THE IMPACT OF SOFTWARE ON THE CURRENT STRUCTURE OF PRA

Prepared by Carol Smidts, Bin Li, Ming Li

Under NASA grant “Integrating Software Into Probabilistic Risk Assessment”

DRAFT

This report is the first report for the project of “Integrating Software into Probabilistic Risk Assessment”.

1. Project Background, Objectives and Benefits

Probabilistic risk assessment (PRA) is a technique to assess the probability of failure or success of a system. Current PRA mostly focuses on risk from hardware failures and neglects the contributions of software to the risk of mission failures. This is due to a lack of techniques necessary for the systematic integration of software in PRA. The objective of this research is to develop such techniques and to prove the conceptual validity of the methodology on a specific subsystem of the Space Station PRA [7][10][15].

The research will contribute to the evaluation of risks to NASA missions and more specifically it will contribute to the understanding of the impact of software on mission success. It will also quantitatively point to the software sub-systems or modules that contribute most to safety and need to be developed with the greatest care. It will help increase software safety by an active consideration of the contexts within which software can be used. It will allow better appraisal of software development issues since software development data may be used in the quantification process. This return of experience may help in developing procedures to enhance software development activities.

2. Scope of the Report

Probabilistic Risk Assessment usually answers four basic questions:

1. What can go wrong, or what are the initiators or initiating events (undesirable starting events) that lead to adverse consequence(s)?

2. What and how severe are the potential adverse consequences that the technological entity and the extended environment on the crew may be eventually subjected to as a result of the occurrence of the initiator?

3. How likely to occur are these undesirable consequences, or what are their probabilities or frequencies?

4. How confident are we about our answers to the above questions?

The current study is focused on answering the first PRA question (What can go wrong: risk identification) by identifying in what manner software may contribute to the evolution of accidents in the system. We focus on the role of software in the system and in the accidents, the interaction of software with other components of the system (human, hardware and other software) and the influence of environmental factors, as well as on the role of these interactions in accidents.

Most accidents arise in their interfaces and interactions among components of the system due to the fact that system behavior and characteristics are not only determined by a system’s components but also by the interactions between components. Systems can be thought as a set of interacting components which together purport to achieve a set of functions.

The interactions presented in a system include interactions between software and humans, software and hardware, software and software, hardware and hardware, humans and hardware, humans and humans, environment and the system.

Here we will focus on the software itself, software and human interaction, software and hardware interaction (sensor and controlling system (software), controlling system and controlled system (hardware)) and the environment. We present the possible failure modes of interactions and environmental factors, as well as some possible failure scenarios involving software.

3. General Considerations on Failure Modes

Failure modes are the observable ways in which a system, a component, an operator, a software or a process can fail.

The failure mode description should include the operational and environmental conditions present when the failure occurs because these conditions will determine the frequency of the failure mode.

Failure modes can be identified using a component-based approach (i.e., basing the identification of failure modes on the composition of the system into its constituent parts) or using a function-based approach. In the function-based approach the failure of the system function is assumed to be the result of failures of lower level functions.

Failure modes in this study will be divided into:

a. Software execution failure modes, i.e. failure modes due to an aberration in the behavior of the software itself due to incorrect implementation of the requirements, etc;

b. Software interaction failure modes, i.e. failure modes that originate from the fact that the software interfaces with other sub-systems such as other hardware, other software, etc. These include input and output failure modes. The input failure modes are those out of bound values sent to the software that may drive correct software to provide incorrect outputs. The output failure modes are actually the set of out of bound software output behaviors that may propagate to the rest of the system.

4. Software Failure Modes

This section will review first existing software failure mode taxonomies. Secondly, we will describe the taxonomy selected for this study.

4.1 Existing Failure Mode Taxonomies

Chillarege, Kao and Condit [1] classified software failure modes (also termed defect types in their paper) into the following categories: function, interface, checking, assignment, timing/sterilization, build/package/merge, document, and algorithm. Function error affects significant capability, end-user interfaces, product interfaces, interface with hardware architecture, or global data structures and should require a formal design change; an assignment error affects a few lines of code, such as the initialization of control blocks or data structure; interface corresponds to errors in interacting with other components, modules or device drives via macros, call statements, modules or device drivers via macros, call statements, control blocks, or parameter lists; checking addresses program logic that has failed to properly validate data and value before they are used; timing/serialization errors are those that are corrected by improved management of shared and real-time resources; build/package/merge describe errors that occur due to mistakes in library systems, management of change, or version control; documentation errors can affect both publications and maintenance notes; algorithm errors include efficiency or correctness problems that affect the task and can be fixed by implementing an algorithm or local data structure without the need for requesting a design change.

Smidts et al [3] distinguished software failure modes as process (life-cycle) failure modes and product failure modes. Process failure modes are failures to carry the software development process steps correctly. Product failure modes are failures of the software itself.

Product failure modes include: 1) Omission of the function; 2) Incorrect realization of the function; 3) Function was implemented although it was not specified in the requirements; 4) Omission of one the attributes in function; 5) Incorrect realization of one of the attributes in a function; 6) Introduction of an attribute not specified in the requirements; 7) Omission of one of the functions in the set S; 8) Introduction of a function not in set S; 9) Replacement of a function in set S by another function.

Goddard [2] recently separated software failures into software element failure modes and software system level failure modes. He further divided software element failure modes into 1) Fails to execute, 2) Executes incompletely 3) Output incorrect, and 4) Incorrect timing- too early, too late, slow, etc. Likewise, the system level failure modes were classified into 1) Input value incorrect (logically complete set), 2) Output value corrupted

3) Blocked interrupt, 4) Incorrect interrupt return (priority, failure to return), 5) Priority errors, and 6) Resource conflict (logically complete set).

In Lyu’s study [4], software failure modes include incorrect specification, misunderstood specifications, algorithmic error, input data error, program logic error, etc.

The above efforts covered comprehensive aspects of software failure modes, however, none of them is systematic and consistent. For instance, Chillarege, Kao, and Condit mingled function, interface together with algorithm, which belongs to function. Smidts classifications are too process-oriented and abstract. An ideal classification needs to cover all spectrums of the failure modes, to be mutually exclusive, all categories need to be at the same abstract level. Inspired from these works, especially that of Smidts and Goddard, we propose our classification as follow:

4.2 Software Failure Mode Classification Used in this Study: Functional Failure Modes

The classification of failure modes used in this study will focus ONLY on product failure modes since these help understand the IMPACT software will have on the unfolding of accidents and it is those failure modes that directly impact the PRA structure.

Functional Failure Modes include internal software failures [3][8][9]. The failure modes are:

1) Omission of a function;

2) Incorrect realization of a function;

3) Function was implemented although it was not specified in the requirements;

4) Omission of one the attributes in function;

5) Incorrect realization of one of the attributes in a function;

6) Introduction of an attribute not specified in the requirements;

7) Omission of one of the functions in the set S;

8) Introduction of a function not in set S;

9) Replacement of a function in set S by another function.

Examples of actual failure events and their classification as a function of this taxonomy are given Table A.1. in Appendix A.

5. Interaction Failure Modes

In this section, we will first examine the set of generic input and output failure modes. Each type of interaction of software with other sub-systems will then be briefly described. In particular, the discussion will highlight special cases which do not directly fit the generic input/output failure mode scheme.

5.1 Generic Interaction Failure Modes [5][11][16]
5.1.1 Input Failure Modes

Input failure modes are related to amount, load, value, time, rate, duration, range.

Amount:
Too much(omission, repetition (keyboard buffer overflow)

Too little (insufficient inputs)

Load:
Overload (response to excessive inputs) (load limit, preemption (Denial of Service, network jam)

Value:

Wrong value

Time:
Premature (too early) (lower bound (an action started too early, before a signal was given or a required condition had been established.)

Delay (too late) (upper bound

Omission (an action that was not done at all within the time interval allowed)

Rate:
Too fast (action performed too quickly, with too much speed or finished too early.)

Too slow (action performed too slowly, with too little speed or finished too late.)

Duration:
Too long (an action that continued beyond the point at which it should have stopped.)

Too short (an action that was stopped before it should have been.)

Range:

Out of range (beyond the limits of the inputs.)

There exists some overlap between the input failure modes. For instance, that which is performed too fast will most likely be of too short a duration. The choice of one failure mode (rate) or the other (duration) depends on whether it is the rate of the execution or the time at which the action ends that matters.

5.1.2 Output Failure Modes

Output failure modes are related to amount, load, value, time, rate, range, duration.

Amount:
Too much(omission, repetition

Too little (insufficient outputs)

Load:
Overload (response to excessive outputs) (load limit, preemption (network jam)

Value:

Wrong value

Time:
Premature (too early) (lower bound (an action started too early, before a signal was given or a required condition had been established.)

Delay (too late) (upper bound

Omission (an action that was not done at all within the time interval allowed)

Rate:
Too fast (action performed too quickly, with too much speed or finished too early.)

Too slow (action performed too slowly, with too little speed or finished too late.)

Duration:
Too long (an action that continued beyond the point at which it should have stopped.)

Too short (an action that was stopped before it should have been.)

Range:

Out of range (beyond the limits of the series.)

Examples of actual failure events and their classification as generic interaction of this taxonomy are given Table A.1. in Appendix A.

5.2 Specific Types of Software Interactions with Other Sub-systems

5.2.1 Human-Software Interaction

The process of human and software interaction can be described as follows: A human being inputs the information (data or control information) into the computer (the software interface). Software runs using the input information and produces an output.

The interaction is such that the input and output failure modes described in section 5.1 apply.

In the human-software interaction, “input” means the human input information into the software (normally through the software input interface). Input information includes data and commands needed for software to execute. The input failure modes are related to the input information, the input process and the software input interface. “Outputs” are the software outputs (produced through the software output interface) displayed to the human operator. The output information includes data, recommended activities, warnings (alarms), etc.

[image: image1.wmf]Human

End-State

Software/

Computer

Figure 1. Undeveloped ESD

[image: image2.wmf]Human

 Input

Incorrect

Software

Output

Incorrect

Software/

Computer

Failure

No

Failure

Yes

Success

No

Software

Output

Incorrect

Yes

Failure

Yes

Success

No

No

Yes

Software/

Computer

Failure

Yes

No

Software

Ouput

Incorrect

Yes

No

Success

Failure

Software

Ouput

Incorrect

Yes

No

Failure

Success

Figure 2. Developed ESD for Figure 1

[image: image3.wmf]Human

Input

Incorrect

Duration

Range

Rate

Time

Value

Load

Amount

Figure 3. Fault tree for “Human Input Incorrect”

[image: image4.wmf]Failure related to Amount

Failure related to Range

Failure related to Duration

Failure reltated to Rate

Failure related to Time

Failure related to Load

Failure related to Value

OR

Figure 4. ESD for “Software Output Incorrect”

[image: image5.wmf]Software/

Computer Failure

Interaction with

Computer

Internal Software

Failure

Computer

Power

CPU

Memory

I/O

Network

Input

device

Disk

Tape

Controller

Interaction with

other softwares

Input from

Other

Software is

Incorrect

Controller

Display

Printer

Others

Driver

Tape

Driver

Disk

Sharing

Source

Failure

Figure 5. Fault tree for “Software Processing Incorrect”

Figure 1 corresponds to an ESD where Human/Software Interaction is present. Figures 2,3,4 and 5 are developed versions of the ESD and of its contributors. Figure 5 divides the top event “Software Processing Incorrect” into Internal Software Failure, a sub-tree characterizing the failures of the interaction with other software and a sub-tree characterizing the failure of the computer supporting the computation. Possible reasons for computer failure are: power, CPU, memory, I/O failures. The I/O failures may be the failures of printer, input devices, display, network, disk and tapes failures. Disk (tape) can be further divided into disk (tape) failure, driver failure, controller failure. The sub-tree for the failure of the interaction with other software divides the failure contributions into sharing of resources failure and input failure.

For examples, the reader should refer to Table A.1. in Appendix A.

5.2.2 Software-Hardware Interaction

The process of software and hardware interaction can be described as follows: the software obtains the input information from the hardware (typically sensors) and produces an output for other hardware (the controlled devices).

The interaction is such that the input and output failure modes described in section 5.1 apply.

In the context of a software-hardware interaction, the “input” refers to the hardware input information read into the software (normally through the software input interface). The input information is constituted of electronic signals. The failure modes are related to the nature of the input information and to the input process. “Outputs” are the software outputs to controlled devices or systems. The output information is generally formed of electrical signals. The output failure modes are related to the output information and the output process.

For examples, the reader should refer to Table A.1. in Appendix A.

5.2.3 Environment – Computer Interaction

The external environment is known to directly impact the hardware platform on which the software runs, i.e., the computer, and causes degradation, malfunction or permanent damage. The abnormal operation of the hardware platform may cause failures of the software.

Environment-Computer Interactions can be of two types. Either the environment has an instantaneous impact on the computer hardware and destroys the hardware immediately (such as in the case of a meteorite or a fire) or the impact of the environment is subtle and leads to a progressive degradation. In the first case, the environmental event is typically modeled as an initiator in the accident scenario. In the second case, the environmental factor influences the device’s failure rate. For instance, the failure rate of the hard disk might change because of a higher temperature. This influence can be represented by (T), in which the failure rate is a function of temperature T, and is not explicitly represented in the accident scenario.

The following are some of the environmental factors that may affect the hardware platform:

Interference with electronic or other signals (such as radio transmissions signals or telephone transmissions signals, lighting, radiation, sunspot activity, etc.)

Barometric pressure

Low gravity

Fires

Floods

Snow

Temperature

Air conditioning

Saline atmosphere

Humidity

Etc.

For examples, the reader should refer to Table A.1. in Appendix A.

5.2.4 Software-Computer Interaction [12][13]

We have seen in the previous paragraph that the computer hardware can affect the proper execution of the software. In the same way, the software may degrade the functioning of the computer.

5.2.4.1 Computer hardware-caused software failure

Here computer hardware means CPU, memory and I/O. The sub-tree for the failure of the interaction between computer hardware and software (where the computer hardware hinders the software functioning) is shown in Figure 5.

CPU failures may lead to degraded functionality or even loss of function. Memory problems include failures due to resource competition, resource shortage, or unavailability of resources. I/O failures include failures of the printer, the input devices, display, network, disk, tapes or other devices. [14]

CPU failure leads to:

Corrupted function, for instance, a (10 (1010B) becomes a (2 (0010B).

Degraded function (such as slow down), for instance, frequency slow down

Loss of function (reboot

Damaged Memory Sectors lead to:

Unavailability of Resources

Shortage of Resources

Competition for resources

Printer, Input Devices, Display, Network, Disk, Tape and Others failures lead to:

Input/Output failures as described in section 5.1.

For examples, the reader should refer to Table A.1. in Appendix A.

5.2.4.2 Software-caused computer hardware failure

Software may lead to permanent or transient computer hardware damage or failure, such as overheating. For instance, the error in a CPU fan control logic might lead to the CPU overheating.

For examples, the reader should refer to Table A.1. in Appendix A.

5.2.5 Software-Software Interaction [13]

The system studied is composed of different categories of software. The term “software” includes both system software (i.e. operating system) and application software (i.e. control system software).

These two software systems interact. For instance, an application software failure may cause the operating system to die. When the operating system dies, the computer crashes and all application software are prevented from performing their functions.

The following are possible interactions between software systems:

Sharing of a resource: the two software systems share Time in CPU and Space in memory.

Input and output: One software output can be the input to the other software.

The input/output failure modes were discussed in section 5.1.

The “Sharing of a resource” failure modes are discussed below.

The following are the possible “sharing of a resource” failure modes:

Resource Unavailable

Shortage of Resources

Competition

Deadlock (deadlock happens only when at least two resources are shared by at least two components)

Synchronization (Different software working together use the different CPUs.)

For examples, the reader should refer to Table A.1. in Appendix A.

6. Software Role in Failure Scenarios [15]

Failure scenarios (also called accident scenarios) describe the unfolding of events leading to a catastrophic outcome. Failure scenarios are composed of three different classes of events: initiating events (i.e. the discrete event/phenomenon which initiates the accident scenario); intermediate events (i.e. intermediate states in an accident progression) and end-states (i.e. the final states of the accident progression, such as Loss of Vehicle and Loss of Crew).

Current initiating events, intermediate events and end states found in space mission PRAs can be classified at a high level into Hardware, Human and Environmental events. Appendix C and D respectively provide a classification of initiating events and end-states for the current Space Station PRA.

The question is to know which roles software can play in the PRA framework.

Software as an Initiating Event – Browsing through the list of examples in Appendix A, one can clearly identify occurrences where software plays the role of initiator of an accident scenario. For instance, example 20 in Appendix A was initiated by an event in which too many applications ran out the system’s hard disk, which in turn hindered the normal function of this tax system. The end states of this accident might be “Loss of service”, and “Loss of data”.

Software as an Intermediate Event – Similarly, one also finds examples where software plays the role of an intermediate event. For instance, the software failure in example 1 in Appendix A is a case of intermediate event. The initiating event in this accident is “Scud missile attack”. The failure of the tracking software led to the end state of “Loss of life”.

Software as an End State – As for the possibility of software being an end state, the evidence is not as clear. End states typically designate events we care about such as loss of life or loss of equipment of major value to society such as a Space Station or a Space Shuttle. But in the case of a scientific mission, such as a mission specifically designed to capture data on a meteorite, a star, etc, the element of value is the information and since information/data are part of the software (see definitions in the glossary) and one can conceive that loss of data (loss of database) becomes an end state.

For examples, the reader should refer to Appendix A.

7. Failure Scenarios Examples

Different failure scenarios involving software exist. Some of the possible scenario signatures are displayed below. In the first two scenarios, software is the initiator of the accident scenarios. Software is the intermediate event or participates to an intermediate event in the second and third scenario.

[image: image6.wmf]Hardware

Software/

Computer

Human

Hardware

End State

Software/

Computer

Software/

Computer

Human

End State

[image: image7.wmf]Hardware

Hardware

End State

Software/

Computer

8. Conclusions

The following report examined the consequence of integrating software into the PRA framework. In particular, we identified software failure modes as well as the failure modes of the interaction between software and other elements of the system. We also discovered that software could play the role of initiating event, intermediate event and end state in the accident scenarios. We identified the type of sequences that could arise. Future work will determine how to perform software failure mode and interaction failure mode modeling and quantification.

Reference:

[1] R. Chillarege, W . L. Kao, R.G.Condit, “Orthogonal Defect Classification- A Concept for In-Process Measurements”, IEEE Transactions on Software Engineering, Vol. SE-18, Nov., 1992, pp943-956.

[2] P. L. Goddard, “Software FMEA Techniques”, Annual Reliability and Maintainability Symposium, 2000. pp118-123.

[3] C. Smidts, M. Stutzke, R. W. Stoddard, “ Software Reliability Modeling: An Approach to Early Reliability Prediction”, IEEE Transactions on Reliability, Vol.47, No. 3, 1998, Sept. pp268-278.

[4] M. R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill, 1993.

[5] N.G. Leveson, Safeware: System Safety and Computers, Addison-Wesley Publishing company, 1995.

[6] P. G. Neumann, Computer Related Risks, The ACM press, 1995.

[7] R. R. Lutz, H. Y. Shaw, “Applying Adaptive Safety Analysis Techniques”, Proceedings 10th International Symposium On Software Reliability Engineering, 1999, pp42-49.

[8] R. R. Lutz, “Targeting Safety-Rated Errors During Software Requirements Analysis”, ACM SIGSOFT Symposium on Foundations of Software Engineering, Vol.18, No.5, 1993. pp 99-106.

[9] R. R. Lutz, “Analyzing Software Requirements Errors in Safety-Critical Embedded Systems”, Proceedings of IEEE International Symposium on Requirements Engineering, pp126-133, 1992.

[10] A. T. Lee and T. R. Gunn, “A quantitative risk Assessment Method for Space Flight Software Systems”, Proceedings 4th International Symposium On Software Reliability Engineering, 1993. pp246-252.

[11] E. Hollnagel, Cognitive Reliability and Error Analysis Method, Elsevier Science Ltd, 1998.

[12] D. Tang and R. K.Iyer, Dependability Measurement and Modeling of A Multicomputer System, IEEE Transactions on Computers, Vol.42, No.1, January, 1993.P62.

[13] M.S.Sullivan and R.Chillarege, “A Comparison of Software Defects in Database Management Systems and Operating Systems”, Proc. 22nd Int. Symp. Fault-Tolerant Computing, pp475-484, July 1992.

[14] R. K. Iyer and P. Velardi, “Hardware-Related Software Errors: Measurement and Analysis”, IEEE Transactions on Software Engineering, Vol. SE-11, No. 2, pp223-231, June, 1985.

[15] C. Smith, “International Space Station Probabilistic Risk Assessment”, presented at the Reliability Engineering Seminar Series, University of Maryland, College Park, March 2001.

[16] Z. B. Tan, “Methodology for analyzing reliability of X-ware Systems”, Ph.D thesis, Reliability Engineer Program, University of Maryland, College Park, 2001.

Appendix A

Examples

1. Patriot Missile Misses, 1991.

http://coverage.cnet.com/Content/Features/Dlife/Bugs/ss05.html

The U.S. Patriot missile's battery was designed to head off Iraqi Scuds during the Gulf War. But the system also failed to track several incoming Scud missiles, including one that killed 28 U.S. soldiers in a barracks in Dhahran, Saudi Arabia. The problem stemmed from a software error that put the tracking system off by 0.34 of a second. As Ivars Peterson states in Fatal Defect, the system was originally supposed to be operated for only 14 hours at a time. In the Dhahran attack, the missile battery had been on for 100 hours. This meant that the errors in the system's clock accumulated to the point that the tracking system no longer functioned. The reason for this accident is an incomplete requirement.

2. Gemimi V Lands 100 Miles Off Course.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995.P27.

The accident was caused by the wrong design because the programmer used a wrong equation of motion while looking for a short-cut. The intended calculation was to compute the earth reference point relative to the sun as a fixed point, using the elapsed time since launch. The programmer forgot that the earth dose not come back to the same point relative to sun 24 hours later, so that the error cumulatively increased each day.) The reason for this accident is a wrong design.

3. Mariner 1 Venus Probe Loses its Way: 1962.

http://coverage.cnet.com/Content/Features/Dlife/Bugs/ss05.html

A probe launched from Cape Canaveral was set to go to Venus. After takeoff, the unmanned rocket carrying the probe went off course, and NASA had to blow up the rocket to avoid endangering lives on earth. NASA later attributed the error to a faulty line of Fortran code. A hyphen had been dropped. It was called the most expensive hyphen in history because the vehicle cost more than $80 million. The reason of this accident is coding errors.

4. AT&T Long Distance Service Failures

Peter G. Neumann, “Computer related risks”, The ACM press, 1995.P38.

AT&T long distance service failures in 1990 also was due to a single faulty line of code (Coding error).

5. F-16

Peter G. Neumann, “Computer related risks”, The ACM press, 1995.P38.

In a simulation, an F-16 program bug caused the virtual plane to flip over when ever it crossed the equator, as the result of a missing minus sign to indicate south latitude.

6. Therac-25

Nancy G. Leveson, “Safeware: system safety and computers”, Addison-Wesley Publishing company, 1995.p452
When the Terac-25 system was first built, operators complained there were too much treatment parameters to enter.

7. Chemical Plant Accident in Britain

Kletz, T. Wise After the Event, Control and Instrumentation, Vol20, No.10, October 1988, pp57-59.

At one chemical plant in Britain, a computer printed a long list of alarms when a power failure occurred. The design team had assumed that in such a situation the operator would immediately trip the plant. Instead, the operator watched the computer print the list of alarms and wondered what to do. The operator should not bear the responsibility alone here; if any person is overloaded with too much information, they are most likely to do nothing while they try to understand the situation.

8. Therac-25
Nancy G. Leveson, “Safeware: system safety and computers”, Addison-Wesley Publishing company, 1995.
Therac-25. one message- Malfunction 54- meant that the dosage was either too low or too high, without providing the information to the operator about which had occurred.

9. Three Mile Island.
Nancy G. Leveson, “Safeware: system safety and computers”, Addison-Wesley Publishing company, 1995. P609.

One reason of Three Mile Island, The operators were faced with over 100 alarms within 10 seconds of the first one. They were totally overloaded and did not know what to do.

10. Ark Royal Accidents.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995. P37.

On April 21, 1992. A Royal Air Force pilot accidentally dropped a practice bomb on the flight deck of the aircraft carrier, the ARK Royal. The cause was attributed to a timing delay in the software intended to target an object at a parametrically specified offset from the tracked object, namely the carrier.
11. Lufthansa Airbus A320 Crash.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995. P46.

The reason is a delay after the pilot attempted to actuate the spoilers and reverse thrust due to supposedly protective overrides in the safety system.

12. Gripen Crash.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995. P36,

The accident was due to a software bug and the plane itself responded too slowly to the pilot’s controls.

13. Computer Interpreted The Sensor Incorrectly.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995.

Shuttle Discovery multiple launch delays.

On April 5, 1993, launching Discovery was aborted 11 seconds before liftoff. Early indications had pointed to failure of a valve in the main propulsion system. Subsequent analysis indicated that the valve was operating properly, but the computer system interpreted the sensor incorrectly-indicating that the valve had not closed.

14. London Ambulance 1992.

Nancy G. Leveson, “Safeware: system safety and computers”, Addison-Wesley Publishing company, 1995.p30

The accidents happened when a computer that was dispatching emergency ambulance services stopped working because it could not handle the number of calls it received.

15. The Challenger Disaster.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995.P23.

The destruction was attributed to the poor design of the booster rockets as well as the cold weather conditions. The O-rings could not function properly in cold weather.

16. Shuttle Columbia Return Delayed.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995.P21.

The incident was due to the fact that two of the three computers died. Subsequent analysis indicated that each processor failure was due to a single loose piece of solder bouncing around under 20 gravities.

17. Mistake In Synchronization. The First Shuttle Launch Problem.

Peter G. Neumann, “Computer related risks”, The ACM press, 1995.P21.

There are five computers: four primary computers and one backup computer. The backup system refused to initialize because data words brought in one cycle too soon on the primaries were rejected as noise by the backup.

18. Corruption of Two Adjacent Flags

James Oberg, “NASA’s big push for the space station”, IEEE Spectrum, Nov, 2000.

In one error discovered in the software used in the Space Station, the corruption of two adjacent flags (bits in a status word) commanded an air valve to open while locking out the “valve close” command; only a power cycle was able to reset the system and prevent all the air from leaking out.

19. Optical-fiber Cables Problem

James Oberg, “NASA’s big push for the space station”, IEEE spectrum, Nov, 2000.

The fiber system is one of three separate communications systems in the Space Station that transmit payload data within the module. The high-rate (100-Mb/s) fiber lines route the science data to downlink antennas or to other payload instruments. Trouble started when the optical-fiber lines began degrading, becoming more brittle due to the damaging effects of insulation outgassing.

20. Greek Tax Information System Experiences Black-out

Peter G. Neumann, ACM SIGSOFT Software engineering Notes, Vol. 25no. 3, May 2000.pp15

“According to the Athens financial newspaper "Naftemporiki" (14 Jan 2000, p. 7), the Greek tax information system TAXIS has been down since Tuesday January 11th. All computerized regional state finance offices (DOY) have been affected as they are unable to connect to the system's main computer. I was personally able to verify this at my local state finance office where tax liability certificates were not issued on Wednesday. According to Naftemporiki, the affected services include the provision of tax liability certificates, the issue of new tax registry numbers (AFM), and the validation of ledgers and receipts. Many of these services are needed for the lawful conduct of business.

According to sources within the ministry (department) of finance, the system's hard disk was overloaded by the large number of applications that were running on it. Another source claims that while data was transferred from one hard disk to a larger one an error resulted in the loss of all data. The disk (referred to in the article as "the system's main memory") has been sent to the United Kingdom to be repaired and to attempt to recover the lost data.”

21. Mir Computer Failure

Peter G. Neumann, http://catless.ncl.ac.uk/Risks/19.78.html

Over the last weekend of May 1998, a computer critical to the Mir automatic steering system failed. The cosmonauts replaced it with a new one, but they were unable to load the new one with software necessary to run the steering system, at a time when the shuttle Discovery was about to be launched to dock with Mir.

22. Solar and Heliospheric Observatory (SOHO) Spacecraft Failure

Nancy Leveson, Aviation Week and Space Technology, 20 Jul 1998

Investigators believe two software errors and an improper command led to a loss of contact with the NASA/European Space Agency Solar and Heliospheric Observatory (SOHO) spacecraft on 24 Jun 1998. Recovery efforts are underway. An error in a preprogrammed command sequence resulted in an incorrect gyroscope reading, sending the spacecraft into an Emergency Sun Reacquisition (ESR) mode. A separate command sequence lacked code to activate a gyro needed for control when the spacecraft entered the ESR mode. Finally, a decision to command SOHO to turn off a gyro in response to unexpected telemetry caused the spacecraft to enter a series of ESRs, and ultimately led to loss of control, the agencies said.

Table A.1 Mapping between Failure Modes and Examples

	Functional Failure Modes

	Failure modes
	Examples

	Omission of a function
	1

	Incorrect realization of a function
	2,4,13,22

	Function was implemented although it was not specified in the requirements
	

	Omission of one the attributes in function
	3,5

	Incorrect realization of one of the attributes in a function
	18

	Introduction of an attribute not specified in the requirements
	

	Omission of one of the functions in the set S
	

	Introduction of a function not in set S
	

	Replacement of a function in set S by another function
	

	
	

	Interaction Failure modes

	Generic Interaction Failure Modes

	Failure modes
	Examples

	Amount
	Too much
	6,7

	
	Too little
	8

	Load
	Overload
	9,14,20

	Value
	Wrong value
	

	Time
	Premature
	

	
	Delay
	10,11

	
	Omission
	

	Rate
	Too fast
	

	
	Too slow
	12

	Duration
	Too long
	

	
	Too short
	

	Range
	Out of range
	

	Specific Interaction Failure Modes

	Human-Software Interaction
	6

	Software-Hardware Interaction
	

	Environment-Computer Interaction
	15,16

	Software-Software Interaction
	17

	Software-Computer Interaction
	19,21

 Appendix B

Glossary

Algorithm: A formula or set of steps for solving a particular problem. To be an algorithm, a set of rules must be unambiguous and have a clear stopping point. Algorithms can be expressed in any language, from natural languages like English or French to programming languages like FORTRAN.

Amount: the total number or quantity of interest.

Architecture: hierarchical structure of program components (modules), the manner in which these components interact, and the structure of the data that are used by the components. (Three levels of abstraction define the software system. The architectural level provides the highest level of system information. The specifications, which are derived from the system’s requirements, provide the information that is used to develop the architectural level. At the algorithmic level, the actual design of the software is performed. The final level is the logic level, which is where the actual implementation of the software occurs.)

Competition: active demand by two or more organisms or kinds of organisms for some environmental resource in short supply.

Computer (Hardware): Physical equipment used to process, store or transmit computer programs or data.

Data: A representation of facts, concepts, or instructions in a manner suitable for communication, interpretation, or processing by humans or by automatic means.

Deadlock: A condition that occurs when two processes are each waiting for the other to complete before proceeding. The result is that both processes hang. Deadlocks occur most commonly in multitasking and client/server environments. Ideally, the programs that are deadlocked, or the operating system, should resolve the deadlock, but this doesn't always happen.

Duration: the time during which something exists or lasts.

Environment: set of components (and their properties) that are not part of the system but whose behavior can affect the system state.

Hardware: mechanical and electrical components of the system.

Human: living and cognizant being.

Information: a signal or character (as in a communication system or computer) representing data.

Input: information fed into a data processing system or computer.

Interface: a: the place at which independent and often unrelated systems meet and act on or communicate with each other. b: the means by which interaction or communication is achieved at an interface.

Interaction: mutual or reciprocal action or influence.

Load: the quantity that can be carried at one time by a specified input or output mean.

Logic: a set of rules for reasoning used in algorithm.

Omission: something neglected or left undone.

Output: the information produced by a computer.

Range: the limits of a sequence, series, or scale.

Rate: a quantity, amount, or degree of something measured per unit of something else.

Repetition: the act or an instance of repeating or being repeated.

Shortage: to be deficient or missing.

Software: computer programs, procedures and possibly associated documentation and data pertaining to the operation of the computer system.

Synchronization: to represent or arrange (events) to indicate coincidence or coexistence.

System:

The system state at any point in time is the set of relevant properties describing the system at that time. The system environment is a set of components (and their properties) that are not part of the system but whose behavior can affect the system state. The existence of a boundary between the system and its environment implicitly defines as inputs and outputs anything that crosses that boundary.

[image: image8.wmf]System

Boundary

System

Input

Output

Time: the point at which something occurs or an appointed, fixed, or customary moment for something to happen, begin, or end.

Value: a numerical quantity that is assigned or is determined by calculation or measurement.

Appendix C

ISS End States

	No.
	End State Name
	Description
	Classification
	Category

(Human/Hardware

/Environment)

	1
	ABORT-EVA
	EVA is successfully aborted.
	OK
	Human/Hardware

	2
	DCK
	The crew can not return the ISS during the redocking procedures
	Critical - Loss of Crew
	Human

	3
	DCK-DEP
	The Progress or Soyuz hits the ISS and causes an evacuation due to the rapid depressurization of the station and possibly kills the crew
	Critical – Loss of Station and crew
	Human/Hardware

	4
	DCK-FR-B2.2.9-X1
	The progress or Soyuz hits the ISS and the crew has the ability to repair the leak but fails to do so
	Critical – Loss of Station and crew
	Human/Hardware

	5
	DCK-SM-AFTPORT
	Loss of SM aft docking port
	Other Undesired – Loss of system
	Hardware

	6
	DK-SSP50261-01
	No Soyuz docks with the ISS between 7A and 8A. Therefore, the Soyuz must leave the ISS due the expiration data from requirement SSP 50261-01
	Other undesired – Loss of system
	Hardware

	7
	EVAC
	Evacuation due to excessive radiation from a SPE or due to a MMOD particle penetration
	Critical – Evacuation End State
	Human/Hardware

	8
	EVAC-MD
	Medical evacuation
	Critical – Evacuation end State
	Human/Hardware

	9
	EVAC-MD-EXC
	Evacuation due to loss of exercise equipment
	Critical – Evacuation End State
	Human/Hardware

	10
	EVAC-SOYUZ-FR-D2.4.9-2A
	Leak on Soyuz, if no evacuation then loss of Soyuz capability
	Critical – Evacuation End State
	Human/Hardware

	11
	LOC-EVA
	Loss of crew during EVA
	Critical – Loss of Crew
	Human

	12
	LOC-EVA-MMOD
	Loss of EVA crew from MMOD impact
	Critical – Loss of Crew
	Human

	13
	LOC-EVAPREP
	Loss of crew during EVA preparation
	Critical – Loss of Crew
	Human

	14
	LOC-MD
	Medical loss of crew
	Critical – Loss of Crew
	Human

	15
	LOM
	Loss of module due to MMOD particle penetration
	Other Undesired – Loss of Module
	Hardware

	16
	LOM-RS-DC-B13.2.2-6
	Module shutdown of the Docking Compartment due to flight rule B13.2.2-6
	Other Undesired – Loss of Module
	Hardware

	17
	LOM-RS-FGB-FR-B13.2.2-6
	Module shutdown of the FGB due to flight rule b13.2.2-6
	Other Undesired – Loss of Module
	Hardware

	18
	LOM-RS-SM
	Propellant leak leads to fire, this leads to loss of propulsion and other systems
	Other Undesired – Loss of Module
	Hardware

	19
	LOS-RS-SM-FR-B13.2.2-6
	Module shutdown of the service Module due to flight rule B13.2.2-6
	Other Undesired – Loss of Module
	Hardware

	20
	LOM-RS-SOYUZ
	Propellant leak
	Other Undesired – Loss of Module
	Hardware

	21
	LOM-US-LAB
	Orbiter collision
	Other Undesired - Collision
	Hardware

	22
	LOM-US-LAB-FR-B13.2.2-6
	Module shutdown of the Lab due to flight rule B13.2.2-6
	Other Undesired – Loss of Module
	Hardware

	23
	LOM-US-N1-FR-B13.2.2-6
	Module shutdown of Node1 due to flight rule B13.2.2-6
	Other Undesired – Loss of Module
	Hardware

	24
	LOM-US-PMA2
	Orbiter collision, or failed capture and demate
	Other Undesired - Collision
	Hardware

	25
	LOS
	Loss of station and crew due to MMOD penetration
	Critical – Loss of station and crew
	Human/Hardware

	26
	NO-DOCK
	Soyuz fails to dock
	Other Undesired – Loss of Module
	Hardware

	27
	NO-DOCK2
	Soyuz fails to redock to DC1 following being moved from the SM aft port
	Other Undesired – Loss of Module
	Hardware

	28
	SYS-C&T
	Loss of ISS C& T
	Other Undesired- Loss of System
	Hardware

	29
	SYS-CS-WASTE
	Waste management failure
	Other Undesired- Loss of System
	Hardware

	30
	SYS-DC1-TCS
	Loss of DC1 TCS
	Other Undesired- Loss of System
	Hardware

	31
	SYS-ECL-ATM-MONIT
	Loss of Atmosphere Monitoring Systems
	Other Undesired- Loss of System
	Hardware

	32
	SYS-ECL-FR-B17.2.10-2
	Loss of Oxygen Generation System due to flight rule B17.2.10-2
	Other Undesired- Loss of System
	Hardware

	33
	SYS-ECL-FR-B17.2.1-11
	Loss of Trace Contaminants Control due to flight rule B17.2.10.11
	Other Undesired- Loss of System
	Hardware

	34
	SYS-ECL-FR-B17.2.1-4
	Loss of Nitrogen Distribution System due to flight rule B17.2.1-4
	Other Undesired- Loss of System
	Hardware

	35
	SYS-ECL-FR-B17.2.1-5
	Loss of CO2 Removal System due to flight rule B17.2.1-5
	Other Undesired- Loss of System
	Hardware

	36
	SYS-ECL-WRM
	Loss of Water Resource Management System
	Other Undesired- Loss of System
	Hardware

	37
	SYS-ECL-WRM-VENT
	Loss of Water Venting Systems
	Other Undesired- Loss of System
	Hardware

	38
	SYS-FGB-TCS
	Loss of FGB TCS – both loops fail
	Other Undesired- Loss of System
	Hardware

	39
	SYS-RS-EPS
	Evacuation due to loss of ROS EPS
	Critical – Evacuation End states
	Human

	40
	SYS-RS-GNC-1
	ISS in dangerous orbit due to non-correctable reboost command
	Other Undesired – Loss of System
	Hardware

	41
	SYS-RS-GNC-2
	No reboosts were performed from 7A to 8A and ISS falls below design/requirements altitude
	Other Undesired – Loss of System
	Hardware

	42
	SYS-RS-GNC-3
	Reboost and docking capabilities lost due to loss of state determination (ROS GNC)
	Other Undesired – Loss of System
	Hardware

	43
	SYS-RS-GNC-4
	Loss of attitude control due to loss of the RSTCs (ROS GNC)
	Other Undesired – Loss of System
	Hardware

	44
	SYS-RS-GNC-5
	Loss of attitude control due to loss of GIVUS & ORT (ROS GNC)
	Other Undesired – Loss of System
	Hardware

	45
	SYS-RS-GNC-6
	Loss of attitude control due to loss of the attitude determination sensors (ROS GNC)
	Other Undesired – Loss of System
	Hardware

	46
	SYS-RS-PROP
	Loss of propulsion, system failure, or leaked propellant corrodes adjacent prop and other system components
	Other Undesired – Loss of System
	Hardware

	47
	SYS-SM-TCS
	Loss of SM TCS – both loops fail
	Other Undesired – Loss of System
	Hardware

	48
	SYS-US-ECL-FR-B17.5.1-1
	Evacuation because of insufficient N2/O2 reserve sue to flight rule B17.5.1-1
	Critical – Evacuation End States
	Human

	49
	SYS-US-EPS
	Loss of EPS – both channels fail
	Other Undesired – Loss of System
	Hardware

	50
	SYS-US-TCS
	Loss of TCS -both loops fail
	Other Undesired – Loss of System
	Hardware

	51
	SYS-US-CDH
	Evacuation due to C&C failure
	Critical – Evacuation End States
	Human

Appendix D

ISS Initiating Events

	Main Station Functions

	System
	Function
	Subsystem/

Subfunction
	Number
	Initiator
	Category

(Human/

hardware/

Environment)

	Internal
	Propulsion
	Propulsion
	1
	Service module propellant Leak
	Hardware

	
	
	
	2
	Soyuz propellant leak
	Hardware

	
	
	
	3
	Propellant transfer Failure
	Hardware

	
	
	Propulsion Procedure
	4
	Reboost scheduled
	Human

	
	
	
	5
	MMOD avoidance needed
	Human

	
	
	
	6
	Reboost can not be performed during 7A
	Human/

Hardware

	
	Life Support
	Environment

Control and

Life Support
	7
	Primary O2 generation failure
	Hardware

	
	
	
	8
	Primary CO2 removal failure
	Hardware

	
	
	
	9
	USOS O2 supply system leak
	Hardware

	
	
	
	10
	USOS N2 supply system leak
	Hardware

	
	
	
	11
	Water resource management failure
	Hardware

	
	
	
	12
	Trace contaminate system failure
	Hardware

	
	
	
	13
	ROS ventilation failure
	Hardware

	
	
	Flight Crew
	14
	Exercise equipment failure
	Hardware

	
	
	
	15
	Waste management system failure
	Hardware

	
	Attitude Control
	Attitude Control
	16
	Attitude determination sensor failure
	Hardware

	
	
	
	17
	GIVUS and ORT failure
	Hardware

	
	
	Attitude Control Propulsion
	18
	ACS engine failure
	Hardware

	
	
	Attitude control Momentum
	
	
	

	
	Electric Power
	USOS EPS
	19
	US channel 2B power generation failure
	Hardware

	
	
	
	20
	US channel 2B power generation failure
	Hardware

	
	
	
	21
	Sequential shunt unit SSU-4B failure
	Hardware

	
	
	
	22
	Both power generation channels failure
	Hardware

	
	
	ROS EPS
	23
	Russian power generation failure
	Hardware

	
	Command and Data Handling
	
	24
	C&C MDMs Failure
	Hardware

	
	
	
	25
	ROS Terminal computer failure
	Hardware

	
	Communication
	
	26
	State and attitude determination failure
	Hardware

	
	
	
	27
	C&T Failure
	Hardware

	
	Thermal Protection and Control
	USOS Thermal Control
	28
	Moderate temperature loop line leak
	Hardware

	
	
	
	29
	Ext. failure causes single loop mode MTL
	Hardware

	
	
	
	30
	Ext. failure causes single loop mode LTL
	Hardware

	
	
	
	31
	Int. failure causes single loop mode MTL
	Hardware

	
	
	
	32
	Int. failure causes single loop mode LTL
	Hardware

	
	
	
	33
	Low temperature loop line leak
	Hardware

	
	
	
	34
	Common cause MTL and LTL failure
	Hardware

	
	
	ROS Thermal Control
	35
	SM TCS failure
	Hardware

	
	
	
	36
	FGB TCS failure
	Hardware

	
	
	
	37
	DC1 TCS failure
	Hardware

	Mitigate Energetic Hazards
	External Sources
	
	38
	Tracked MMOD Impact
	Hardware

	
	
	
	39
	UnTracked MMOD impact
	Hardware

	
	
	
	
	Radiation higher than design levels
	Hardware

	
	Internal Sources
	
	40
	Vessel overpressurization/ explosion
	Hardware

	
	
	
	41
	Toxic release
	Hardware

	
	
	
	42
	Fire occurs
	Hardware

	
	
	
	
	Water accumulation on/ in equipment
	Hardware

	Interaction with other Vehicles
	Obiter
	
	43
	Orbiter docking
	Hardware

	
	
	
	44
	Orbiter undocking
	Hardware

	
	Soyuz/Progress
	
	45
	Progress docking at SM port
	Hardware

	
	
	
	46
	Soyuz docking at DC1 port
	Hardware

	
	
	
	47
	Soyuz undocking
	Hardware

	
	
	
	
	Progress undocking
	Hardware

	
	
	
	
	Soyuz move to another docking port
	Hardware

	
	
	
	48
	Soyuz Expiration date reached
	Hardware

	Element interface Integrity
	
	
	
	
	

	Structural Integrity
	
	
	
	
	

	Crew Injured or Incapacitated

	Prevent EVA Injury
	
	
	49
	EVA preparation
	Human

	
	
	
	50
	EVA
	Human

	
	
	
	51
	MMOD impact during EVA
	Human

	Prevent IVA Injury and Illness
	
	
	51
	Circulation System
	Human

	
	
	
	52
	Dermatology
	Human

	
	
	
	53
	Digestive system
	Human

	
	
	
	54
	General internal medicine
	Human

	
	
	
	55
	Genitourinary system
	Human

	
	
	
	56
	Infectious diseases
	Human

	
	
	
	57
	Neurologic and psychiatric
	Human

	
	
	
	58
	Respiratory system
	Human

	
	
	
	59
	Trauma and poisoning
	Human

	
	
	
	60
	Occupational hazard injury
	Human

PAGE
1
5/24/01 11:39:00 AM

_1052141987.vsd

_1052159209.vsd

_1052207215.vsd

_1052207214.vsd

_1052142498.vsd

_1050317102.vsd

_1050318763.vsd

_1049525154.vsd

