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1.Introduction

In [1], we proposed a software-related failure mode taxonomy and a three level PRA sub-model. In this report, we build on this initial work and introduce a test-based approach to integrate software into PRA. More specifically, we define how to model and quantify the software contributions to PRA when code is available and failure data can be gathered through testing the software application. A case study is discussed.

2.Approach

In this report we present how software contributions to system PRA can be modeled and quantified within the frame of a classical PRA analysis, i.e. within a modeling environment that uses primarily combinations of Event Sequence Diagrams (ESDs) or Event Trees (ET) and Fault Trees (FTs). 

The approach is defined with the following assumptions in mind: 

1. The preliminary PRA for the system exists, i.e. A PRA was developed at an earlier time for this particular system. This PRA models the contributions to risk of hardware components as well as those of humans or members of the crew.

2. The code is available and success or failure data may be collected through testing the actual application;

3. The code runs on the intended machine and the environmental conditions are representative of the conditions of use (radiation, humidity, etc).

The methodology proposed is based on the following steps:

Step 1:
Identify events/components controlled/supported by software in MLD, accident scenarios and fault trees.

Step 2: Specify the functions involved

Step 3: Model the software functions in ESDs/ETs and Fault Trees 

Step 4: Construct the input tree(s)

Step 5: Reduce the input tree(s)

Step 6: Quantify the input tree

Step 7: Develop and perform the software safety tests

An example system (exiting system in a building) is provided to discuss the application of the approach. The exit system includes an emergency exit system and the PACS system. The Emergency exit system includes an emergency exit door and a marked egress router. It provides an escape route for personnel located inside the building during emergency situations.
PACS is a simplified version of an automated Personal entry/exit Access System (PACS) used to provide privileged physical access to rooms /buildings, etc. The functioning of PACS is summarized as follows: A user inserts his personal ID card that contains his name and social security number into a reader. The system searches for a match in the software system database which may be periodically updated by a system administrator, instructs/disallows the user to enter his personal identification number, a 4 digit code using a display attached to a simple 12 position keyboard, validates/invalidates the code, and finally instructs/disallows entry into/exit out of the room/building through a gate. A single line display screen provides instructional messages to the user. An attending security officer monitors a duplicate message on his console with override capability [2, 3]. The functional diagram of PACS is given in Figure1.
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We introduce the approach step by step using the example system. In section 2.1 we discus the process of identification of events/components controlled/supported by software. Section 2.2 introduces the identification of the software functions involved. Section 2.3 models the software functions in the PRA using ESD/ET and FT. Section 2.4 proposes the input tree concept and constructs the software input tree. Section 2.5 quantifies the software input tree. Section 2.6 develops and performs the software safety testing.

Figure 1. Functional Diagram of PACS

2.1 Identify events/components controlled/supported by software

In a traditional PRA, software functions are not considered at all. But some events/components in PRA are controlled or supported by software. Therefore, identification of the events/components controlled/supported by software is the first step of the approach. In this step one has to:

· Identify events/components controlled/supported by software in the Master Logic Diagram (MLD), accident scenarios, and fault trees.

· For all such events, create/expand contributors to account for software.

· Verify that no neglected “events” may now have become possible due to software.

2.1.1 Identify events/components controlled by software in the MLD

In a classical PRA, MLDs are used to identify the initiating events. But at the current time, software is not considered in this process. To systematically identify the contribution of software, one should first screen the existing MLD and identify those components or events that are supported or controlled by software. All such events/components are of interest and point to a software contributor. For all such events, the relevant software contributor should be added. Also, it is important to verify that no neglected “events” may now have become possible due to software. Figure 2 and Figure 3 presents the difference between the initial MLD and the revised MLD of the exit system. The MLD top event is “loss of occupants”. In the initial MLD only hardware failures were accounted for, e.g. gate failure in Figure 2. But the revised MLD includes a software failure contribution under the gate failure because the gate is software-controlled. Another software contributor was also added to account for the ability of the software to provoke increases in temperature (since temperature is also software-controlled). A temperature increase had been ignored in previous analysis since the analyst had considered that the probability of failure of the hardware equipment was negligible and could not reasonably produce such failure of the temperature control (See Figure 3).  The addition of software contributors in the MLD may lead to the identification of pure “software initiators” and the creation of entirely new accident scenarios that were not present in the initial PRA.
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Figure 2. MLD of Exit system without software
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Figure 3. MLD of Exit System including software

2.1.2 Identify events/components controlled by software in accident scenarios
In addition to new initiators, existing accident scenarios need to be screened to determine whether or not they should be modified to account for software contributors. Accident scenarios describe the development of the accident from the initiating event to the end events. The approach followed is similar to the one used for identification of initiators in the MLD.  Each ESD is analyzed in turn to determine whether some events are controlled (generated/modified) by software.

We consider once again PACS to illustrate the procedure and more specifically select an accident scenario initiated by a Fire. The end states are loss of life or not. The response systems include the Emergency Exit system and the PACS system. 

An ESD is used to describe the accident sequence. The typical ESD without considering software is as follows:
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Figure 3. ESD without software functions

In this particular case, the Gate and the LED display are directly controlled through PACS and define the locations at which a software contributor should be added in the accident scenario (See Figure 3 and 4). 
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Figure 4. ESD with Software functions

 2.2 Specify the functions involved

Having identified the events controlled by software in the accident scenario, the second step is to identify precisely which software functions are involved in the accident sequences. Not all software functions are involved in accident scenarios, i.e., not all software functions are involved in particular scenarios/fault trees or even in the entire realm of possible scenarios/fault trees. Therefore one needs to identify the specific functions involved in a scenario. One approach to this problem is to list the input/output combinations appearing respectively to the left and to the right of the new software contributor and attempt to map this input/output combination to the list of input/output combinations for the software functions found in the software requirements. 

The software requirements indicate that PACS contains three software functions SW1, SW2 and SW3. Table 1 lists the three functions with their inputs and outputs.

The input and the output combinations obtained from the accident scenario are listed in Table 2 as well as the associated the action that triggers the use of the software.

When the two tables are compared, the input and output of each software function and those of the actions within the scenarios are matched. Obviously, SW1, 2, 3 correspond to actions1, 2, 3 respectively. Therefore, in Figure 4, PACS (1) is actually SW3; PACS (2) is SW1; PACS (3) and PACS (4) are SW2. 

	Software
	Function
	Input
	Output

	SW1
	Read data from entrant’s card and validate card data
	Card data (SSN and Last Name)
	“Enter PIN” or “See Officer” on LED

	SW2
	Read and validate input PIN values
	PIN (4 digits)

Entry of the 1st digit within time: the allowed time for the entry of the first digit of the PIN is 10 seconds.

Entry of subsequent digits of PIN within time: the allowed time is 5 seconds
	“See Officer” or “Please Proceed” on LED and Gate open, close and system resets.

	SW3
	Override: reset the system or open the gate and reset the system
	Command to reset the system or open the gate
	System reset or Gate open and system reset.


Table 1. Software Functions (Origin: Software Requirements)

	Action
	Input
	Output

	Action 1 (User insert Card)
	Card
	LED: “Enter PIN” 

LED: ”See officer”

	Action 2 (User insert PIN)
	PIN
	LED: “Please Proceed”

LED: “See officer”

Gate open

Gate close

	Action 3 (Guard Override)
	Push override button
	Gate open

Gate close


Table 2. Action and its inputs and outputs

2.3 Model software functions in ESDs/ETs and Fault Trees 

In the previous step, we identified which software function should be modeled in the accident scenario/fault tree. We now present how the software function can be modeled into the sequence.

2.3.1 Software function in the ESD

The modeling of the software function should preserve the function’s risk characteristics (See Figure 5). These are whether or not the function achieves the risk objective (or mitigation of risk objective) “Does SW produce an output that can lead to the safe situation for the sequence?” and how long it takes to achieve this particular objective “Delay of execution”. The time delay is the time required for the software to produce an output and can be used to account for timing issues in a time critical sequence.    

In addition, we know that software behaves very differently under different “environmental conditions” traditionally described by the operational profile. Hence it is also necessary to represent this profile. The profile varies from scenario to scenario and within a scenario is called “Input”. In addition, a software requires a medium of interaction with the outside world on which results are displayed. This output device is also modeled with the software component.   
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Figure 5. Software unit in ESD

2.3.2 Software Function in the Fault tree

The fault tree representation attempts to preserve the same characteristics. Hence, the top event in the fault tree becomes “The software does not produce the expected output”. Since we divided the software-related failure modes into software input failure modes, software functional failure modes, software output failure modes and support failure modes, the top event is due to failure of the software due to an abnormal input, functional failures under normal input or support failures as shown in figure 2.  We have omitted for now the modeling of the output failures. This problem will be studied in the future. The probabilities of the first two events can be obtained from software testing. We explain the notion of normal inputs and abnormal inputs in the section 2.4 dedicated to the concept of input tree. The failures caused by the support failures are failures due to computer hardware platform failures. The probability of this event is a function of possible computer hardware failures. The probability of each hardware failure can be obtained through test or be obtained from reliability standards.    

As can be seen the modeling differs somewhat from the representation used in the accident scenario. Indeed since time and sequence information are primarily absent from a fault tree representation we omitted the “Time delay” component of our model as well as the output device. The need for an output device component in this representation will be studied in the future. 



[image: image6.wmf] The software does not

produce the expected

output?

Failures caused by

abnormal inputs

Failures caused by

Functional failures

Failures caused by

support failures

Abnormal

Input

P

Normal

Input

P

Software incorrectly

handles the input failures

Software functional

failures


Figure 6. Software fault tree

Having defined the representation of the software component in the fault tree and ESDs, we can now modify the resulting ESD. Therefore, the ESD in Figure 4 should be modified to figure 7 as follows.
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 Figure 7. ESD with software functions

2.4 Software Input Tree

We will now further define the Input component introduced in the modeling of the Software component. The input is also called Input Tree. The input tree has to be built per function involved. The input tree is a decomposition of the space of possibilities. The input tree is mostly generic for a function, but may VARY due to context.(i.e. probabilities of basic events may vary, certain events may conflict with the rest of the scenario conditions.)

A software input tree is given in figure 8. As in the tree, the software input can be decomposed into two parts: normal input and abnormal input. The Normal input is the correct input of the software according to the software requirements. The abnormal input is the incorrect input of the software according to software requirements. The abnormal part of the tree is also called software input fault tree. Our eight input failure modes depict the abnormal input. Not all the eight failure modes are applicable for each case. In different cases, different failure modes are applicable. Each applicable failure mode can be further decomposed in the fault tree to its root cause.  
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Figure 8. Software input tree

The example fault tree for SW1 is given as follows:
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Figure 9. Input fault tree of SW1
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Figure 10. Input fault tree of SW1 (Amount)
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Figure 11. Input fault tree of SW1 (Value)
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Figure 12. Input fault tree of SW1 (Range)
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Figure 13. Input fault tree of SW1 (Type)

The input of SW1 is the card information that includes the SSN and Last Name and no time related requirements. So the applicable failure modes for SW1 are amount, value, range and type. Fault trees of these failure modes are given in Figure 9, 10, 11, 12, 13. The root cause of each failure modes are human errors, wrong input information or input related hardware failures.

2.5.  Reduce the Input Tree (TBD)

2.6. Quantify the input tree  (TBD)

2.7 Develop and Perform Software Safety Tests

Having modified the risk model to account for the software contributors and having built and quantified the input trees it is now necessary to quantify the software behavior under the conditions defined by the input trees.  The three software functions SW1, SW2 and SW3 displayed in the ESD should be tested. The final step of the approach is thus developing and performing software safety testing. 

The software safety tests’ unique objective is to answer the questions contained in the model, i.e. in the MLD, accident scenarios and fault tree. The test process is completely automated using Test Generation/test execution tools (TestMaster/WinRunner). The process is performed as follows:

· Build a finite State Machine model of the software by following the software functional decomposition derived from the risk model and the software requirements;

· Derive the test profile and output conditions to be quantified from the risk model;

· Define and run the test cases according to the following test strategy;

· Analyze the data to compute the probabilities of the different outcomes based on the test data;  

The test matrix should be defined before testing because the test matrix contains the features to be tested i.e. it includes the software functions and associated failure modes. The test matrices for SW1, SW2 and SW3 are listed in table 3. Because SW3 is not implemented in PACS, only SW1 and SW2 are tested.

	Function
	Failure modes

	
	Value related
	Time related

	
	Amount
	Value
	Range
	Type
	Time
	Duration
	Rate
	Load

	SW1
	V
	V
	V
	V
	V
	
	
	

	SW2
	V
	V
	V
	V
	
	
	
	

	SW3
	V
	V
	
	
	V
	V
	
	


Table 3. Test Matrices for SW1, SW2 and SW3

2.7.1 Derive the test profile and output conditions to be quantified from the risk model

The output of this testing should include the number of test cases, numbers of software safety failures, the execution times for SW1 and SW2, failure causes for each failed case and the probabilities of the “Yes” and “No” branch for SW1 and SW2 in the ESD. 

The test profile can be obtained from the input tree. Table 4 is the test profile for PACS. The table also shows the relationship existing between test profile and input tree.

	
	No.
	Description of the Event
	Probability from input fault tree

	SW1 (input tree)
	
	1
	Entering a good card: A good card is such that the information stored on the card is in the right format and is also contained in the database. In other words this event reflects the probability that a genuine card will be entered in the system.
	0.97= 1-[P(OP2)+P(OP3)+P(OP4)+P(OP5)]



	
	V
	2
	Entering a bad card in terms of failure mode: Amount
	0.0075 = P(OP2)

	
	A
	3
	Entering a bad card in terms of failure mode: Value
	0.0075 = P(OP3)

	
	Ty
	4
	Entering a bad card in terms of failure mode: Range 
	0.0075 = P(OP4)

	
	Rg
	5
	Entering a bad card in terms of failure mode: Type
	0.0075 = P(OP5)

	SW2 (Input tree)
	
	6
	Entering a good PIN: A good PIN is the event that reflects that the four digits of the PIN are correct and match the entry in the database.
	0.8  =    (


	
	
	7
	Entry of the 1st digit within time: the allowed time for the entry of the first digit of the PIN is 10 seconds. 
	0.9091 = (

	
	
	8
	Entry of subsequent digits of PIN within time: the allowed time is 5 seconds
	0.833 = (

	
	V
	9
	Entering a bad PIN in terms of failure mode: Value
	0.2  = (

	
	T
	10
	The time for entering the first PIN number is more than 10 seconds
	0.101 = (

	
	
	11
	The time for entering the second, third and fourth PIN number is more than 5 seconds
	0.167 = (


Table 4. Testing profile for PACS

The Process of Test Case Selection

Test cases are generated randomly from the test profile (i.e. from the input tree).

· Sample from the profile/input tree to see whether we have a “Normal” or an “Abnormal Input”.

· If it is a normal input, select randomly from the “Normal Input” domain.

· If it is an abnormal input, randomly select the failure mode according to the profile/input tree.

· Then randomly select the “base” value from the “Normal Input” domain and mutate this “base” value using the rules given below:

	Characteristics
	Failure modes implementation

	Amount (A)
	A(1

	Value (V)
	V*(1(10%)

	Type (T)
	Integer to character or floating-point, 

Character to integer, floating-point

	Range (Rg)
	Vmin *(1(10%), Vmax *(1(10%)

	Time (T)
	T*(1(10%)

	Rate (R)
	R*(1(10%)

	Duration (D)
	D*(1(10%)

	Load (L)
	L*(1+10%)


Table 5. Input failure modes implementation

Test criteria

The test criteria differ from those used in functional testing. Indeed, the test criteria for SW1 is whether SW1 produces the output that can lead to inputting the PIN and that of SW2 is whether SW2 produces the output that can lead to the opening of the gate. 

2.7.2 Build a finite state machine model of the software by following the software functional decomposition derived from the risk model and the software requirements. 

The finite state machine model for SW1 and SW2 is built using TestMaster. TestMaster is a test design tool that uses the extended finite machine notation to model a system. TestMaster captures system dynamics by modeling a system through various states and transitions. A state in a TestMaster model usually corresponds to the real–world condition of the system. An event causes a change of state and is represented by a transition from one state to another. TestMaster enriches the typical state machine notation by making use of notions for context, action, predicates, constraints, test information, nested state machine models and the path flow language. This enrichment allows models to capture the history of the system and enables requirements-based finite state machine notation. It also allows for specification of the likelihood that the events or transitions from a state will occur. The operational profile, therefore, may easily integrate into the model [4, 5].

Example TestMaster models for the PACS system are shown in Figure 14, 15, 16. These three models are at different hierarchical levels. Figure 14 displays the entire PACS system. Submodel Enter_card is SW1 and Submodel Enter_PIN is SW2. Lines between states represent the transitions. Figure 15 is the model of SW1, a sub model of figure 14. Figure 16 is the model of Read_Card, the submodel of Enter_Card (figure 15). The operational profile is shown in figure 16: L:97 and L:3 represent the fact that the likelihood of entering the good card is 97% and the that of entering a bad card is 3% respectively. 
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Figure 14. Example of TestMaster Model for PACS
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Figure 15. TestMaster Example for Enter_Card (SW1)
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Figure 16. TestMaster Example for Read_
Card (SW1)

After completion of the model, software tests are created automatically with a test script generator. The test generator develops tests by identifying a path through the diagram from the entry to exit state. The path is a sequence of events and actions that traverses the diagram, defining an actual-use scenario. The test generator creates a test script for each path by concatenating the “Test Information” field of the transitions covered by the path. The test scripts consist of: 1)statements describing the test actions and data values required to move the system from its current state to the next state, 2)functions verifying the state is reached and 3)checks that the system has responded properly to the previous inputs.

TestMaster implements several test strategies such as “Full cover”, “Transition Cover” and “Profile Cover”. The strategy used in this study is “Profile Cover”. This strategy generates a predefined number of test cases in accordance with the specified operational profile. 

2.7.3 Run the test cases 

The outputs of the finite state machine model are the test scripts. The test scripts specify the test cases and the sequences of actions for the execution of a test. 

The following is an example of PACS test scripts:

win_activate ("mmount-76.umd.edu - CRT");

start_time1= get_time();

type ("1<kReturn>");

Check_Message(Message_b,1);

type ("0<kReturn>");

Check_Message(Message_c,1);

type ("155721495<kReturn>");

Check_Message(Message_b,1);

type ("0<kReturn>");

Check_Message(Message_c,1);

type("GayyardLupieN<kReturn>");

Check_Message(Message_b,1);

type("1<kReturn>");

end_time1=get_time();

report_msg("Cardtime is "&(end_time1-start_time1)"Seconds");

start_time2= get_time();

Check_Message(Message_d,1);

wait( 9);

type("4");

Check_Message(Message_e, 1);

wait(3);

type("5");

Check_Message(Message_f, 1);

wait(1);

type("1");

Check_Message(Message_g, 1);

wait(3);

type("9");

end_time2=get_time();

report_msg("PINtime is "&(end_time2-start_time2)"Seconds");

Case_Judge(Message_a,1);

The Automatic test tool “WinRunner” runs the test scripts to execute PACS (SW1 and SW2).

WinRunner is the test-harness used in this experiment. It is one of Mercury Interactive’s automated testing tools for GUI applications. WinRunner executes tests by running test scripts in its own C-like Test Script Language (TSL). TSL scripts are generated by either recording the tests using the WinRunner record engine or by explicitly writing them. PACS is not a GUI application. However, since it runs through a telnet session on a Windows platform, one can write TSLs to test the GUI of the telnet application, thereby testing the behavior of the original code [6].  

WinRunner offers two modes for recording tests and execution: context sensitive and analog. The context sensitive mode records actions on the application being tested in terms of the GUI objects and ignores the physical location of an object on the screen. The recording method is suitable for extensive GUI applications. Since PACS is a UNIX based C++ application lacking well-defined GUI elements, this method is not suitable.

The analog mode records and executes functions while identifying the GUI elements by their screen coordinates rather than their identities. This allows text and figures to be captured based on the coordinate points of the screen. The analog mode records mouse clicks, keyboard input and exact coordinates traveled by the mouse. When the test is executed, WinRunner retraces the mouse tracks. The method is suitable for our study because the only input to PACS is from the keyboard and the system response is displayed on the monitor. 

During test case execution WinRunner captures texts from predefined coordinates of the telnet application and compares them to their expected values. Discrepancies are noted and reported in a test report. Every discrepancy reported is considered a failure of the application. The number of failures observed and the number of test runs are the data required of the safety assessment. Test report entries bear a time stamp that allows for a precise record of the time of failure. 

The execution environment used during testing is as follows:

	Processor
	Intel Pentium III

	RAM
	128 MB RAM

	Processor speed 
	200 MHz


The test characteristics are as follows:

	Total numbers of test cases
	200

	Test Duration
	5854 seconds


Analysis consists of computing the probabilities of the different outcomes based on the test data.  

2.7.4 Number of test cases

Testing although automated may still remain time consuming and expensive. It may thus be necessary to reduce the number of test cases to the lowest possible number of tests. In this paragraph we discuss three different sets of conditions that may allow us to significantly reduce the number of tests. 

2.7.4.1 Cut off rule

Cut-off rules are used in a PRA analysis to simplify the analysis. A cut-off rule states that the analysis of a sequence shall not be pursued if the sequence probability falls below a pre-specified threshold. For illustrative purposes we will assume here that the threshold is 10-6 . Hence we may not need to precisely estimate the probability of a “software event” but may just need to assess whether the “software event” probability is below a certain value defined by the sequence itself. 

For example, consider the software event “SW” introduced in the ESD in Figure 17. Given the probability of the upstream events, one can dismiss the sequence using the cut-off rule as soon as the software failure probability estimate falls below 10-2. 


[image: image17.wmf]SW

10

-1

10

-3

10

-2


Figure 17. Application of the cut-off rule to a software function introduced in the ESD


[image: image18.wmf]10

-1

10

-3

10

-2

SW

>10

-3


Figure 18. Application of the cut-off rule to a software function introduced in the fault tree

Figure 18 illustrates another application of the cut-off rule when a software event is introduced in a fault tree under an OR gate. The sequence probability up to and including the software component is of the type: 10-3*(.5x10-3+Y) where Y is the failure probability estimate for SW. Following the application of the cut-off rule, the sequence is of interest only if the software failure probability is larger than 10-3. Hence we need only establish whether the software failure probability is above 0.5*10-3 and if it is what is its exact value.  

2.7.4.2 Prior Information

Another approach, which can be used to reduce the number of test cases is the use of prior information such as information obtained during IVV activities or related to prior operation of the same or similar systems. Table 6 provides the number of test cases necessary to demonstrate a given failure rate with confidence level C=0.99 when no failure is observed during testing [7].

	Value of (0
	Number of Test cases

	10-2
	458

	10-3
	4602

	10-4
	46048

	10-5
	460514

	10-6
	4605167


Table 6. Number of test cases

(0 denote the required probability of failure for a given program, and C represents the confidence level on the estimate.

“In case of the sampling model and no prior knowledge of failure probability, assuming statistical independence of test cases and failure free executions, the number of tests U can be calculated from the following expression:” [7]
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The number of test cases in Table 6 can be reduced significantly (see Table 7) by using a Bayesian estimation testing approach if we utilize prior information [8].

	
	P(Ho)
	no
	n1
	n2

	10-2
	0.4
	90
	128
	167

	10-3
	0.4
	138
	411
	739

	10-4
	0.4
	146
	1251
	3260

	10-5
	0.4
	147
	3889
	14724

	10-6
	0.4
	147
	12222
	67468


Table 7. Number of test cases using Bayesian update

n0 means no failures encountered, n1 means one failure encountered, n2 means two failures encountered. (C=0.99). H0 is the null hypothesis (i.e. whether the probability of failure≤ ).

2.7.4.3 Software in different sequences

The same software may appear in different sequences. Attempts to reduce the number of test cases for the same software are described below. Two cases are considered:

Case #1: Occurrences of the software in different sequences share the same input tree but the risk analyst is interested in different outputs. 

Example: the output vector for SW1 is O(a,b)

Sequence 1: SW1 will lead to a safety critical situation if a>0 and b>0. The design goal is less than 10-2. The expected number of test cases is 458.

Sequence 2: SW1 will lead to a safety critical situation if a<0 and b>0. The design goal is less than 10-3. The expected number of test cases is 4602

Conclusion: Tests for Sequence 2 cover Tests for Sequence 1 and the test cases can be fully reused.

Case #2: The input tree (IT) varies for different occurrences of the software in the risk model.

Example: (Numbers in red represent another IT)

[image: image23.wmf]Enter

Card

Reader

LED

Valid

Card ?

3

Tries ?

LED

Message

to Officer

Keyboard

Input

LED

Valid

PIN ?

3

Attempts ?

LED

Gate

Reset

Entry

Notify

Officer

Gate

Over-ride

LED

Message

LED

Message

Allow

Entry ?

No

Yes

no

Yes

no

yes

yes

yes

no

no

Card/PIN

Database

Audit

Database

* Card reader and keyboard share the single line LED display.

Figure 19. Input Trees/Operational profiles for PACS

Number of test cases: assume that the required number of test cases is 100. When the input tree/operational profile varies, the number of test cases changes as in table 8.

	Path
	Operational Profile
	Number of Test Cases
	Number of Additional Test Cases
	Number of Test Cases Required to Cover Both OPs

	
	OP1
	OP2
	OP1
	OP2
	
	

	1
	0.97 -> 0.8
	0.8 -> 0.6
	78
	48
	-
	78

	2
	0.97 -> 0.2
	0.8 -> 0.4
	19
	32
	13
	32

	3
	0.03
	0.2
	3
	20
	17
	20


Table 8. Different numbers of test cases of different OPs

Conclusion: In total 130 test cases are required to cover both OPs instead of 200.

2.7.5 Test results and analysis

The last step in the approach is to analyze the test results. In the case of PACS,

200 cases were used for SW1 and SW2. 19 cases failed. The analysis of the testing results is presented in this section.  

2.7.5.1 Possible failure causes

The 19 failed cases are listed and related to their failure mode (see Table 9).

	Failure modes
	Failed cases

	Amount
	58 (1)

	Time
	12,13,18,29,56,99,159,162,166,183,196 (11)

	Function
	10,108,129,148,154,163,171 (7)


Table 9. Failed test cases classification 

The test scripts corresponding to the 19 failures are inspected manually first. The result shows that 11 failed cases (12,13,18,29,56,99,159,162,166,183,196) are caused by input timing problems and the other failed cases may not be caused by input failures.  The remaining 8 cases are tested again. The failure of case (58) is caused by the input failure mode: Amount. The failures of the other 7 cases are caused by a functional failure. Table 10 lists the detailed failure cause for each of the 19 cases.

	Case Number
	Failure causes

	58
	Amount ((1)

	12
	Time ((5 seconds for PIN3)

	13
	Time ((10 seconds for PIN1)

	18
	Time ((10 seconds for PIN1)

	29
	Time ((5 seconds for PIN3)

	56
	Time ((5 seconds for PIN2)

	99
	Time ((5 seconds for PIN2)

	148
	Time ((5 seconds for PIN2)

	159
	Time ((5 seconds for PIN3)

	162
	Time ((5 seconds for PIN2)

	166
	Time ((5 seconds for PIN4)

	183
	Time ((10 seconds for PIN1)

	196
	Time ((5 seconds for PIN2)

	10
	Function is not implemented in code

	108
	Function is not implemented in code

	129
	Function is not implemented in code

	154
	Function is not implemented in code

	163
	Function is not implemented in code

	171
	Function is not implemented in code


Table 10. Failure cause for each failed test case

2.7.5.2 Probability estimation for SW1 and SW2

SW1 fails on only one case (58). Therefore, the Maximum Likelihood Estimate (MLE) for the probability of Card failure is 1/200=0.005.

SW2 fails on 18 test cases. Therefore, the MLE for the probability of gate closed is 18/199 =0.09.

Therefore, the probability of a “Yes” branch for SW1 in the ESD is 0.995.  The probability of a “No” Branch for SW1 in the ESD is 0.005. 

The probability of “Yes” branch for SW2 in the ESD is 0.91. The probability of a “No” Branch for SW2 in the ESD is 0.09.

2.7.5.3 Time analysis for SW1 and SW2

In the testing, the Card time and PIN time are measured. The card time is the time from the point of first insertion of the card to the point at which the card is approved and the information “Please Proceed” appears on the LED. PIN time is the time at which the first PIN number is first entered to the point at which the PIN is actually approved and the information “Gate Open” appears. The time distributions are given in Tables 11 and 12 as well as in Figure 20 and 21.

	Time (seconds)
	Number of cases
	Probability

	1-5
	191
	0.946

	5-10
	8
	0.040


Table 11. Card time and probability
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Figure 20.  Time distribution of Card time

Therefore, the time delay for the execution of SW1 in the ESD is the Card time distribution in Figure 20. 

	Time (seconds)
	Number of cases
	Probability

	1-10
	18
	0.099

	10-20
	79
	0.436

	20-30
	48
	0.265

	30-40
	19
	0.104

	40-50
	14
	0.077

	50-60
	3
	0.016


Table 12. PIN time and Probability
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Figure 21. Time distribution of PIN time

Therefore, the time delay for the execution of SW2 in the ESD is the PIN time distribution in Figure 21.

The final ESD is given in Figure 22. The probability for each branch of SW1 and SW2 and the time distribution for SW1 and SW2 are shown in the ESD. 
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 Figure 22.ESD with the testing results.

3.Conclusions and Discussions

A test-based approach for integrating software into PRA is addressed in this report. This approach includes identification of software functions to be modeled in the PRA, modeling of the software functional elements and software safety quantification using software safety testing.  We use a case study to describe the approach. 

The approach requires further refinement and in particular the following issues need to be studied further: 

· Representation of the hardware-related input failure modes in the test model; 

· Quantification of the input fault tree using field data;

· Study of the Output failure modes/Support failure modes;

· Performing Sensitivity Analysis to verify the robustness of the test strategy;

· Scalability (Test case generation, Test case execution, Number of test cases for each software component).   
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