1
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It comes as no surprise that Equations (3.2) and (4.18) are effectively the same. Clearly, since p=q=1 provides no



prior knowledge they do not influence the interpretation of the test results. Hence, both the sampling model and
Bayesian theory require the same number of cases in the absence of prior knowledge about the failure rates.  But the
reason for introducing Bayesian statistics is to allow incorporating assumptions gathered through the application of
extensive verification and validation activities and the successful runs of the deployed system.

Let us first consider incorporating the successful runs of the deployed system.  The easiest way to allow this is by
setting parameters p and q to appropriate values, reflecting the observations from the fielded system.  Assuming the
system has been executed T0 times with no failures observed, as recommended in [9], parameter p can be set to 1, q
can be set to T0.    These values of p and q are approximations.  Nevertheless, they provide a simple and intuitively
correct estimate of the observed system behavior.  The corresponding posterior density function is
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Hence, the corresponding complete Beta function is
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After substitution in (4.14) and simplification, the number of failure free test runs U needed to achieve confidence
level C in software reliability, upon execution of T0 successful trials, is given by the following expression:
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In addition to executions of the deployed system, the acceptance tests chosen randomly according to the
operational profile of system usage are counted in T0.  However, hand-crafted stress tests, for example, do not satisfy
the statistical independence criterion, and cannot be included in this reliability estimation framework. In essence, the
strength of the prior evidence in reliability of software may reduce the testing effort, proportional to the number of
statistically independent system tests already performed and field executions completed.   DOLILU II system
usually undergoes about a hundred executions per year.  Having in mind the number of reliability tests indicated in
Tables 1 and 2, the amount of extra testing needed to ensure compliance with the reliability requirement is not
significantly reduced.  Thus, the next step is to look at utilization of Bayesian approach when prior knowledge about
software quality includes more than just ignorance.

5. Bayesian assessment using non-ignorance priors
Now we shall introduce the non-ignorance prior belief into the Bayesian framework.  In case of DOLILU II,

several main reasons encourage non-ignorance priors:

� The software has been in use for over five years. As already discussed, several methodologies, including partial
correctness proofs, inspection, code walk-troughs, etc., were performed during the development life cycle.
Rigorous development process was followed, including an independent contractor performing independent
verification and validation activities.

� If only the successful executions of the deployed system are included in reliability assessment, the number of
additional tests remains in the order of tens of thousands.

Considering the above factors, inclusion of the results of “qualitative” V&V activities is desirable.  However,
quantifying their effects on system reliability is difficult.   Smidts at al. discuss techniques for including process
information in reliability assessment in [15].  For the reason of space limitation, the attention in the remainder of this
paper is limited towards derivation of a probabilistic framework that accepts prior distributions reflecting the
application of V&V activities.  Exactly how to derive meaningful prior beliefs from qualitative V&V activities is
subject to substantial further research. In general, qualitative V&V activities should inspire belief in the mean value
of system failure probability, θ, and its variance. These are represented in the Bayesian framework through the
values of parameters p and q of a Beta distribution.  Having µ, representing the guess of the mean value of system



failure probability and σ2, its variance the appropriate values of p and q are calculated as follows.  Since
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Now, the complete beta function assumes the following form:
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Repeated integration by parts and simplification yilds
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Taking n=U, and r=0 (no failures observed), equation 4.6 can be rewritten as
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Consequently, when confidence level C is taken into consideration,
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The following equation needs to be solved for U:
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Integrating equation (5.29) by parts, following some simplifications, we get
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The above equation can be solved for U using one of the standard tools, such as MatCad or Mathematica.
Depending on the values of variables, the number of tests U needed to ascertain required reliability levels can be
obtained.   Depending on the rigor of the applied V&V techniques, reflected in (hopefully reasonable) assumptions
on µ  and σ2, the number of additional tests required for system reliability assessment can be several orders of
magnitudes less than in case of the ignorance prior.  Table 2 shows the number of tests needed for corroborating
software reliability levels assumed in the leftmost column.

In case of the reassessment of DOLILU II, we assumed that rigorous V&V techniques were responsible for
already achieving the required reliability of less than 10-4 failures per execution.  With this assumption,
corroboration of the required software reliability was achieved by running approximately 2600 statistically
independent new tests.

5.1 Bayesian reliability estimation with failure occurrences during testing
The fact that during acceptance testing and field use of DOLILU II failures were not observed makes this system

an exception rather than the rule.  In general, when failures are observed in reliability testing, assuming their root
causes are successfully corrected, the question remains how many future test cases need to be performed.  Bayesian
reliability assessment framework can be easily extended to handle this situation.  Let us assume that a failure
occurred after the execution of s demands.  The posterior for θ immediately following the failure on the sth  demand
is
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This forms the prior distribution for θ for further testing that needs to be conducted following the removal of the
fault that caused the failure. We now need to compute U1, the total number of failure-free executions required for the
software to demonstrate required level of reliability following the occurrence of a failure.  Hence,

Assumed Value of  θ Number of Test cases
to corroborate θ

10-3 950
10-4 2678
10-5 9436
10-6 20,796
10-7 51,987

Table 2: Number of tests needed to
corroborate assumed failure rate θθθθ,
C=0.99
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Notice that this is simply the posterior distribution after seeing both (s-1) failure free executions followed by a
failure (on demand s), and then seeing U1 more further failure free demands. This posterior distribution will be the
same whenever the single failure occurred among s+U1 demands.  In other words, it depends only upon the total
number of demands, and the number of failures. Now we may compute U1 for which
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In general, if we observe r failures occurring at the s1
th, (s1+s2)th, …….,(s1+s2+s3+…..+sr)th demands, we should

require a further of Ur demands executed failure-free, such that
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Interested readers will find the solution of this equation and the discussion about its practical usage in [8].

6. Summary
We presented a framework for quantification of software reliability of NASA’s DOLILU II system.  The

quantification of reliability is based on the sampling model and Bayesian inference.  Since DOLILU II system has
been in operational use for several years, one of the important features of the reliability assessment methodology is
the ability to incorporate information on deployed system’s (failure free) performance.  Furthermore, the Bayesian
framework has been extended so that it can account for the use of “qualitative” verification and validation activities
performed during system’s development.

There are numerous venues for extending the results reported here.  Probably the most intriguing problem is the
development of a sound methodology for including the results of different verification and validation techniques,
and not just testing, into the software reliability prediction.  While this methodology per se does not make systems
more reliable than they already are, it provides a framework for quantification of otherwise quantitative software
assurance processes.  As concerns our effort to assess the reliability of DOLILU II, we are currently investigating
automated generation of a large number of test trajectories [14].  These trajectories represent weather conditions that
might realistically appear in the field, since the existing data is not sufficient for the number of tests needed in
reliability assessment.  Another important open research issue is the availability of testing oracles for DOLILU II,
currently also under development.
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