MODELING AND QUANTIFYING THE IMPACT OF SOFTWARE ON PRA

Prepared by Carol Smidts, Bin Li, Ming Li

Under NASA grant “Integrating Software Into Probabilistic Risk Assessment”

DRAFT

This report is a follow-up on the report entitled “The Impact of Software On the Current Structure of PRA” [32] and covers the modeling and quantification of software in the current Probabilistic Risk Assessment framework.

1. Modeling Approach

As explained in our first report, Probabilistic Risk Assessment (PRA) purports to answer the following four basic questions:

1. What can go wrong, or what are the initiators or initiating events (undesirable starting events) that lead to adverse consequence(s)?

2. What and how severe are the potential adverse consequences that the technological entity and the extended environment or the crew may eventually be subjected to as a result of the occurrence of the initiator?

3. How likely to occur are these undesirable consequences, or what are their probabilities or frequencies?

4. How confident are we about our answers to the above questions?

Our previous report [32] has presented our answers to the first PRA question by identifying the relevant software failure modes. To answer the other questions of PRA, we need to model the software, as well as the software failure modes. Reliability engineering, software engineering, system and safety engineering modeling techniques can be used [1,2,3,4,5,6,7,8,9,10,11] for this purpose. Table 1 identifies the modeling techniques that can be used for each failure mode (or more precisely for each category of failure modes). This list is not exhaustive. It includes widespread techniques that we have identified as credible modeling techniques for this problem. Further refinements to the methodology (in Year 2 of the project) will target extending the list proposed. Table 2 illustrates how to model the failure modes using the three popular modeling techniques: Fault Tree Analysis, Event Sequence Diagram and Cause-Consequence Analysis.

Table 1. Failure Modes and Modeling Approaches

	Failure Modes
	Modeling Approaches

	Input
	Fault Tree Analysis, Event Tree Analysis, Event Sequence Diagram, Cause-consequence analysis, Master Logic Diagram.

	Function
	Fault Tree Analysis, Event Tree Analysis, Event Sequence Diagram, Master Logic Diagram, Markov Chain, Petri Nets.

	Output
	Fault Tree Analysis, Event Tree Analysis, Event Sequence Diagram, Master Logic Diagram, Cause-consequence analysis.

	Support
	Fault Tree Analysis, Event Tree Analysis, Event Sequence Diagram, Master Logic Diagram, Petri Nets, Markov Chain, Cause-consequence analysis.

	Environment
	Fault Tree Analysis, Event Tree Analysis, Event Sequence Diagram, Master Logic Diagram, Cause-consequence analysis.

((
[image: image1.wmf]x

)

Table 2. Failure modes expressed using the three modeling techniques: Fault Tree Analysis, Event Sequence Diagram, Cause-Consequence Analysis

	Failure modes
	Modeling Approach

	
	Fault Tree Analysis
	Event Sequence Diagram
	Cause-Consequence Analysis

	Input
	
[image: image2.wmf]Input

Incorrect

Duration

Range

Rate

Time

Value

Load

Amount

	
[image: image3.wmf]Failure related to Amount

Failure related to Range

Failure related to Duration

Failure reltated to Rate

Failure related to Time

Failure related to Load

Failure related to Value

OR

	
[image: image4.wmf]Input correct?

Yes

No

Duration

Range

Rate

Time

Value

Load

Amount

	Function
	
[image: image5.wmf]Software

function

 failure

Function

Attribute

Functions in set S

Introduction

Ommission

Incoorect

reliazation

Ommission

Ommission

Incoorect

reliazation

Introduction

Introduction

Replacement

	
[image: image6.wmf]Function

failure

Attribute

failure

No

Function

failure

No

Set S

failure

No

Function

success

Yes

Yes

Yes

	
[image: image7.wmf]Function

failure?

No

Yes

Set S

failure

Attribute

failure

Function

failure

	Output
	
[image: image8.wmf]Ouput

Incorrect

Duration

Range

Rate

Time

Value

Load

Amount

	
[image: image9.wmf]Failure related to Amount

Failure related to Range

Failure related to Duration

Failure reltated to Rate

Failure related to Time

Failure related to Load

Failure related to Value

OR

	
[image: image10.wmf]Output

 correct?

Yes

No

Duration

Range

Rate

Time

Value

Load

Amount

	Support
	
[image: image11.wmf]Support Failure

CPU

Memory

I/O

Network

Input

device

Disk

Tape

Controller

Controller

Display

Printer

Others

Driver

Tape

Driver

Disk

	
[image: image12.wmf]CPU works

Memoery

Works

Yes

Support

Fail

Yes

I/O Works

Yes

Support

work

No

No

No

	
[image: image13.wmf]Support

working?

Yes

No

I/O

Memory

CPU

	Environment
	
[image: image14.wmf]Environmental Factor caused

failure

Interference

Fire

Flood

temperature

Low

gravity

Barometer

pressure

Air

conditioning

Saline

atmosphere

others

	
[image: image15.wmf]Interference

causes

Failure

Barometer

pressure

causes

Failure

No

Success

Failure

Low

gravity

causes

fai;ure

Fire

causes

failure

Temperature

causes

failure

Air

conditioning

causes

failures

Other

enviormantal

factors cause

failure

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

	
[image: image16.wmf]Environmental

Factor caused

failure

No

Yes

Interference

Fire

Flood

temperature

Low

gravity

Barometer

pressure

Air

conditioning

Saline

atmosphere

others

2. Failure Mode Quantification

Answering the third question of PRA requires a quantitative assessment of the likelihood of consequences. Placed in the context of interest, this will require that we evaluate the probability of the different failure modes we have identified earlier. Table 3 gives quantification models for each failure mode derived from statistical techniques and software reliability modeling. Statistical analysis can be used for all types of failure modes if data is available. Software reliability models are used only for software functional failure modes quantification.

Table 3. Failure modes and Quantification Models

	Failure Modes
	Quantification Models

	Input
	Statistical distribution

	Function
	Statistical distribution,

Software reliability models (three dimensional software reliability model classification),

Life-cycle based models: Early prediction models (RADC, Smidts et.al 98) and Late prediction models (SRGM and Input domain models)

Structure based models: Black box models and structural models (littlewood 1979 and Smidts and Sova model)

Information based models: Fault-based models (capture-recapture models), Failure based models (SRGM and Input domain models) and Development information based models (RADC, BBN and Neural Networks).

	Output
	Statistical distribution

	Support
	Weibull distribution, Bathtub Curve

	Environment
	Statistical distribution, Accelerating testing models

2.1 Statistical analysis: Non-parametric and parametric, Bayesian methods

Statistical analysis [2] uses either Non-parametric or Parametric methods to analyze failure data. Non-parametric methods directly use failure data to calculate the reliability characteristics, such as mean time to failure, etc. Parametric methods try to fit the failure data to a statistical distribution and calculate the reliability characteristics using this distribution. If more information (failure data) is obtained from additional testing or failure records, Bayesian methods can be used to update our statistical analysis and obtain better results.

2.2 Software reliability models

Software reliability models were created to measure and quantify software reliability. Software reliability is defined as the probability that the software will not cause the failure of a product for a specified time under specified conditions; this probability is a function of the inputs to and use of the product, as well as a function of the existence of faults in the software; the inputs to the product will determine whether an existing fault is encountered or not. The number of published software reliability models exceeds a hundred. Hence it is generally difficult to decide what model to use for what application. Software reliability models can be selected according to model classification and trend analysis.

2.2.1 Software reliability model classification

Building on the classification schemes proposed in the past [13,14,15,16], we introduce a different classification scheme [12]. The scheme is based on three axes of classification.

The first axis of classification is life-cycle based and distinguishes models that help predict reliability early in the life-cycle (i.e. during requirements, design or coding) (RADC model and Smidts, Stutzke and Stoddard’s model) from models that help predict reliability late in the life-cycle (during testing or operation). Most software reliability models in existence to date belong to the second class of models. This is due to the fact that prediction in this phase is short term and hence easier to achieve. Models in this class can be grouped into three groups:

1. Software reliability growth models,

2. Input-domain models,

3. Fault seeding models.

The second axis of classification is structural and distinguishes models that capture the structure of the software from models that do not. Models that do not distinguish the structural features of software will be called black box models (all life-cycle based models) whereas the others will be named architectural models (Littlewood's semi-Markov model and Smidts and Sova's functional architecture model).

The third axis of classification is information based and distinguishes models that use failure data to perform assessments/predictions from models that use sources of information further removed from the failure expression such as faults, or even more general information on software development. These are categorized as failure-based models, fault-based models and development information-based models. These categories are described below:

Failure-based models: These models measure software reliability from failure data obtained during the testing of the software (Software Reliability Growth Models and Input-Domain Models).

Fault-based models: These models evaluate software reliability based on the software fault information (RADC and Capture-recapture models).

Development information-based models: These models predict software reliability using a broad set of information related to software development, such as, the skill level of programmers, the schedule, the type of development life-cycle, etc (Bayesian Belief Networks, or Connectionist techniques).
2.2.2 Trend Analysis

Trend Analysis studies the evolution of software reliability and thus helps in determining whether software reliability is increasing or decreasing. Trend tests include graphical tests and analytical tests. Graphical tests use the plots of times of failure or cumulative number of failures. Among the analytical tests, the Laplace test is the most commonly used [14]. The Laplace test calculates the Laplace factor. The value of the Laplace factor shows whether the reliability is increasing, decreasing or stable. The typical trend test results are: ‘Reliability decrease then growth’ (S-shaped model), ‘Reliability growth’ (Software reliability growth model), ‘Stable reliability’ (HPP)[14,17,18,19].

3. Sources of data

In this paragraph we identify the sources of data available for quantification of the failure modes [5, 20,21,22,23,24] through the models identified in the previous section. Some databases related to these failure modes are introduced [29,30,31]. Finally, the data requirements for quantification models are illustrated [12].

3.1 Development Processes Yielding Relevant Data

Data can be obtained from system and software development processes, testing, operations and maintenance. Table 4 gives the list of processes (activities) during which data relevant for quantification can be collected.

Table 4. Failure Modes and Processes Yielding Relevant Data

	Failure Modes
	Processes Yielding Relevant Data

	Input
	System requirements analysis, System architectural design evaluation, System integration evaluation.

Preliminary hazard analysis (PHA), System hazard analysis (SHA), Operating and support hazard analysis (O&SHA).

Failures from testing (system testing (Facility testing, volume testing, stress testing, usability testing, security testing, performance testing, storage testing, configuration testing, compatibility/conversion testing, instability testing, reliability testing, recovery testing, serviceability testing, documentation testing and procedure testing), acceptance testing, regression testing, qualification testing, Installation testing. [25,26,27,28]),

Failure reporting Analysis and Corrective Action System (FRACAS), FMEA.

	Function
	Reviews in software process (IEEE std 730 1998, IEEE std 1028 1997)

3.6.1 Software requirements review, 3.6.2.2 Preliminary design review, 3.6.2.3 Critical design review, 3.6.2.5 Functional Audit.

Reviews in software Product (IEEE std 1012 1986, IEEE std 1028 1997)

3.5.2 Concept documentation evaluation, 3.5.3 Software requirement traceability analysis, requirements evaluation, and interface analysis, 3.5.4 Design traceability analysis, design evaluation, and interface analysis, 3.5.5 Source code traceability analysis, requirements evaluation, and interface analysis, Appendix: Algorithm analysis, Control flow analysis, Database analysis, Data flow analysis, Design walk-through, Functional audit, Requirements walk through, Source code walk through, Test evaluation, Test walk-through.

System requirements analysis, System architectural design evaluation, System integration evaluation.

Preliminary hazard analysis (PHA), System hazard analysis (SHA), Operating and support hazard analysis (O&SHA).

Failures from testing (Module testing, Unit testing (function testing or structural testing), integration testing, system testing (Facility testing, volume testing, stress testing, usability testing, security testing, performance testing, storage testing, configuration testing, compatibility/conversion testing, instability testing, reliability testing, recovery testing, serviceability testing, documentation testing and procedure testing), acceptance testing, regression testing, qualification testing, Installation testing. [25,26,27,28]),

Failure reporting Analysis and Corrective Action System (FRACAS), FMEA.

	Output
	System requirements analysis, System architectural design evaluation, System integration evaluation.

Preliminary hazard analysis (PHA), System hazard analysis (SHA), Operating and support hazard analysis (O&SHA).

Failures from testing (system testing (Facility testing, volume testing, stress testing, usability testing, security testing, performance testing, storage testing, configuration testing, compatibility/conversion testing, instability testing, reliability testing, recovery testing, serviceability testing, documentation testing and procedure testing), acceptance testing, regression testing, qualification testing, Installation testing. [25,26,27,28]),

Failure reporting Analysis and Corrective Action System (FRACAS), FMEA.

Performance monitoring (IEEE std 1028-1998 Annex G).

	Support
	Failure reporting Analysis and Corrective Action System (FRACAS), FMEA, failure during testing, History data from similar computer hardware.

	Environment
	Failure reporting Analysis and Corrective Action System (FRACAS), Accident reports, Environmental stressing testing.

3.2 Databases

Many databases were established by the government, the military, national laboratories and industry to support the improvement of system reliability and safety. Table 5 classifies some of these databases according to our failure modes. Each database and its content is then described in turn.

Table 5. Failure modes and Databases
	Failure Modes
	Databases

	Input
	Databases for input failure modes could not be identified. The search is still ongoing. The databases for Function (see below) may include part of information required. Further research will assess whether data is available in the databases defined below.

	Function
	Software Lifecycle Empirical Database (SLED) (ARF Error Dataset, DACS Productivity Database, NASA Ames Error/Fault Dataset, NASA/SEL Database, Software Reliability Database)

	Output
	Databases for output failure modes could not be identified. The search still ongoing. The databases for the Function may include part of information required. Further research will determine whether data is available in the databases identified.

	Support
	Electronic Parts Reliability Data (Reliability Analysis Center)
MIL-HDBK-217F Reliability Prediction of Electronic Equipment

	Environment
	Electronic Parts Reliability Data (Reliability Analysis Center),
MIL-HDBK-217F Reliability Prediction of Electronic Equipment, Further research is required to determine databases available for the quantification of environmental events that have an immediate consequence on the equipment such as earthquakes, etc.

Software Lifecycle Empirical Database (SLED)[29]

The Software Lifecycle Empirical Database (SLED) was established to support the acquisition, maintenance, and dissemination of software empirical lifecycle data for research purposes and to support the improvement of the software development process. The SLED is organized into five data sets covering all phases and aspects of the software lifecycle:
1. ARF Error Dataset: Data collected and analyzed by David Weiss on the development of the Architecture Research Facility (ARF) at the Naval Research Laboratories (NRL).

2. DACS Productivity Database: Data collected from various government and private industry sources and compiled by Richard Nelson of Rome Laboratory.

3. NASA Ames Error/Fault Dataset: Data collected on errors/faults in thirty-three Digital Flight Control Systems.

4. NASA/SEL Database: Data collected and contributed by the Software Engineering Laboratory (SEL) at NASA Goddard Space Flight Center.

5. Software Reliability Database: Data collected at Bell Laboratories, Whippany, NJ, and compiled by John Musa.

Electronic Parts Reliability Data (Reliability Analysis Center)[30]

This document contains reliability data on both commercial and military electronic components for use in reliability analyses. It contains failure rate data on integrated circuits, discrete semiconductors (diodes, transistors, optoelectronic devices), resistors, capacitors, and inductors/transformers, all of which were obtained from the field usage of electronic components. At 2,000 pages, the format of this document is the same as RAC's popular NPRD document, which contains reliability data on nonelectronic component types. A summary section presents failure rates sorted by generic component type, quality level and environment. A detailed section follows presenting component specific data including part number, manufacturer, package type, etc.

MIL-HDBK-217F Reliability Prediction of Electronic Equipment [31]

The most widely known and used reliability prediction handbook is MIL-HDBK-217, the Military Handbook for "Reliability Prediction of Electronic Equipment". MIL-HDBK-217 is published by the Department of Defense, based on work done by the Reliability Analysis Center and Rome Laboratory at Griffiss AFB, NY.

The MIL-HDBK-217 handbook contains failure rate models for the various part types used in electronic systems, such as ICs, transistors, diodes, resistors, capacitors, relays, switches, connectors, etc. These failure rate models are based on the best field data that could be obtained for a wide variety of parts and systems; this data is then analyzed and massaged, with many simplifying assumptions thrown in, to create usable models.

The latest version of MIL-HDBK-217 is MIL-HDBK-217F, Notice 2 (217F-2).

The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability of electronic equipment and systems. It provides a common basis for reliability predictions. This handbook includes two basic methods for reliability prediction of electronic equipment. The first method is the part stress analysis prediction technique, employing complex models using detailed stress analysis information as well as environment, quality applications, maximum ratings, complexity, temperature, construction, and a number of other application-related factors. The second is a simple method called the parts count reliability prediction technique, primarily using the number of parts of each category with consideration to part quality, environments encountered, and maturity of the production process. The simple method is beneficial in early trade-off studies and situations where the detailed circuit design is unknown. The complex method requires detailed study and analysis, which is available when the circuit design has been defined. Samples of each type of calculation are provided.

3.3 Data requirements for Quantification

Data requirements for quantification models are given in Table 6.

Table 6. Data requirements for quantification

	Quantification
	Data requirements

	Input
	Number of total inputs within a given time period, number of incorrect inputs within the period, number of incorrect inputs falling in the seven input failure mode categories, which are value, rate, load, duration, time, amount, range.

	Function
	The time of each failure occurrences, number of failures (faults) during the given period, number of days of operation during the period.

(see Table 7 (data requirements for software reliability models))

	Output
	Number of total outputs within a given time period, number of incorrect outputs within the time period, number of incorrect inputs falling in the seven input failure mode categories, which are value, rate, load, duration, time, amount, range.

	Support
	The time of each failure occurrences, number of failures during the given period, number of days of operation during the period, failure rate.

	Environment
	The failure rate (or degradation factor
) for each support component under each specific environment (for instance, under 50%, 100% humidity), probability for the occurrence of each catastrophic environment that can immediately impact the support system’s functions.

Table 7 provides the data requirements for software reliability models [12].

Table 7. Software reliability models data requirements

	Three dimensions
	Sub- dimensions
	Example models
	Data requirements

	Life-cycle based models
	Early Prediction models
	RADC
	The application type (A), the development environment (D), and the software characteristics (S), fault exposure ratio, linear execution frequency.

	
	
	Smidts et.al 98
	Software process failure modes and their time to occurrence.

	
	Late Prediction models
	SRGM
	Time between failures, failure counts during a time period.

	
	
	Input domain models
	Input profile distribution, testing results

	
	
	Fault seeding models
	Number of seeded faults, number of seeded faults found, number of faults found totally, fault exposure ratio, linear execution frequency.

	Structure based models
	Black box models
	SRGM, Input domain models, Fault seeding models
	See above.

	
	Architectural models
	Littlewood model
	Architecture information represented as a data flow diagram or control flow diagram, proportion of system execution time spent within module i, failure rate of module i, frequency of transfer of execution from module i to module j, failure at interface on transfer of execution from module i to module j.

	
	
	Smidts & Sova model
	Architecture information represented as a transaction diagram, the nonfunctional requirements (performance, for instance) represented as the attributes of the functional block, number of runs, and number of failures corresponding of the runs.

	Information based models
	Fault-based models
	Capture-recapture models
	Number of inspectors, number of faults found by inspector j, number of faults found by exactly k inspectors, fault exposure ratio, linear execution frequency.

	
	Failure-based models
	SRGM
	Time between failures, failure counts during a period time.

	
	
	Input domain model
	Input profile distribution, testing results

	
	Information-based models
	Bayesian Belief Networks
	Development process data

	
	
	Neural Networks
	A sequence of cumulative execution time and the corresponding observed cumulative faults, fault exposure ratio, linear execution frequency.

4. Conclusion

In this report, we have proposed modeling approaches, quantification models and sources of data for the failure modes identified in [32]. The modeling approaches are consistent with the current PRA framework as are the approaches to quantification. These techniques need to be further refined. In particular, we need to identify databases for the quantification of input and output failure modes and the quantification of environmental factors. Once these deficiencies have been resolved, the approach needs to be tested in the field on different NASA specific applications.

References

1. S.P. Wilson, T. P. Kelly, J. A. McDermid, “Safe Case Development: Current Practice, Future Prospects”, Safety and Reliability of Software Based Systems, p135-156, 1997.

2. M. Modarres, M. Kaminskiy, and V. Krivtsov, Reliability Engineering and Risk Analysis: A Practical Guide, Marcel Dekker, New York, N.Y., 1998.

3. H. Kumamoto, E.J. Henley, Probabilistic Risk Assessment and Management for Engineers and Scientists, IEEE Press, 1996.

4. N.G. Leveson, Safeware: System Safety and Computers, Addison-Wesley Publishing company, 1995.

5. L.M. Ippolito, D. R. Wallace, A Study on Hazard Analysis in High Integrity Software Standards and Guidelines, NISTIR 5589, National Institute of Standards and Technology, Gaithersburg, MD 20899, 1995.

6. S. Swaminathan, C.Smidts, “The Event Sequence Framework for Dynamic Probabilistic Risk Assessment”, Reliability Engineering and System Safety, Vol. 63, p73-90, 1999.

7. Y. Papadopoulos, J. McDermind, R. Sasse, G. Heiner, “Analysis and Synthesis of the Behaviour of Complex Programmable Electronic Systems in Conditions of Failure”, Reliability Engineering and System Safety, Vol. 71, 2001, p229-247.

8. P. G. Beerthuizen, W. Kruidhof, “System and Software Safety Analysis for the ERA Control Computer”, Reliability Engineering and System Safety, Vol. 71, 2001, p285-297.

11. A. T. Tai, J. F. Meyer, A. A. Vizienis, Software Performability: From Concepts to Applications, Kluwer Academic Publishers.1996.

12. C. Smidts, B. Li, M. Li, Z. Li, “Software Reliability Models”, in Encyclopedia of Software Engineering, John Wiley & Sons, Inc. New York (to be published).

13. M. Xie, Software Reliability Modeling, World Scientific, New Jersey, 1991.

14. M. R. Lyu, Handbook of Software Reliability Engineering, McGrwa-Hill, 1995.

15. J. D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Application, McGraw-Hill, 1987.

16. A. L. Goel, “Software Reliability Models: Assumptions, Limitations and Applicability”, IEEE Transactions on Software Engineering, Vol. SE-11, No., 12, Dec., 1985. p1411-1423.

17. K. Kanoun, M. Kaaniche, J.C. Laprie, “Experience in Software Reliability: From Data Collection to Quantitative Evaluation”, International Symposium on Software Reliability Engineering, 1993, p234-245.

18. T. M. Khoshgoftaar and T. G. Woodcock “Software Reliability Model Selection: a Case Study”, International Symposium on Software Reliability Engineering, 1991.

19. M. Y. Lu, Y. F. Bai, M. Cong, “A Practical Software-Reliability Measurement Framework Based on Failure Data”, Annual Reliability and Maintainability Symposium, 2000.

20. C. Dale, “Data Requirement for Software Reliability Prediction”, Software Reliability: Achievement and Assessment, Blackwell Scientific, 1987, p144-153.

21. The Institute of Electrical and Electronics Engineers, IEEE std 730-1998, IEEE Standard for Software Quality Assurance Plans, 1998.

22. The Institute of Electrical and Electronics Engineers, IEEE std 1028-1997, IEEE Standard for Software Reviews, 1997.

23. The Institute of Electrical and Electronics Engineers, IEEE std 1012-1998, IEEE Standard for Software Verification and Validation, 1998.

24. Department of Defense, MIL-STD-2155, Failure Reporting, Analysis and Corrective Action System (FRACAS), 1985.

25. G. J. Myers, The Art of Software Testing, John Wiley & Sons, Inc. 1979.

26. W. Hetzel, The Complete Guide to Software Testing, QED Information Sciences, Inc. 1984.

27. P. C. Jorgensen, Software Testing: A Craftsman’s Approach, CRC Press, Inc. 1995.

28. J. Watkins, Testing IT: An Off-the-Shelf Software Testing Process, Cambridge University Press, 2001.

29. http://192.73.45.130/databases/sled.html

30. http://rac.iitri.org/InfoResources/Rac_ReliabilityData.html

31. Department of Defense, MIL-HDBK-217F, Reliability Prediction of Electronic Equipment, 1991.

32. C. Smidts, B. Li, M. Li, The Impact of Software on the Current Structure of PRA, NASA report, May, 2001.

� � EMBED Equation.3 ���is a state vector representing the environment.

� The actual failure rate = initial failure rate(degradation factor. The degradation factor is a function of the environment.

� All software reliability models discussed are obtained under an implicit operational profile. The operational profile is an additional data requirement applying to all models in the table.

PAGE
4

[image: image17.wmf]x

_1062428072.vsd

_1062428251.vsd

_1063364827.unknown

_1063365090.vsd

_1063365146.vsd

_1063364859.unknown

_1062428430.vsd

_1062428467.vsd

_1062428493.vsd

_1062428304.vsd

_1062428199.vsd

_1062428231.vsd

_1062428093.vsd

_1062427536.vsd

_1062427585.vsd

_1062427963.vsd

_1062427485.vsd

