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1. PRA and Software

Probabilistic risk assessment (PRA) is a technique to assess the probability of failure or success of a system. Current PRA mostly focuses on risk from hardware failures and neglects the contributions of software to the risk of mission failures. This is due to a lack of techniques necessary for the systematic integration of software in PRA. The objective of this research is to develop such techniques and to prove the conceptual validity of the methodology on a specific subsystem of the Space Station PRA. [6]

Probabilistic Risk Assessment usually answers four basic questions [1, 2]:

1. What can go wrong, or what are the initiators or initiating events (undesirable starting events) that lead to adverse consequence(s)?

2. What and how severe are the potential adverse consequences that the technological entity and the extended environment or the crew may be eventually subjected to as a result of the occurrence of the initiator?

3. How likely to occur are these undesirable consequences, or what are their probabilities or frequencies?

4. How confident are we about our answers to the above questions?

During Year 1 of this grant we developed an initial methodology to answer the three first questions. Question number 4 was ruled out-of-scope for this initial study. The methodology being in its initial stage needs refinement as indicated by experts during a workshop held at University of Maryland in November 2001. Inputs from the experts’ during the workshop and the areas where refinement is needed have been discussed in a prior report entitled “Expert Panel Review”. We document in this report some of the methodological advances we have made to date. These advances are on two fronts: failure modes and data.

2. Logical Structure and Data Models of PRA

When PRA is applied, an initiating event is identified first. The initiator propagates throughout the system and finally causes an accident or incident. The probability of the accident and the severity of the accident are the objectives of the PRA. The Logical Model of PRA is a logic representation of the accident.  It captures the propagation of the accident from the initiator to intermediate events to end states (Figure 1), as well as the propagation of failures from component failures to initiators (Figure 2) or intermediate events.

Data models are used to obtain the probability of each event or component failure, part of the Logical Model. The Logical Model is typically composed of a logical mixture of Event trees, Fault trees or Event Sequence Diagrams. ETA (Event Tree Analysis) or ESD (Event Sequence Diagram) is first used to describe accident propagation.  FTA (Fault Tree Analysis) is used to decompose one event in the process to system components (Figure 3). So the probability of the accident is decomposed into the probability of each event in the ETA or ESD. In FTA, each event probability decomposes into each component failure probability. Data models are the models used to calculate the component failure probability.  These models use statistical distributions such as exponential, beta, normal distribution, etc. Thus a top down decomposition approach is used to decompose the system failure probability into each component failure probability and a bottom up method is used to integrate component failure probabilities into the event probabilities. [1, 2]     
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Figure 1   An ESD 
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Figure 2   A Fault Tree 
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Figure 3 Propagation from component to the end states

3. PRA and data

PRA analysis results give the probability of system failures based on the logical and data models established. Different restrictions on the availability of data may force us to restrict our analysis to coarse descriptions of the systems studied (including software and the computer system). We define different data levels which correspond to different levels of data availability and also different levels of logical modeling (since one drives the other and vice-versa). Level 1 is the coarsest level. At this level, one models the software and the computer on which it resides as a single entity to which a failure probability is assigned (see Figure 4). At Level 2, distinctions appear between the main elements of the computer system. One distinguishes between interface failures (at the input and at the output side), failures of the software itself and failures of the hardware support platform. Finally level 3 supports a detailed description of the software failure modes. It includes the following failure modes: software input failures and software output failures separated into: amount (A), load (L), value (V), time (T), rate (R), duration (D) and range (Rg). Support failures include CPU failure (C), Memory failure (M), Peripheral devices’ failures (Pe) and other failures (O) (such as loss of power supply).  

We will refer to these data availability levels in section 3.2 when we analyze the data publicly available for integration of software in PRA.
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Figure 4. Three data availability levels

 3.1 Failure modes

The comments of the experts lead us to revisit the failure modes list that we had established and to add two new failure modes of the interfaces defined as “Data Type” and “Multiple Interactions”. We examine these in the following two subsections. 

Data Type

When the system is in operation, data or command need to be transferred from one component to another, from one subsystem to another. Unfortunately, the data type may be different for different components. Every variable must have a data type. A variable’s data type determines the values that the variable can take and the operations that can be performed on it. A data type is a description of a particular class of data in a program, including the representation of the data, its components and their types, and operations that can be performed on it [7]. The data type specifies the range of the values, the size of the data, the format of the data, the dimension of the data and so on. Examples of data types are integer, floating point number, character, string, array and pointer. For example, the integer 1 has a binary representation of 0x0001 and the float 1.0 has a binary representation of 0x3fffffff8000.

Data type errors arise when a mismatch exists between the data types of two interacting components or subsystems. This failure may be present in any type of interactions: interactions involving human and software, software and hardware, software and other software. 

This failure mode is thus added to our list of input/output failure modes (in Table 1).

	Characteristics
	Definition
	Failure modes

	Amount
	The total number or quantity of input or output.
	The possible failure modes are “Too much” and “Too little”, for instance, the omission of an input or output, the repetition of an input or output, etc.

	Value
	The value taken by the input or output quantity.
	The possible failure mode is “Incorrect value”.

	Range
	The limits of input/output’s quantity.
	The possible failure mode is “Out of range”.

	Type
	A set of data with values having defined characteristics
	The possible failure mode is “Data type mismatch.”

	Time
	The point at which the input or output occurs.
	The possible failure modes are “Premature (too early)”, “Delayed (too late)” and “Omitted (no input/output within the time interval allowed)”.

	Rate
	The frequency at which the input is sent or the output is received.
	The possible failure modes are “Too fast” and “Too slow”.

	Duration
	The time period during which the input or the output lasts.
	The possible failure modes are “Too long” and “Too short”.

	Load
	The quantity that can be carried at one time by a specified input or output medium.
	The possible failure mode is “Overload”.


Table 1 Definition of the Input/Output Characteristics and Corresponding Failure Modes

To more precisely define each characteristic, a formal definition of each characteristic can also be given as follows:

Let I = {I1, I2, …, Ii,…}be the Input vector and Ii be the ith input variable.

The following operators, once applied to I will yield:

The amount
A(I) = | I | 

The value
V(I, i, t) = Value of variable Ii at time t

The range
Rg(I, i) = [Min V(I, i, t) , Max V(I, i, t) ]

The type
T(Ii) = [(I1, type1, Operation1),…,(In, typen, Operationn)]

The time
T(I, i) = the set of points at which Ii goes from undefined to defined

The rate
R(I, i, Tj(I, i))  = m/(time unit) [if Tj+m – Tj ( time unit] 

The duration
D (I, i, Tj(I, i)) = the amount of time during which Ii is defined

The load

[image: image5.wmf](

)

[

]

å

i

j

j

i

I

T

i

I

R

Max

,

,

,

     

The same definitions apply to the output vector O = {O1, O2, …Oi….}.

Table 1 also provides the list of failure modes for each characteristic identified.

Multiple Interaction

Multiple interaction failures are beyond the input-output failures. In the input/output failures, we assumed that there is only one input vector. “Multiple interaction” means that multiple input vectors are sent to one component at the same time. It is possible that simultaneous requests or accesses to certain data or tasks may create a conflict or collision. This could slow down the anticipated speed or may even lead to a state of inactivity. A “multiple interaction” can cause deadlock, lockout, unsynchronization, etc. The failure modes related to “multiple interaction” may include sequence, coordination or direction, etc [4, 5]. Table 2 gives the definition of a multiple interaction and its possible failure modes.

	Characteristics
	Definition
	Possible failure modes

	Sequence
	Order of succession
	Jump forward (one or more processes are skipped), Jump backwards (one or more earlier action that have been carried out, is carried out again), repetition (the previous process is repeated), reversal (the order of the two neighboring actions is reversed).

	Resource competition 
	Competition on computing resources
	Deadlock (a situation in a multiprogramming system in which a process cannot proceed because it is waiting for an event that will never occur, such as a resource assignment in which two tasks simultaneously require use of resources assigned to the other task [7])

Lockout (Sometimes it may happen that a certain process can not proceed due to the other processes are proceeding. For example, if processes are given priorities then a low priority process may never gain access to a busy resource if the resource is occupied by a high priority process. This is called lockout or individual starvation [4])

Unsynchronization (since the computational speeds for different tasks are unpredictable (non-deterministic), the different processes may became unsynchronized, leading to a total breakdown of the tasks. For instance, several processes begin together. They may not all end simultaneously. There is a race condition and the parts of computation containing such processes are time critical. If there is no synchronization to coordinate and control the temporal order in which processes are executed to realize a given non-sequential algorithm, unsynchronization will occur [4] )

	Communication
	A process by which information is exchanged between individuals through a common system of symbols, signs, or behavior
	


Table 2. Definition of a Multiple Interaction and Its Possible Failure Modes

3.2 Data needed for the three Data Availability levels 

The following section discusses the data requirements at the three Data Availability Levels. It is assumed that data is collected from test or from operation.

The following list specifies data to be collected:

N1 = Total number of tests

N2 = Total number of failures 

N3 = Number of software related failures

N31 = Number of software failures itself

N32 = Number of input failures

N33 = Number of support failures

N34 = Number of output failures

N35 = Number of multiple interaction failures

N321 = Number of input failures related to the amount characteristic

N322 = Number of input failures related to the load characteristic 

N323 = Number of input failures related to the value characteristic 

N324 = Number of input failures related to the time characteristic 

N325 = Number of input failures related to the rate characteristic 

N326 = Number of input failures related to the duration characteristic 

N327 = Number of input failures related to the range characteristic

N328 = Number of input failures related to the type characteristic

N331 = Number of CPU failures

N332 = Number of Memory failures

N333 = Number of Peripheral devices’ failures

N334 = Number of other support failures

N341 = Number of output failures related to the amount characteristic 

N342 = Number of output failures related to the load characteristic

N343 = Number of output failures related to the value characteristic

N344 = Number of output failures related to the time characteristic

N345 = Number of output failures related to the rate characteristic

N346 = Number of output failures related to the duration characteristic

N347 = Number of output failures related to the range characteristic

N348 = Number of output failures related to the type characteristic

N351 = Number of multiple interaction failures related to the sequence characteristic

N352 = Number of multiple interaction failures related to the resource competition/communication characteristic

The following relationships exist between these data items:

N3 = N31+ N32+ N33+ N34
N32 = N321+ N322+ N323+ N324+ N325+ N326+ N327+ N328
N33 = N331+ N332+ N333+ N324

N34 = N341+ N342+ N343+ N344+ N345+ N346+ N347+ N348
N35 =N351+N352
From these one can obtain the following set of probability values:

P0 = Failure probability of the system

P1 = Software related failure probability

P2 = Software failure itself probability

P3 = Input failure probability

P4 = Support failure probability

P5 = Output failure probability

P6= Multiple interaction failure probability

P31 = Input failure probability related to the amount characteristic

P32 = Input failure probability related to the load characteristic

P33 = Input failure probability related to the value characteristic

P34 = Input failure probability related to the time characteristic

P35 = Input failure probability related to the rate characteristic

P36 = Input failure probability related to the duration characteristic

P37 = Input failure probability related to the range characteristic

P38 = Input failure probability related to the type characteristic

P41 = CPU failures probability

P42 = Memory failures probability 

P43 = Peripheral devices’ probability

P44 = other support probability

P51 = Output failure probability related to the amount characteristic

P52 = Output failure probability related to the load characteristic

P53 = Output failure probability related to the value characteristic

P54 = Output failure probability related to the time characteristic

P55 = Output failure probability related to the rate characteristic

P56 = Output failure probability related to the duration characteristic

P57 = Output failure probability related to the range characteristic

P58 = Output failure probability related to the type characteristic

P61 = Multiple interaction failure probability related to the sequence characteristic

P62 = Multiple interaction failure probability related to the resource competition/communication characteristic

The testing or operational process can be represented by a Binomial distribution [3]. Using a maximum likelihood estimation for the probability, one can obtain the following set of probability values:
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Data that need to be collected and probabilities that can be assessed are summarized in Table 3 for the three data availability levels.

	Data availability level
	Data that can be collected
	Probability that can be assessed

	1
	N1, N2, N3
	P1

	2
	N1, N2, N3, N31, N32, N33, N34
	P2, P3, P4, P5

	3
	N1, N2, N3, N31, 

N32 = N321+ N322+ N323+ N324+ N325+ N326+ N327+N328,

N33 = N331+ N332+ N333+ N324, 

N34 = N341+ N342+ N343+ N344+ N345+ N346+ N347+N348,

N35 =N351+N352
	P2, P31, P32, P32, P34, P35, P36, P37, P38, P41, P42, P43, P44, P51, P52, P53, P54, P55, P56, P57, P58, P61, P62


Table 3. Data availability levels, data needed and probability.

4. Data Problem

As discussed in Final Report Year 1 [6], software failure data may appear in many different forms.  Our need for data is dual: 

1. We require data to support our failure mode taxonomy,

2. We require data to quantify the different failure contributions to PRA. 

The first need can be satisfied rather easily if one finds detailed records of data.  In order to satisfy this need we have surveyed public sources of information to identify reported failures of aerospace systems due to software/computer failure. Our findings and classification approach are reported in Appendix A. In addition, we obtained detailed records of data from Goddard Space Flight Center and are currently attempting to classify it. 

As for quantification purposes, each type of data may lead to a different quantification approach. It is probably not reasonable within the scope of this project to expect developing a quantification approach for each of the sources of data available. It is more reasonable to develop a generic quantification approach to this problem that could then be tailored to particular applications.   Such approach is documented in Appendix C. The approach is based on expert opinion and Bayesian Belief Networks. The basis of the approach is the identification of factors that contribute to occurrence of failures. Note also that a rough estimate of the probability of failure of launches of space vehicles due to software related failures was obtained while we were investigating public data repositories. These values are given in Appendix B and can serve as normative data for our experts or as rough data numbers to be used in initial PRA evaluations.     

5. Conclusion

In this report, we partially revised the methodology reported in Year 1. In particular we clearly distinguish logical models from data models, we introduce the notion of data availability levels and establish the corresponding data collection requirements. We extend the failure mode taxonomy already established by introducing data type errors and multiple interaction failure modes. Finally we examine possible sources of the data and quantification approaches.
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Appendix A

 Analysis of Real Failure Events in the Space Industry and Their Classification into the Software Failure Modes Identified

We have collected data from real events and classified them into the failure modes discussed in [2]. In this appendix we are discussing the procedure used to collect and categorize this information.

1.The Approach:

The initial list of mishaps was obtained from P.G. Neumann’s website ftp://ftp.sri.com/risks/illustrative.html. Dr Neumann is the Principal Scientist in the Computer Science Laboratory at SRI International (formerly Stanford Research Institute) and has been involved in identification and prevention of risks throughout his career. He is also the author of the book “Computer-Related Risks”. 

The list provided on this website is divided into sections such as Space, Aviation etc. themselves again subdivided into groups like manned, commercial, defense etc. We have analyzed the space events and just two aviation events (Gripen crash and Lufthansa Airbus A320 Crash), which were analyzed before we decided to focus on just the space events as these are more relevant to NASA missions. Although Dr Neumann’s list is comprehensive, it is not detailed enough to perform the classification we need. Even the official sites relevant to these mischances shy away from talking about the particulars. 

The list was fed into search engines and after “extensive” search, data was obtained mainly from the websites of different news and space journals like CNN News (www.cnnnews.com), FLORIDA TODAY(www.floridatoday.com), Washington Post (www.washingtonpost.com) and some educational websites like that of MIT (www.MIT.edu) etc. For every event we have tried to gather information from more than one source in order to guarantee a conclusive analysis. 

Two events actually were classified as mechanical failures rather than software from the information that could be gathered. They are “woodpeckers delay shuttle launch” and “The Challenger Explosion”.

2. The Events Studied and Classified:

To date, we have classified just 19 of the 75 cases studied because of the difficulty in obtaining precise information which was either too overwhelming due to unintelligible technical jargon or was too little for a correct analysis. These are among the infamous and much aired events in the history of software related failures. They include:

1. Ariane 5 Disaster

2. Mars Climate Observer Failure

3. Mars Lander Loss

4. Venus Probe Loses Its Way

5. SOHO Failure

6. Gripen Crash

7. Lufthansa Airbus A320 Crash

8. Patriot Missile Misses

9. Sea Launch Rocket Dropped

10. Phobos 1 loss

11. Bug in Mercury Software

12. Shuttle Atlantis Launch Delay

13. Mir Damage

14. Atlantis Launch Delay (Once Again)

15. Two Sounding Rockets Prematurely Launched

16. 1969 Launch of Apollo 12

17. Break up of Atlas Centaur 67

18. Titan IVA-20 Accident

19. Nonviolent resistor destroys Aries Launch

The results of this classification are summarized in Table A1.

Table A1: Summary of Classification Results

	Type of Failure Mode
	# of Failures and Event Numbers corresponding to the failure mode
	% of the total failures classified

	Omission of a function
	2    (3,5)
	10.5263

	Incorrect realization of a function
	4    (4,9,11,18)
	21.0525

	Omission of an attribute
	1    (1)
	5.2632

	Incorrect realization of an attribute
	2    (6,7)
	10.5263

	Wrong value of input
	2    (2,10)
	10.5263

	Memory failure
	1    (8)
	5.2632

	CPU failure
	1    (14)
	5.2632

	Other support failure
	3   (12, 13,19)
	15.7895

	Environmental failure
	3   (15,16,17)
	15.7895


The events that were studied but could not be classified are listed in Table A2.

Table A2. Events that were studied but could not be classified:

· Mercury astronauts forced into manual reentry 

· Space Shuttle Columbia backup launch-computer synch problem. 

· STS-2 shuttle simulation: bug found in jettisoning an SRB 

· STS-2 shuttle operational simulation: tight loop upon cancellation of an attempted abort; required manual override 

· STS-6 shuttle bugs in live Dual Mission software precluded aborts 

· STS-9 Columbia return delayed by multiple computer malfunctions 

· STS-16 Discovery landing gear - correlated faults 

· STS-18 Discovery positioned upside down; mirror to reflect laser beam from Mona Kea aimed upward (+10,023 miles), not downward 

· STS-20 Two-day delay of Discovery launch: backup computer outage 

· Shuttle Discovery shutdown procedure for two computers reversed 

· STS-24 Columbia near-disaster, liquid oxygen drained mistakenly just before launch, computer output misread 

· Columbia orbiter suddenly rotates, due to telemetry noise 

· Columbia delayed by computer, interface, sensors; then navigation 

· Shuttle Endeavour computer miscomputes rendezvous with Intelsat satellite; nearly identical values interpreted as identical; those SW problems force spec changes 

· Atlantis spacecraft computer problem fixed in space 

· Untested for change, SW delays shuttle launch; 3-min on-line fix 

· V Columbia launch scrubbed at T-3sec 22Mar93, leaky valve 

· V STS-56 Discovery launch scrubbed at T-11sec 5Apr93, main propulsion system high-point bleed valve open-indicator went to off, closed-indicator did not switch to on. 

· Discovery SRB recovered with missing pair of pliers 

· Channel blocked, Discovery exhausts storage for ozone data 

· Docking problem aboard Soviet space station Mir 

Satellites, Probes, Others: 
· Hubble Space Telescope antenna swing causes shutdown 

· More Hubble SW: misloaded ephemeris table, bad macro 

· $150M Intelsat 6 comm satellite failed; booster wiring error, payload in wrong bay; miscommun. between electricians and programmers 

· Canadian TeleSat Aniks die: solar coronal hole electron flux Anik E-2 control restored, but with shorter life ($203M asset) 

· V Taurus rocket plunges into Indian Ocean, destroying Orbital Imaging satellie, 

· 5 printers off-line or jammed, Voyager 1 data lost over weekend 

· Voyager 2 software faults at launch, 20 Aug 1977 

· Titan 34D, Nike Orion, Delta-178 failures follow Challenger 

· Titan 4 rocket test-stand SRB explosion; simulation missed failure mode 

· Titan 4B leaves missile warning satellite in useless orbit 

· Titan 4B with Milstar communications satellite separates four hours early, resulting in a useless low orbit, 30 Apr 1999 

· 6 successive Theater High-Altitude Area Defense (THAAD) failures, including three typos; then a "success" 

· Delta III launch ends after 71 seconds due to software flaw; two weeks later, Delta III leaves Loral Orion comm satellite in useless low orbit 4 May 1999 

· Centaur/Milstar upper-stage failure due to attitude-control system software 

· Private imaging satellite Ikonos 1 disappears 8 minutes after launch (S 24 4:26, R 20 36); loss blamed on an electrical problem that prevented the aerodynamic payload cover from coming off. 

· Terra spacecraft navigation software problems 

· Russian rocket blows 12 Globalstar satellites 

· Computer blamed for Russian rocket crash 

· Fascinating historical case recently reported of Russian KORD N-1 rocket-engine shutdown system failures, 1969, 1971, 1973

· Boeing space station tanks accidentally taken to Huntsville dump 

· Space Station endangered by NASA flight controllers' blunder in maneuvering around space junk; predicted distance also way off 

· SH Space Station Problem Reporting Database hacked 

· Canaveral Rocket lost; wrong key hit in loading guidance SW 

· NASA finds problems in EOSDIS Earth Observing System (EOS) spacecraft flight operations software development, expected to delay launch 

· Apollo 11 lunar module, pen used to replace circuit breaker 

· Gemini V 100mi landing err, program ignored orbital motion around sun 

· VSH Lauffenberger convicted of logic bombing GD's Atlas rocket DB 

· Navy Atlas rocket places satellite in worthless orbit 

· Aries with $1.5M payload lost: wrong resistor in guidance system; 

· TDRS relay satellite locked on wrong target 

· AT&T Telstar 401 satellite failure 

· Satellite system outage hits Associated Press 

· Ariane 5 test problems: motor failures, nitrogen leak 

3.The Data Collection Form:

We have devised a form specific to the purpose of classification. The objective was to include as much information as possible in an apposite way that gives a good grasp of the event, the reason for the failure and the justification of choosing a particular failure mode. 

Page 1 of the form has the analyst’s and the reviewer’s name, the event name and the date. It includes all the failure modes identified and also a column for the details of any unresolved failure. By unresolved we mean there was not enough data to classify the failure conclusively. 

Page 2 contains the specifics of the failure like the 

· function name in case of  omission of a function or incorrect realization of a function 

· the type of incorrect realization of the function 

· the name of the attribute missing

· the type of incorrect realization of the attribute 

· support failure modes specification

· environmental failure modes specification

It contains the justification of the failure mode where we quote particular lines from the data obtained. The data collected is attached to the form with the pertinent information on the failure highlighted. These lines give an overview of the failure and hence the justification of classifying it into a particular mode. The form also indicates the related reason if any, for the failure and the sources, main and otherwise. Related reason could be anything like improper inspection, human error etc.

Page 3 is just an extension of the “Name of the attributes” field in Page 1, and contains Table A4, which lists some additional attributes. 

For more clarity, an instance of a failure and how we have mapped it into the form (Table A3) is presented below. 

The event is “Sea Launch Rocket Dropped” which occurred on the 12th of March 28, 2000. The main data collected is from the Boeing (one of the partners of Sea Launch) website (http://www.boeing.com/news/releases/2000/news_release_000515s.html). The supportive data is from Spacedaily (www.spacedaily.com,), Spaceflight (www.spaceflightnow.com).   The data gives us every reason to believe that the failure was due to the incorrect realization of the function: closure of the pressurization valve on the rocket in the second stage. The incorrect realization was that though it was meant to be there at the design stage, it was not implemented due to ground software logic error. The data also says that the contributing factor was improper inspection, which is also mentioned in the form. 

Table A3. The Data Collection Form

Page1

	Event No

     10

 Appendix A
	Event Name 

Sea Launch Rocket Dropped
	Analyst’s Name: 

Susmita Ghose
	Reviewer’s Name:
	Date:

01/17/2002

	Mapping into Failure modes

	Functional Failure Modes
	Interaction Failure Modes
	Support Failure Modes

	Omission of a function


	
	Amount
	Too Much


	
	CPU Failure*
	

	Incorrect realization of a function


	V
	
	Too Little
	
	Memory Failure*
	

	
	
	
	
	
	
	

	
	
	Load 


	Overload


	
	Peripheral Devices Failure: *
	

	Function was implemented 

although not specified in the requirements


	
	
	
	
	
	

	
	
	
	
	
	Other Support Failure: *
	

	
	
	Value


	Wrong Value


	
	
	

	Omission of one of the attributes in the function


	
	
	
	
	Environmental Impact Factors
	

	
	
	Time
	Premature


	
	
	

	
	
	
	
	
	Interference with other signals
	

	Incorrect Realization of the attribute


	
	
	Delay
	
	Barometric pressure
	

	
	
	
	
	
	Low gravity
	

	
	
	
	
	
	Fires
	

	
	
	
	
	
	Floods
	

	
	
	
	Omission
	
	Snow
	

	Introduction of the attribute not specified in the requirements


	
	
	
	
	Temperature
	

	
	
	
	
	
	Air conditioning 
	

	
	
	Rate
	Too fast
	
	Saline atmosphere
	

	
	
	
	
	
	Humidity
	

	
	
	
	
	
	Others **
	

	Omission of one of the functions of the set S


	
	
	Too slow
	
	Unresolved

	
	
	
	
	
	

	
	
	Duration
	Too long
	
	

	Introduction of a function not in set S


	V
	
	
	
	

	
	
	
	Too short
	
	

	
	
	
	
	
	

	Replacement of a function in set S by another function


	V
	
	
	
	

	
	
	Range
	Out of range 
	
	

	Function Name:
	Closure of the pressurization valve on the rocket in the second stage

	Type of Incorrect Realization Of the function: 


	Though present in the design, it could not be implemented due to a ground software logic error.  The other possible reasons for the software logic error  are Introduction of a function not in set S or Replacement of a function in set S by another function.

	Name of the attribute:
	Adaptability
	
	Reliability
	
	Assurability
	

	
	Testability
	
	Efficiency
	
	Reusability
	

	
	Reusability
	
	Integrity
	
	Interoperability
	

	
	Reparability
	
	Correctness


	
	Portability


	

	
	Others:   Table 1(page 3)
	

	Type of Incorrect Realization

 Of the attribute:
	

	Variable name:


	

	Support Failure Modes Specification *
	

	Other Environmental Impact Factors Specification **


	

	Justification of the

Selection of the failure mode:


	All data presented supports earlier partner reports identifying the ground software logic error and associated lack of valve closure as the single credible failure scenario and the root cause.



	Related Reason given for the failure


	Improper inspection

	Main  Source:
	http://www.boeing.com/news/releases/2000/news_release_000515s.html

	 Other sources:
	www.spacedaily.com, www.spaceflightnow.com


Page 2
Table A4: Other Attributes:
Page 3

	Acceptability
	
	Effectiveness
	
	Security
	

	Accessibility
	
	Error-Tolerability
	
	Self-containment
	

	Accountability
	
	Expandability
	
	Survivability
	

	Accuracy
	
	Flexibility
	
	Timely
	

	Appropriateness
	
	Generality
	
	Understandability
	

	Assurance
	
	Maintainability
	
	Usability
	

	Availability
	
	Manageability
	
	User-Friendliness
	

	Clearness
	
	Modifiability
	
	Validity
	

	Completeness
	
	Modularity
	
	Verifiability
	

	Consistency
	
	Preciseness
	
	
	

	Documentation
	
	Robustness
	
	
	                         


Appendix B

 Calculation of Failure Probability and Software Related Failure Probability of Space Events in the year of 1999, 2000, 2001 and 2002

In this appendix we have calculated failure probability and software related failure probability of space events in the year of 1999, 2000, 2001 and 2002.

We have obtained mission archives data from SPACE.com, first multimedia company dedicated to space and space related content and a definitive space web site. It has a complete list of every major launch to orbit during the year 1999, 2000, 2001 and 2002. Using this data, we have calculated N​1, N2, N3, P0, and P1 as described in the main report, Report 1, 2002, for all the above years and then averaged them over the four years. The table below (Table B1) gives the details:

	Year
	N1
	N2
	N3
	P0
	P1

	1999
	78
	7
	3
	0.08974
	0.03846

	2000
	      86
	4
	0
	0
	0

	2001
	      57
	       2
	       1   
	0.03508
	0.01754

	     2002

	      16
	       0
	       0         
	       0
	       0

	Average 
	237
	13
	       4
	0.05485
	0.01688


Table B1. Details of the Calculation of Failure Probability and Software Related Failure Probability of Space Events in the year of 1999, 2000, 2001 and 2002

References:

1. Andrew P. Sage, James D. Palmer “Software Systems Engineering” A Wiley-Interscience Publication, 1990.

2. Dr. Carol Smidts, Ming Li, Bin Li “Integrating Software Into Probabilistic Risk Assessment”, NASA Report, 2001

3. Space.com Website (URL: www.space.com)

4. P.G. Neumann website (ftp://ftp.sri.com/risks/illustrative.html)

5. Boeing website

     (http://www.boeing.com/news/releases/2000/news_release_000515s.html)

6. Journals website: www.spacedaily.com, www.spaceflightnow.com
Appendix C

Expert Judgment

In this appendix, we present the expert opinion methodology basis for the probability of failure assessment. It includes the number of experts needed, guidelines for expert selection, expert profile needed for this study, approaches to resolve expert calibration and expert dependence issues, problem definition, procedure, questionnaires and aggregation of expert opinions.

1. The Number of Experts

The minimum number of experts to ensure a good group performance is somewhat dependent on the study design. Experiments by Brockoff (1975) suggest that under ideal circumstances, groups as small as four can perform well [7].

The following examples show how many experts were used in different expert opinion studies:

University of Maryland selected 10 experts from over thirty potential candidates to estimate the ranking working of software engineering measures with respect to their ability to predict reliability [11]. 

Willamson’s study at the Philips Electric Corporation Plant in Eindhoven, Holland,1970. Fifty doctors were asked to estimate the percentage of male employees absent from work due to sickness. [10]

In 1968, the National Industrial Conference Board used 70 people in experimental public affairs forecast. [10]

A policy Delphi in San Mateo County involved 80 people. [10]

In 1973, a panel on drug abuse invited 39 experts. [10]

A panel of 5 climatologists was selected by NRC to provide probability distributions of temperature and precipitation changes at different time epochs.  [2]

Fifty nine experts were used to develop a concept model of phenomena and factors in disposal solid radioactive wastes. [5]

Twenty six experts were selected to provide gas pipeline failures. [6]

“The majority of Delphi studies have used between 15-20 responses”. [12]

“A group of 4-6 judges with collective experience from HRA, PRA, plant design and operations to assess the human error probabilities”. [16]

Decision: The examples illustrate that: “the lower bound of the number of experts used is 4. The upper bound is beyond 100. The number of experts in the majority of expert panels is 15-20.” Our study will target 15-20 experts. However, budget and expert availability constraints may require us to revisit this number.

2. Expert selection considerations

Experts include substantive experts (analysts and decision makers) and normative experts. Normative experts express and aggregate the substantive experts ‘s beliefs in form of probability distributions. [3]

NUREG-1150 defines the following guidelines for selection of experts [9]:

1. Experts should have demonstrated experience by publication, hands-on experience, and consulting or managing research in the areas related to the issues under study.

2. Each expert should be versatile enough to address several issues and have extensive experience to consider how these issues would be used.

3. Experts should represent a wide variety of experiences as is obtained in universities, consulting firms, laboratories, nuclear utilities or government agencies.  

4. The experts should represent as wide a perspective of the issue as possible.

5. The experts should be willing to be elicited under the methodology to be used.

Thorne[5] proposes a selection process which emphasizes:

1. The building of a matrix of potential experts and their areas of expertise.

2. The selection of experts with competence in several of the major areas of interest from different organizations and maintaining the high level of expertise of the group.

3. The fact that the final group should contain two or more experts with expertise in each main area.

3. Expert Profile for our study

Our study focuses on the identification of the influence factors that impact or cause software errors and thus that will later result in software or system failures.

Therefore experts invited to participate in our study should have the following areas of expertise:

software engineering, software reliability, software quality assurance (testing, inspection), software safety, software development, software measurement, software design, software maintenance, software verification and validation, system integration, project management, system design, digital I&C design, real time system, human reliability, human interface design, training management, operating systems, safety-critical systems, space systems. 

4. Expert Calibration 

Expert bias is the deviation seen between the value provided by the expert and the true value. It includes location bias and overconfidence [3, 4].  The former refers to the systematic over or underestimation of the variable quantity, and the latter refers to a tendency to state an artificially smaller range than the actual state of knowledge of the expert mandates. Expert calibration is the assessment and compensation of these biases.

Expert training can be used to correct the expert bias. Expert training is typically carried out with the intention of helping the experts to encode their knowledge in a form compatible with the methodology used to perform expert opinion aggregation [3,9,15]. This technique can reduce the overconfidence biases.

“To familiarize the experts with their biases, the experts were asked to make probability assessments of different known quantities. Feedback on the goodness of their assessed distributions was provided to them. Feedback is considered valuable and experts can learn from past errors. This technique can reduce overconfidence bias.” [3] Therefore any evidence that can be valuable in judging the performance of experts is useful for the purpose of calibrating experts’ judgment. 

Experts can be calibrated based on their estimates of seed variables. Seed variables are those events whose true distributions are available but are not known to the experts. 

The other method for reducing the overconfidence biases is to offer other alternatives and encourage experts to find the reasons that would contradict their initial opinions. It is believed that if the expert searches for contrary evidence, he would very likely discover reasons for being less confident about his belief and may change his mind by his second thinking on the subject [3].

Location biases are generally corrected by the Bayesian aggregation method [3].

5. Expert dependence [3, 13]

“There are many sources of dependence among experts. Similarities in training, education and experience are some of the more important ones. It is important to understand the experts’ assumptions before an assessment of dependence is attempted.” [3]. If the experts are dependent, then the reduction in uncertainty approaches a limiting value, thus making the use of many experts unnecessary [13].

We will try to use independent experts. To make the experts as independent as possible, we will select the experts from different organizations: universities, military research center, industry, commercial software companies, government agencies and experts graduated from different universities. Table C.1 provides the expert information needed for us to identify the expert dependence. After the expert judgments are made, aggregation will be used to reduce the dependence.  

Table C.1 Expert information

	Name
	

	Areas of Expertise
	Software engineering, software reliability, software quality assurance (testing, inspection), software safety, software development, software measurement, software design, software maintenance, software verification and validation, system integration, project management, system design, digital I&C design, real time system, human reliability, human interface design, training management, operating systems, safety-critical systems, space systems. (You can mark one or multiple) 

Others (You can fill): 

	Occupation (title, company)
	

	Education (B.S./M.S/Ph.D, university)
	

	Experience (company name, years, work) 
	

	Other training (for example, Certificate)
	

	Publications
	


6. Procedures

The following paragraph is a definition of the procedure to be followed while carrying out the expert opinion elicitation. This procedure is derived from [5,8].

The steps are as follows: 

1. Creation of the problem definition statement;

2. Formation of a team to monitor the expert panel; 

3. Determination of the expertise required. Selection of one panel to participate in the exercise; 

4. Development of the first round questionnaire; 

5. Testing the questionnaire for proper wording (e.g., ambiguities, vagueness); 

6. Transmission of the first questionnaire to experts; 

7. Analysis of the first round of responses; 

8. Preparation of the second round questionnaire (and possible testing of the questionnaire for ambiguities and vagueness); 

9. Transmission of the second round questionnaires to experts;

10. Analysis of the second round of responses (Steps 8 to 10 are reiterated as long as desired or necessary to achieve stability in the results.), Three or four rounds may be needed; 

11. Preparation of a report by the analysis team to present the conclusions of the exercise;

This procedure describes an approach which although theoretically sound, may result in being costly and lengthy with the risk of experts losing interest or not being motivated in continuing the experiment. We are currently investigating an alternative approach which would result in lesser rounds of questionnaires and less spread-out interactions with the experts.

7. Problem Definition 

This paragraph gives a short definition of the problem to be handed to the experts participating in the expert opinion study. 

7.1 Introduction to PRA

Probabilistic risk assessment (PRA) is a technique to assess the probability of failure or success of a system. Current PRA mostly focuses on risk from hardware failures and neglects the contributions of software to the risk of mission failures. This is due to a lack of techniques necessary for the systematic integration of software in PRA. The general objective of our research is to develop such techniques and to prove the conceptual validity of the methodology on a specific subsystem of the Space Station.

Probabilistic Risk Assessment usually answers the following four basic questions:

1. What can go wrong, or what are the initiators or initiating events (undesirable starting events) that lead to adverse consequence(s)?

2. What and how severe are the potential adverse consequences of the occurrence of the initiator?

3. How likely are these undesirable consequences to occur, or what are their probabilities or frequencies?

4. How confident are we about our answers to the above questions?

 7.2 Logical Structure and Data Models of PRA

When PRA is applied, an initiating event is identified first. The initiator propagates throughout the system and finally causes an accident or incident. The probability of the accident and the severity of the accident are the objectives of the PRA. The Logical Model of PRA is a logic representation of the accident.  It captures the propagation of the accident from the initiator to intermediate events to end states (Figure C.1), as well as the propagation of failures from component failures to initiators (Figure C.2) or intermediate events.

Data models are used to obtain the probability of each event or component failure, part of the Logical Model. The Logical Model is typically composed of a logical mixture of Event trees, Fault trees or Event Sequence Diagrams. ETA (Event Tree Analysis) or ESD (Event Sequence Diagram) is first used to describe accident propagation.  FTA (Fault Tree Analysis) is used to decompose one event in the process to system components (Figure C.3). So the probability of the accident is decomposed into the probability of each event in the ETA or ESD. In FTA, each event probability decomposes into each component failure probability. Data models are the models used to calculate the component failure probability.  These models use statistical distributions such as exponential, beta, normal distribution, etc. Thus a top down decomposition approach is used to decompose the system failure probability into each component failure probability and a bottom up method is used to integrate component failure probabilities into the event probabilities. [1, 2]     
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Figure C.1   An ESD 
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Figure C.2   A Fault Tree 
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Figure C.3 Propagation from component to the end states

7.3 Modeling the Software Contribution to Risk

The contribution of software (including its computer platform) to risk is articulated within this modeling framework.  If the software performs major system level functions such as for instance navigation and control, its contribution will most probably emerge at the ETA or ESD level as either an initiator or an intermediate event (see Figure C4a). If the functions carried out by the software are at the component level, software contribution will certainly be modeled in the Fault Tree (Figure C4b). 
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Figure C.4a Software as an intermediate event
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Figure C.4b Software failure at the component level

To understand how software (and its computer platform) intervenes in a failure scenario, one needs to comprehend how software interacts with other systems or sub-systems involved in the accident propagation. In essence the software is in charge of a specific functionality. Impairment of such functionality might result in the initiation of an accident or the further degradation of a preexisting accident condition. Such impairment may occur under four different sets of conditions discussed next:

1. The software may have been implemented incorrectly and does not meet its specified requirements. The functionality is impaired. (This mode of failure is assigned probability P1).

2. The hardware platform on which the computer is hosted is not performing adequately. The software is affected and the software functionality is impaired. (This mode of failure is assigned probability P2).

3.  Interface issues have arisen between the software and the systems or sub-systems it interacts with. For instance the software may be receiving data from hardware devices and it may send the outputs it calculates to displays to be interpreted by operators.  Interface failures will occur if the software does not expect the particular inputs it receives and as such it may not be able to perform the intended functionality. Or else the software might well conform to its specifications but send outputs to the system downstream (here the displays to be interpreted by operators) which were not expected.   These two situations correspond to actual systems analysis failures where the interaction between interacting systems has not been understood correctly and/or expected. These two situations, i.e. problems with the upstream system or on the input side of the software and issues with the output side of the software or downstream side, are assigned probabilities P3 and P4 respectively.

These different modes of failure can be further decomposed if one wishes to perform a more detailed analysis. However we are initially interested in the sole quantification of P1, P2, P3 and P4 (Figure C5). To perform such quantification we want to first investigate the factors that influence occurrence of each of these four failure modes, the causal relationships between factors and the four modes of failure as well as the likelihood of occurrence of each failure mode as a function of the factors (Figure C6).
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Figure C.5  P1, P2, P3 and P4
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Figure C.6 P1 and its three influence factors F1, F2, F3

This causal network and its associated probabilities (Table C.2, Table C.3, Table C.4) are called Bayesian Belief Network (BBN). BBN theory is summarized in the next section.  

Table C.2  Probability of Factors F1, F2, F3

	
	High
	Medium
	Low

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	


Table C.3     Conditional Probability of intermediate nodes N1

	F1
	High
	Medium
	Low

	F2
	High
	Medium
	Low
	High
	Medium
	Low
	High
	Medium
	Low

	N1
	
	
	
	
	
	
	
	
	


Table C.4 Conditional Probability of P1

	N1
	High
	Medium
	Low

	F3
	High
	Medium
	Low
	High
	Medium
	Low
	High
	Medium
	Low

	P1
	
	
	
	
	
	
	
	
	


7.4  Introduction to BBN (Bayesian Belief Network)

A Bayesian Belief Network (BBN) is a graphical network (influence diagram) that represents the probability relationships among random variables. In the network, nodes represent uncertain events (with a set of node probability tables (NPTs)) and arcs represent the causal/relevance relationships between nodes. 
The structure of a BBN is defined formally as a triplet (N, E, P), where N is a set of nodes, E  N  N, is a set of edges, and P is a set of probabilities. Each node in N is labeled by a random variable vi, where 1  i N
. Each variable vi takes on a value from a discrete domain and is assigned a vector of probabilities, labeled Belief (vi) or Bel(vi ). Each probability in Bel(vi ) represents the belief that vi will take a particular value. D = (N, E) is a directed acyclic graph (DAG) such that a directed edge e = (si, ti )  E indicates causal influence from source node si to target node ti. For each node ti, the strength of causal influence from its parent si is quantified by a conditional probability distribution p(tisi), specified in an m n edge matrix, where m is the number of discrete values possible for ti and n is the number of values for si.
BBNs have been used in artificial intelligence research to provide a framework for reasoning under uncertainty. Research is being carried out on the application of BBN concepts to software reliability modeling. BBNs provide a mathematically sound technique (Bayesian probability theory) for modeling uncertainties inherent in software development. They can reflect dynamic changes in a software system or development process by means of Bayesian updating. 

The following example shows what is BBN, how it works.
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Figure C.7  BBN of train strike and late

The nodes represent variables, which can be discrete or continuous. For example, a node might represent the variable 'Train strike' which is discrete, having the two possible values 'true' and 'false'. The arcs represent causal relationships between variables. For example, suppose we have another variable 'Norman late' which is also discrete with values 'true' and 'false'. Since a train strike can cause Norman to be late we model this relationship by drawing an arc from the node 'Train strike' to the node 'Norman late'
The key feature of BBNs is that they enable us to model and reason about uncertainty. In our example, a train strike does not imply that Norman will definitely be late (he might leave early and drive), but there is an increased probability that he will be late. In the BBN we model this by filling in a probability table for each node. For the node 'Norman late' the probability table (also called the Node Probability Table or NPT) might look like this:

Table C.5  NPT of Norman late

	Norman late
	Train Strike

	
	True
	False

	True
	0.8
	0.1

	False
	0.2
	0.9


This is actually the conditional probability of the variable 'Norman late' given the variable 'train strike'. Informally, the particular values in this table tell us that: Norman is very unlikely to be late normally (that is, the probability Norman is late when there is no train strike is 0.1), but if there is a train strike is he is very likely to be late (the probability is 0.8). Now suppose that Norman has a colleague, Martin, who usually drives to work. To model our uncertainty about whether or not Martin arrives late we add a new node 'Martin late' to the graph and an arc from 'Train strike' to this node. A train strike can still cause Martin to be late because traffic is heavier in that case. However, the probability table for 'Martin late', shown here, is very different in content to the one for 'Norman late':

Table C.6  NPT of Martin late

	Martin late
	Train Strike

	
	True
	False

	True
	0.6
	0.5

	False
	0.4
	0.5


Informally, Martin is often late, but a train strike only increases the likelihood of his lateness by a small amount. In the event of a train strike Martin is less likely to be late than Norman.

The probability table associated with the node 'Train strike' is somewhat different in nature. This node has no 'parent' nodes in this model (we call it a root node), and therefore we only have to assign a probability to each of the two possible values 'true' and 'false'. In the following table the actual values suggest that a train strike is very unlikely.

Table C.7  NPT of Train strike
	
	Train Strike

	True
	0.1

	False
	0.9


Having entered the probabilities we can now use Bayesian Probability to do various types of analysis. For example, we might want to calculate the (unconditional) probability that Norman is late:
p(Norman late) = p(Norman late | train strike) * p(train strike) + p(Norman late | no train strike) = (0.8 * 0.1) + (0.1 * 0.9) = 0.17
The most important use of BBNs is in revising probabilities in the light of actual observations of events. Suppose, for example, that we know there is a train strike. In this case we can enter the evidence that 'train strike' = true. The conditional probability tables already tell us the revised probabilities for Norman being late (0.8) and Martin being late (0.6). Suppose, however, that we do not know if there is a train strike but do know that Norman is late. Then we can enter the evidence that 'Norman late' = true and we can use this observation to determine:
a) the (revised) probability that there is a train strike; and
b) the (revised) probability that Martin will be late.
To calculate a) we use Bayes theorem:
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p(train strike | Norman late) = —047





Thus, the observation that Norman is late significantly increases the probability that there is a train strike (up from 0.1 to 0.47).

8. Questionnaires [5,14]

The following paragraph lists the questionnaires to be developed for each round of expert opinion elicitation. In addition we identify the analysis to be performed after each elicitation (Table C.8).

Table C.8 Questionnaires

	Round
	Questionnaire
	Analysis

	1
	This questionnaire will elicit a list of all the factors that impact P1, P3 and P4 individually. In addition, the experts will be requested to provide the relative importance of each factor.


	The analysis will identify and eliminate duplicate factors in the list provided. A revised list of factors will be compiled for P1, P3 and P4.



	2
	This questionnaire identifies factors that can be safely excluded from the list.

The experts are also asked to group the factors in subgroups. Factors belonging to a subgroup can be considered together in the assessment.

The experts are also asked to determine which factors are undoubtedly of importance in the assessment of P1, P3 and P4.


	The analysis produces an updated list of factors and groups of factors.



	3
	Given, the final list of factors and groups of factors, the experts are asked to describe the relationships among factors and P1, P3 and P4. How do these factors impact, influence or cause P1, P3 and P4?


	The causal relationships expressed by the different experts need to be transformed into BBN form. It is expected that experts may provide causal relationships in many different and diverse formats. 

The analysis will produce 2 or 3 versions of the causal network. The first version will be a comprehensive version including all expert opinion relationships.  The second and third causal networks will be reduced versions of the comprehensive network. They will be easy to use and will hopefully provide reasonable estimates. This will be done for P1, P3 and P4. Hence we expect to generate 3 to 9 causal networks.



	4
	The experts will be asked to comment the different versions of the causal relationships. The experts will be requested to provide comments on each version. They will be asked to evaluate the adequacy of the relationships, to determine missing relationships. They will also be asked to determine whether the reduced versions are acceptable or not.


	The analysis will produce a final version of the causal relationship for P1, P3 and P4. Target nodes, observable nodes and intermediate nodes will be determined.



	5
	After establishment of a final version of the relationship, experts will be asked to estimate the probability distribution for occurrence of the factors as well as the conditional probability tables between causal factors and intermediate nodes, intermediate nodes and target nodes
	The probability distribution for the target nodes will be obtained by aggregating the information provided using for instance a tool such as HUGIN (BBN tool). 




9. Aggregation

Aggregation of multiple opinions is needed to obtain more accurate results.  A considerable body of research supports the aggregation of multiple opinions [1, 2, 3]. The scientific literature generally agrees that there mainly exists two approaches of aggregation of expert opinion: behavioral aggregation and mathematical aggregation. Behavioral aggregation [1, 2, 3] attempts to generate agreement among experts by having them interact in some way. Mathematical aggregation [1, 2, 3 ,17 ,18] can be used for the value of occurrence of the factors. It includes equally weighted average, weighted average, psychological scaling, Bayesian methods, etc.

In our study, behavioral aggregation can be used to combine the list of factors provided by the different experts and to combine the causal relationships provided by these experts. Mathematical aggregation will be used to combine the probabilities given by the experts. Bayesian aggregation (BBN) will finally be used to obtain the different probabilities of interest. The software tool HUGIN will be used for BBN implementation.
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