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Abstract

In order to obtain a minimum temporal interference during real-time software testing analysis, we devise a two-stage record and replay approach using an enhanced software instruction counter method. During the first stage, events, which represent the external temporal behavior of real-time software, are recorded. Then, in the second stage, the replay mechanism is employed to allow deterministic execution in combining with the program instrumentation for software testing analysis. The enhanced software instruction counter method allows a great reduction in execution overheads and program size of record and replay instrumentation. This report summarizes the development efforts to implement the real-time software testing tool suite based on the enhanced software instruction counter method.

1. Introduction

A test coverage analysis is a software testing method with which testers can measure how thoroughly a set of tests has exercised a program [1]. During a test coverage analysis, the program is instrumented, normally just before compilation, so that it will produce an execution trace when it is run. After the tests are run, the testing tool analyzes the traces to determine which program components the tests have covered. Usually, a test coverage analysis includes coverage criteria such as basic-block, decision, and dataflow coverage [3].

A test coverage analysis of real-time software is a difficult task because the probe effect caused by program instrumentation may introduce a different execution behavior of real-time software from the original one. In real-time software testing, this non-deterministic behavior is not tolerable because a correctness of real-time system is dependent on not only functional behavior but also timing behavior. However, the heavy program instrumentation for a test coverage analysis cannot be avoidable to obtain necessary and sufficient information for correct coverage analysis.

In order to solve the above problems, we employ deterministic record-and-replay mechanism with which we are allowed to insert unlimited volume of program instrumentation codes into real-time software under test while guaranteeing the same functional and timing behaviors. The basic idea of the record-and-replay mechanism is as follows. During the first stage, events, which represent the external temporal behavior of real-time software, are recorded. Then, in the second stage, the replay mechanism is employed to achieve deterministic execution in combining with program instrumentation for software testing analysis.  The instruction counting methods have been researched significantly for deterministic replay of the program [4]

 REF _Ref513917465 \r \h 
[5]. There have been two classes of instruction counting methods. One is hardware-assisted instruction counting method and the other is software instruction counter method. In our record-and-replay method for real-time software, a program instrumentation for coverage analysis is performed in replay mode program only. So the hardware-assisted method, which requires the same program codes for both record and replay mode programs, cannot be applicable. Also the hardware instruction counter is not common in most current processor architectures. So the software instruction counter method is the reasonable approach due to its flexibility and exact event delivery capability. In software instruction counter method, they insert small codes into every possible point of the program at which a change of control flow is expected. We call the insertion of codes in record- and replay-mode execution program as record- and replay- instrumentations. The software instruction counter method still has a weakness of intolerable probe effect overhead ranging from 10% to 20% in many current processor architectures[4]

 REF _Ref513917465 \r \h 
[5]. This overhead cannot be practically admitted especially in resource constrained and time restricted real-time systems.

Based on the software instruction counter method (SIC), we have developed an enhanced software instruction counter method (ESIC) that aims to reduce the probe effect overhead due to record and replay instrumentation codes. We assume that real-time software is a multi-threaded application. In SIC method, all loops are record- and replay- instrumented to keep the value of software instruction counter correct inside the loop. But we note that the loops that do not influence the deterministic behavior of the program under test can be skipped for record- and replay- instrumentations. By analyzing the program, the ESIC method finds Deterministic Scopes (DS) of the program in which the insertion of ESIC record- and replay- instrumentation codes is not necessary. Other parts of the program, Non-deterministic Scopes (NDS), must be ESIC instrumented. Considering many real-time software include loops to perform mathematical calculation which consumes processor capacity a lot but does not affect the system execution behavior, we can expect the significant reduction of execution overheads and program size using ESIC method. 
For test coverage analysis of real-time software, we integrate the ESIC method with Telcordia’s Suds software testing tool [3]

 REF _Ref513917620 \r \h 
[6]

 REF _Ref513917621 \r \h 
[7]. The Suds is a coverage analysis tool that aids in testing programs written in the C or C++ programming language. The Suds measures how thoroughly a program has been exercised by a set of tests, identifies code within the program that is not well tested, and determines the overlap among individual test cases. The Suds is used by software developers and testers to measure the adequacy of a test set and identify areas in a program that require further testing. These measures may be used for project tracking to indicate progress during testing, and as acceptance criteria to subsequent stages of development and testing. Regression testers also may use Suds to identify a particular subset of a test set that achieves high coverage at limited cost.

The rest of the report is organized as follows. We introduce a real-time software testing tool suite in section 2. In section 3, we propose an ESIC method and prove the correctness of the method. The ESIC method is also evaluated by experiments in section 3. We describe the implementation issues of the tool suite in section 4.  The prototype implementation of record and replay mechanism in a sample application is described in section 5. A short summary follows in section 6.
2. Real-Time Software Testing Tool Suite

The tool suite is currently under development and mainly composed of four functional units, a program analyzer, ESIC record- and replay- instrumentation components, event trace converter, and coverage-analysis program as shown in Figure 1.

The C source files of a program under test are preprocessed [Figure 1:1,2,3] and fed to the program analyzer [Figure 1:3,4,5,12]. The program analyzer distinguishes DS and NDS regions of the program based on the proposed ESIC rule, and generates new ESIC analyzed source codes for instrumentations. [Figure 1:3,4,5,12]  The program analyzer has two options; -rec and –rep for record mode and replay mode respectively. For record mode instrumentation, the program analyzer inserts marks for deterministic regions. However, for replay mode, the marks are inserted but commented so the subsequent program instrumentation by Suds is prohibited for the regions that are encapsulated by the marks. In recording stage, the analyzed C source code is compiled to assembly program for ESIC instrumentation in assembly level. [Figure 1:5,6,7]   The assembly source codes are then ESIC record-instrumented [Figure 1:7,8,9] and compiled [Figure 1:9,10,11]. The executable program is downloaded and runs in the target to obtain event trace information [Figure 1:11,16,18]. The event trace information will be stored as a file at host machine, and used for exact replay of the program in replaying stage. In replaying stage, the analyzed C source codes are first program instrumented with Suds tools and then replay-instrumented subsequently  [Figure 1:12,13,14]. Each logged event is associated with a value of ESIC and a program counter. The spatial information, i.e., a program counter, stored in an event is no longer correct in program- and replay- instrumented code because of heavy program instrumentation codes. The event trace converter automatically translates program counters suitable for the program- and replay- instrumented program [Figure 1:18,19,20]. With converted event trace file, we can deterministically replay the program- and replay- instrumented program while obtaining correct results of test coverage analysis [Figure 1:16,17,19]. The detail procedure of program and record instrumentation is presented in Figure 2.
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Figure 1 Real-Time Software Testing Tool Suite
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Figure 2 Procedure for Suds and ESIC Record Mode Instrumenation

The analyzed c source code is post-processed by post_cpp.exe of Suds tool to create Suds map file [Figure 2:1,2,3]. Then the main program, atac_i.exe, instruments the analyzed c source code using map file to create coverage analysis (program-) instrumented code and atac file [Figure 2:1,3,4,5,18]. Since the mark for DS region is commented in instrumented source codes, we need to uncomment it before ESIC replay instrumentation [Figure 2:5,6,7]. Using the c compiler, we transform the c source code to assembly code [Figure 2:7,8,9]. Then the assembly code is ESIC-replay-instrumented by esic.exe [Figure 2:9,10,11]. The program- and ESIC-replay- instrumented source code is compiled and linked with atac run time library, which is ported to PowerPC and vxWorks environment [Figure 2:11,12,13,14]. For the Suds test and coverage analysis, the execution of the program generates trace files [Figure 2:13,15,16,17]. The graphical analysis tool, Suds, shows the test analysis result using trace files, atac file, and original c source codes [Figure 2:0,16,17,18,19].

The program instrumentation for coverage analysis and graphical analysis and display tool are supported by Telcordia’s Suds tool [3]. In our testing tool suite, the Suds’s run time library is ported to vxWorks real-time operating system, which is our target run time environment. The Suds supports coverage criteria such as function entry, basic-black, decision, and dataflow coverages. Function entry coverage simply checks that each C function has been executed at least once. Basic-block coverage checks that each basic block – a code sequence that always executes sequentially – has been executed at least once. Decision coverage checks that each decision – a conditional branch from one block to another – has been executed so that all true and false paths have been taken as well as all switch alternatives. Data coverage is a bit more complicated because it looks at the definition and use of each program variable. A definition is a statement that assigns a value to a variable. A use is an occurrence of that variable in another statement. Uses are classified as c-uses if the statement is a computation and p-uses if the variable appears inside a predicate. Dataflow coverage checks that the test set has covered every feasible definition and use pair.

We show an example of program instrumentation for test coverage analysis in Figure 3. The sample routine, taskLowPri(), is from demonstration program, windDemo.c, of Windriver’s vxWorks. For clarity, we remove the comments and make new indentation from original working files.

	Original Program Code
	Coverage Analysis Program Instrumented Code

	static void 

taskLowPri(int iteration)

{

    int    ix;


    MY_MSG msg;




    for (ix = 0; ix < iteration; ix++){


semGive (semId);


taskResume (highPriId);



msg.childLoopCount = ix;


msg.buffer = TASK_LOWPRI_TEXT;


msgQSend (msgQId, (char *) &msg, MSG_SIZE, 0, MSG_PRI_NORMAL);


taskDelay (60);

    }

    taskResume (windDemoId);

}
	static void

taskLowPri(int iteration)

{

    struct aTaC_func *Z[66];

    {

        Z[0]=&ZTtaskLowPri;

        aTaC43(Z,0);

        {

            int ix;

            MY_MSG msg;

            for(ix = 0;(aTaC43(Z,2),ix < iteration);(aTaC43(Z,3), ix++)) {

                aTaC43(Z,4);

                semGive(semId);

                aTaC43(Z,5);   

                taskResume(highPriId);
 

                msg.childLoopCount = ix;

                msg.buffer = "Hello from the 'low priority' task";

                aTaC43(Z,6);



 msgQSend(msgQId,(char *)&msg,sizeof(MY_MSG),0,0);

                aTaC43(Z,7);

                taskDelay(60);

            }

            aTaC43(Z,1);

            taskResume(windDemoId);

        }

        aTaC43(Z,8);

    }

}


Figure 3 Example of Program Instrumentation for Test Coverage Analysis

We present the screen snapshot of Suds which shows the result of basic-block test coverage analysis in Figure 4. The white colored code block means that the corresponding block is tested.

[image: image3.png]
Figure 4 xSuds Window - Basic-Block Test Coverage Analysis Result

3. Enhanced Software Instruction Counter Method

The software instruction counter method is used to reproduce exact behaviors in replaying the real-time applications for test coverage analysis. The key role of the software instruction counter method is to deliver the events at exactly the same location in the replay instrumented code as in record instrumented code. The exact delivery of the events can be achieved by counting number of instructions between the events in record mode and delivering the logged events after execution of logged number of instructions in replay mode. The most efficient way of achieving instruction counter method is to use hardware supported instruction counter that is provided in a few processors like DEC Alpha processor. But, in most commercial processors, hardware supported instruction counter is not provided. So, the software instruction counter method was developed for general-purpose processor architecture. According to the software instruction counter method, it is not required to count all executed instructions. Practically, counting all executed instructions using software method is not feasible. It is sufficient to count only the backward branches, jumps, and subroutine calls. Limiting the counts in this manner is sufficient to support replay because within a basic block, the program flow is deterministic. Therefore, we can conceivably replace each basic block by a virtual instruction that represents the set of instructions within the basic block. The branches, jumps, and subroutine calls essentially count the number of these virtual instructions as they execute. We can further eliminate the forward branches since they do not contribute to loops and, therefore, knowing the program counter at which the event occurs is sufficient. Given that count, and knowing the program counter at which a event occurs, we can compute the number of instructions that have executed.
However, original software instruction counter method has the disadvantages of intolerable probe-effect overhead and increased program size in worst case more than 20% and 25% respectively, especially in embedded processors. So we have developed an enhanced software instruction counter method that can reduce the probe-effect and program size. The new method distinguishes NDS (Non-deterministic Scope) and DS(Deterministic Scope) region of the program by analyzing the source codes. In NDS region, it is required to deliver the events, which may cause non-deterministic behavior, at exact location both temporally and spatially in replay mode. But, in DS region, it is not mandatory to deliver the events at exact location. The temporal requirement of the event delivery can be removed in DS region. 

So we are allowed to remove record- and replay- instrumentation from DS region. This enhanced software instruction counter method will significantly reduce the probe-effect overheads in real-time software testing. The determination of DS and NDS region of the program involves two steps, language construct classification and scope analysis. In following, we describe these two steps in more detail and prove the correctness of the ESIC method.
3.1. Language Construct Classification

In language constructor classification, all high-level language constructs such as while, for, if-then-else, assignment will be tagged as either NDLC (Non-Deterministic Language Construct) or DLC (Deterministic Language Construct) based on following classification rules.

Non-Deterministic Language Construct (NDLC) : The event occurred at or inside NDLC must be replayed at exact location both temporally and spatially. A failure to meet the exact delivery may cause a different behavior of the replay-mode program execution from original record mode execution. NDLC may include both NDLC and DLC internally. Table 1 shows the conditions that determine a language construct as NDLC.
Table 1 List of Non-Deterministic Language Construct Conditions
	Condition
	Description

	Read/write shared variables
	Non-deterministic access of shared variables from concurrent threads causes non-deterministic behavior of the system. We assume that shared variables are declared as global variables.

	Read I/O mapped address
	The read value of I/O address depends on timeline. We assume that the pointer to I/O mapped address must be declared as global variable.

	Input polling library routine
	Input data depends on timeline. We assume that input polling routines must be uniquely identified in program analysis.

	Message send/receive
	The order and timing of messages exchanged among threads must be deterministically replayed.

	System(OS) time dependent calls
	System calls like getTimeOfDay(), getKernelTickValue() must be replayed at exact location.

	Sytsem(OS) kernel primitives for synchronization
	Synchronization system calls must be replayed at exact location.

	NDS subroutine call
	The user subroutine which includes any NDLC must be declared as NDLC.


Deterministic Language Construct (DLC) : It is not necessary condition for deterministic replay of a program that the event, which occurred at or inside DLC, should be delivered at exact location  both temporally and spatially. DLC can include only DLC. All language constructs other than NDLC are DLC.
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Figure 5 NDLC and DLC classification
In Figure 5, we assume that the variable j is a local variable. Since the local variable j does not interfere with behaviors of other tasks, the statement (2) and (3) fall on class DLC. The while loop in statement (3) is a DLC because its expression includes only a local variable j and its only internal statement (4) is a DLC. Meanwhile, the statement (5) is a NDLC because it calls OS primitive which may cause task switching eventually. Finally, the while loop in statement (1) is a NDLC because it includes at least one NDLC, the statement (5). Considering only two while loops in (1) and (3), only the first has to be record- and replay- instrumented. We can reduce run time overhead in the second by omitting the instrumentations, which is required in original software instruction counter method.

3.2. Scope Analysis, either NDS or DS

After classification of all language constructs in a program, the next step is to partition the program into NDS (Non-Deterministic Scope) and DS (Deterministic Scope) using the NDLC and DLC classifications. Only the DS is required to be explicitly marked for the ESIC method. The NDS and DS are defined as follows.
Deterministic Scope (DS) : The program code region which consists of consecutive DLCs and is maximum in its size. DS is not a nested scope.
Non-Deterministic Scope (NDS) : The program code region which consists of consecutive NDLCs and is the maximum in its size. Recursively, NDS can include both DS and NDS. 
In Figure 5, the consecutive statements from (2) through (4) form a Deterministic Scope. According to the ESIC method, we can skip record- and replay- instrumentation codes in the while loop in the statement (3), which is included in DS. By removing instrumentation codes from the while loop which iterates 100 times, we can significantly reduce the probe-effects.

3.3. Correctness of the ESIC method
We prove the correctness of the ESIC method by showing that the functional and temporal behaviors of real-time software are not changed in a replay-mode execution. The behaviors of software that must be deterministically replayed are such as follows: context switching, polled input, interrupted input, shared memory access, message send/receive, and synchronization. Since there is no difference between SIC and ESIC methods in NDS, the proof emphasizes the correctness of the ESIC method applied in DS. While the ESIC method stores both software instruction counter (SIC) and program counter (PC) to log an event, only loops are potential sources of non-determinism in the replay-mode execution. 

We show the notations used in the proof in Table 2. The primed notation is for replay mode while non-primed one for record mode. The notation assumes that there are n tasks, 1, 2, 3,…, n in priority order,1 is the highest priority task.

Table 2  Notations for Proving the Correctness of ESIC Methods
	Notation
	Description

	Event
	An event is defined as an activity that can change the behavior of the system. The conditions listed in Table 1 are kinds of events.

	BES  and BES’
	The state of a task before an event in record and replay mode respectively

BES(e, i) - Before-Event-State of task i for a corresponding event e

	AES  and AES’
	The state of a task after an event in record and replay mode respectively

AES(e, i) - After-Event-State of task i for a corresponding event e

	BDS and BDS’
	The state of a task before entering DS (middle of DS if context switching occurs)

BDS(ds, i) - Before-DS-State of task i for a corresponding DS ds

	STIME(ds), ETIME(ds) and
STIME’(ds), ETIME’(ds),
	Logical start and end time of Deterministic Scope ds (STIME(ds) < ETIME(ds))



	RECTIME(e), REPTIME(e)
	Logical record and replay time of an event e (RECTIME(e) >= REPTIME(e) in our method)


Lemma 1. Interrupt and exception are the only events that can be generated and delivered in Deterministic Scope.

Proof. By the definition of the Deterministic Scope, program-generated events such as message send/receive, polled input read cannot be occurred in DS region. Only the events that can be occurred in DS region are external interrupts and internal exceptions. (
Lemma 2. We assume that there is a deterministic scope, ds, in a task k and the event e is the first event occurred in the scope ds. Then the state of a task i does not change in time periods [STIME(ds), RECTIME(e)) and [STIME’(ds), REPTIME(e)) where i (  k, i.e. BDS(ds, i) = BES(e , i) and BDS’(ds, i) = BES’(e , i).
Proof. There is no event in the time period [STIME(ds), RECTIME(e)) and [STIME’(ds), REPTIME(e)) because the event e is the first event after STIME(ds) and STIME’(ds) respectively . The event e is either an interrupt or an exception because other events cannot be occurred according to the Lemma 1. So the states of other tasks are remained same in the period. It implies that the decision of scheduling for context switching caused by the event e are the same both in record and replay mode. (
While Lemma 2 proves that the earlier delivery of an event in DS does not change the decision of scheduling for context switching, following Lemma 3 and Lemma 4 proves that the ESIC values and subsequent context switchings are not influenced by the earlier delivery of an event.

Lemma 3. In a DS of task k, the earlier delivery of an event in replay mode causes the same series of  context switchings as those in record mode until it returns to itself. 
Proof. According to Lemma 2, the first context switching after the delivery of an event is the same as in record mode. Next we prove that the subsequent context switchings are also the same. After delivering of the event, we can see that task k is either ready or suspended when context switching occurs. Since the only event can be occurred in the DS is either interrupt or exception, the task k will be ready or suspended respectively. So the status of the task k  in replay mode is the same as in record mode in viewpoint of task scheduling. This can also be applied to the subsequent dispatched tasks that have DS. So the series of context switchings initiated by the event e are the same both in record and replay mode. (
Lemma 4. In a DS of task k, the value of ESIC after an event e in replay mode is the same as the one in record mode when it returns to the next instruction in the DS.
Proof. If the event e does not cause context switching, the value of ESIC will not be changed by the definition of the DS. If the event causes context switching and we assume that only k  has DS (other tasks have only NDS), we can easily prove it by Lemma 2 and 3 that two ESIC values, in record and replay mode, after event e are the same.  When other tasks have DS, the Lemma is also true because ESIC is not changed in DS and subsequent context switching behavior is the same by Lemma 3. The Figure 6 illustrates the proof. (
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Figure 6 Illustration of Proof for Lemma 4

Lemma 5. In the context of task k, let e1 and e2 are consecutive events in DS and NDS respectively. After the delivery of event e1, e2 will be delivered at exact location in NDS.

Proof. By Lemma 4, after return from possible context switchings caused by the event e1, the ESIC value will be the same as in record mode. The remaining part of the DS region does not increase the value of ESIC by the definition. So the event e2, which may follow other intervening events between e1 and e2 in system time line, will be delivered at exact location in NDS in the context of both k and overall system. (
We remind that the purpose of ESIC method is deterministic replay of real-time software for software testing. It may not be proper for debugging applications because the early delivery of an exception can result in different context of the task from that of the task in record mode. We now prove the correctness of ESIC method in single threaded and multi-threaded real-time software.
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Figure 7 Example of record and replay execution flow in a thread

 Theorem 1. Single threaded software can be deterministically replayed with ESIC method.
Proof. Let’s prove with the example of Figure 7. The only concerned sequence of instructions is the loop as shown in Figure 7. First, we can easily prove that for all events ESIC values before and after an event in both record- and replay- flows are the same because the early delivery of events in DS does not influence the value of ESIC as shown in Figure 7. Note that inside DS, ESIC value is not changed by the definition of DS. 

Let’s examine the possible effects of the earlier delivery of an event in DS. There are only three kinds of events possible in DS. They are timer interrupt, I/O interrupt, and exception specifically. We explain that these three kinds of events do not affect deterministic replay for the purpose of software testing.

(i) A timer interrupt advances OS time tick value and may cause context switching. Since we consider only single threaded program, a context switching does not influence the program directly. However, a timer interrupt may influence kernel and system threads. This is not a problem because kernel and system threads are not ESIC instrumented. A timer interrupt advances time tick value in turn it can be used in the program via system calls such as time(). The current DS, which caught a timer interrupt, does not contain any time related system calls by the definition of DS. Only the NDS, which follows the current DS, may have time related system calls. By Lemma 4 and 5, we can guarantee that these system calls inside the NDS will be deterministically replayed.

(ii) An I/O interrupt may cause context switching and change a status of I/O buffer. In the same manner as in the case (i), context switching does not influence the program under test. There are two ways of interaction between I/O interrupt service routine and the program under test. One is for ISR to inform corresponding thread the arrival of an event, the other is to use shared area (global) between ISR and a thread. We discuss the first one later because it implicitly assumes multi-threaded program. In the latter case, this interrupt does not influence the program because the current DS does not include any instruction which uses shared area for the I/O data. Only following NDS may use the I/O data.

(iii) In most operating system environment, an exception suspends or halts the affected thread. The context of a task in replay mode can be different from that in record mode especially when an exception occurs in the middle of a loop in DS. This may result in slightly different output for test coverage analysis especially in the corresponding DS. But it is not a severe problem because we can locate the bug and the purpose of the ESIC method is to help software testing not debugging. (
Theorem 2. Multi-threaded software can be deterministically replayed with ESIC method. 

Proof. Multi-threaded program consists of multiple interacting threads. When each thread is deterministically replayed, we can achieve deterministic replay of the whole multi-threaded program. 

First, Let’s prove that all ESIC values in record and replay modes shown in Figure 7 are the same for all tasks. The ESIC values after each event in DS also must be the same. Different from single threaded software, the ESIC value after an event in DS can be changed in multi-threaded environment because other threads can increment the ESIC value due to context switching. By the Lemma 4, we can easily prove that the ESIC values after an event e in DS in record and replay modes are the same. By the Lemma 4 and 5, the NDS following a DS has the same ESIC value as an initial ESIC value for the NDS. So we can prove that all ESIC values after any event are the same in record and replay mode execution for all tasks.

Second, we need to prove that the earlier delivery of an event in DS for replay produces the same behavior as in record mode.  By Lemma 2 and 3, it is true that the decision of scheduling for context switching after delivering event will be the same. So the early delivery of an event causes the same effect to all tasks. So we can guarantee that the delivery of an event can be made exactly at proper location without altering expected program behavior. We also guarantee that single software instruction counter in a system is enough for replaying multithreads in single processor system. (
3.4. Performance Evaluation

We implemented ESIC instrumentation tool for Motorola MBX860 PowerPC platform, which runs WindRiver’s vxWorks real-time operating system. We compared the program size and run-time of ESIC instrumented software with those of SIC instrumented software. We can expect a reduction of the program size of an ESIC instrumented software because the codes inside DS region are not instrumented. We can also expect a reduction of run-time using ESIC method especially in computation-intensive mathematical real-time applications such as signal processing software. In run-time analysis, we compared the total run-times taken to execute the library routines of 1- and 2-dimensional Fast Fourier Transforms that are provided by Ooura of University of Tokyo [11]. We selected 10 core library routines from Ooura’s packages as shown in Table 3.

Table 3 Ooura’s FFT Library Routines used in Experiment

	Package : FFT2F

	cdft
	Complex Discrete Fourier Transform

	rdft
	Real Discrete Fourier Transform

	ddct
	Discrete Cosine Transform

	ddst
	Discrete Sine Transform

	dfct
	Cosine Transform of RDFT (Real Symmetric DFT)

	dfst
	Sine Transform of RDFT (Real Anti-Symmetric DFT)

	Package : FFT4F2D

	cdft2d
	2-Dimensional Complex Fourier Transform

	rdft2d
	2-Dimensional Real Discrete Fourier Transform

	ddct2d
	2-Dimensional Discrete Cosine Transform

	ddst2d
	2-Dimensional Discrete Sine Transform


Table 4 shows the run-time measurements of 1-dimensional FFT routines with varying data lengths of 1024, 2048, 4096, and 8192. The average reduction rate of run-time using ESIC is 4.1%. Table 5 presents the run-time measurements of 2-dimensional FFT routines. In the case of 2-dimensional FFT, the average reduction rate is 8.4%. We can achieve two times of the average reduction rate of 1-dimensional FFT in the case of 2-dimensional FFT. Since nested loops of depth two are used in 2-dimensional FFT routines compared to single loops in 1-dimensional FFT routines, the experimental result seems to be reasonable. Note that a loop is always record- and replay- instrumented once. We believe that when the degree of a nested loop is increased or the size of instruction sequences inside a loop is decreased, we can achieve higher reduction rate in terms of run-time. According to the comparison of the program sizes shown in Table 6, the ESIC method can reduce more than 20% in the case of Ooura’s FFT packages.

Table 4 Comparison of Run-times taken for 1-Dimensional Fast Fourier Transforms (ms)

	
	cdft
	rdft
	ddct

	n
	1024
	2048
	4096
	8192
	1024
	2048
	4096
	8192
	1024
	2048
	4096
	8192

	SIC
	132.48
	295.56
	650.35
	1,421.43
	158.86
	343.97
	742.75
	1,608.64
	191.92
	409.17
	874.69
	1,868.90

	ESIC
	127.33
	282.63
	620.56
	1,351.91
	152.34
	328.93
	710.91
	1,532.56
	183.96
	392.96
	839.24
	1,789.80

	R.R.
	3.89%
	4.38%
	4.58%
	4.89%
	4.11%
	4.37%
	4.29%
	4.73%
	4.15%
	3.96%
	4.05%
	4.23%


	
	ddst
	dfct
	dfst

	n
	1024
	2048
	4096
	8192
	1024
	2048
	4096
	8192
	1024
	2048
	4096
	8192

	SIC
	192.51
	411.05
	876.59
	1,877.52
	185.23
	396.33
	848.59
	1,815.51
	188.72
	403.98
	862.97
	1,846.83

	ESIC
	182.85
	388.99
	831.10
	1,773.74
	182.67
	389.35
	831.70
	1,773.85
	180.35
	385.41
	823.48
	1,757.99

	R.R.
	5.02%
	5.37%
	5.19%
	5.53%
	1.39%
	1.76%
	1.99%
	2.30%
	4.44%
	4.60%
	4.58%
	4.81%


Table 5 Comparison of  Run-times taken for 2-Dimensional Fast Fourier Transforms (ms)

	
	cdft2d
	rdft2d

	n x n
	16x16
	32x32
	64x64
	128x128
	16x16
	32x32
	64x64
	128x128

	SIC
	18.05
	99.53
	499.93
	2,449.11
	24.09
	121.39
	580.33
	2,786.97

	ESIC
	17.09
	93.83
	469.92
	2,294.83
	23.38
	115.14
	550.33
	2,619.48

	R.R.
	5.34%
	5.73%
	6.00%
	6.76%
	2.91%
	5.15%
	5.17%
	6.01%


	
	ddct2d
	ddst2d

	n x n
	16x16
	32x32
	64x64
	128x128
	16x16
	32x32
	64x64
	128x128

	SIC
	38.33
	173.53
	796.05
	3,610.14
	38.05
	173.77
	802.07
	3,640.19

	ESIC
	33.66
	153.34
	707.56
	3,214.94
	33.45
	153.19
	713.03
	3,238.49

	R.R.
	12.20%
	11.63%
	11.12%
	10.95%
	12.08%
	11.84%
	11.10%
	11.04%


Table 6 Comparison of Program Sizes of 1- and 2-Dimensional Fast Fourier Transforms (Bytes)

	
	fft2f.c
	fft4f2d.c

	SIC
	41,168
	132,604

	ESIC
	31,896
	103,128

	R.R.
	22.5 %
	22.2 %


4. Implementing Real-Time Software Testing Tool Suite

In this section, we discuss issues in implementing a real-time software testing tool suite. The target platform includes Windriver’s vxWorks operating system, PowerPC architecture, and a program written in C language. The host platform uses Microsoft Visual C++, Suds, and MS Windows NT. The implementation can be easily applied to other platforms.

4.1. Program Analyzer
The role of the program analyzer is to distinguish DS and NDS region of the program using classification rules shown in Table 1. The two-pass program analyzer, Esica, is composed of four functions of parser, language construct classifier, scope analyzer, and code emitter as shown in Figure 8. 
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Figure 8 Procedure for Program Analyzer, Esica

The parser generates abstract syntax tree and semantic information by syntax and semantic analysis. At the same time, the language construct classifier distinguishes every statement of a program as either NDLC or DLC using the classification rule and syntactic and semantic information obtained from parsing. The scope analyzer partitions a program into NDS and DS region and inserts scope marks for the ESIC record- and replay- instrumentation. Since NDS region of a program can include DS region internally, we mark DS region only in scope analyzed C output program. The mark should be shown at exact location in assembly output after compilation because record- and replay- instrumentation is done in assembly level. So we use C in-line assembly routines,  __asm__(“ESIC_DS_BEGIN”) and __asm__(“ESIC_DS_END”), for marking the beginning and the end of a DS region respectively. These scope marks will be removed in record- and replay- program instrumentation. The code emitter outputs the program source including scope marks right away as each DS region is decided. 

In Figure 9, we show the abstract syntax tree, which is language construct classified and scope analyzed, of the sample program shown in Figure 5. We use the standard GnuC grammar, which is extension of the ANSI-C standard.
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Figure 9 Language Construct Classified and Scope Analyzed Abstract Syntax Tree

In Figure 9, each non-terminal node is classified as either NDLC or DLC and a DS region is shaded. We show the final output of the program analyzer in Figure 10

while (true) {


 
- (1)





__asm__(“ESIC_DS_BEGIN”);

j = 0;



- (2)

while (j < 100)


- (3)

j++;


- (4)






__asm__(“ESIC_DS_END”);
sleep(10); 


- (5)

      


}

Figure 10 Program Analyzed C Output Program

The program analyzer is implemented using a compiler-compiler, ANTLR[12]. The ANTLR (ANother Tool for Language Recognition) is a language tool that provides a framework for constructing compilers and translators from grammatical descriptions containing C++ or Java actions. The tool also contains a variety of helpful class objects that can be used to maintain symbol tables and to manipulate AST (abstract syntax tree), etc. The tool generates the program analyzer, Esica.class, which is a Java program.

4.2. ESIC Record- and Replay- Instrumentation Components

The record instrumentation component parses the assembly output from subsequent applications of program analyzer and compiler and inserts record instrumentation codes around the three types of branch instructions in DS region. Corresponding to the role of record instrumentation, the replay instrumentation inserts replay instrumentation codes into a program. It helps the replayer set proper breakpoint for the next logged event to be delivered at exact location in the replay mode execution. Using record- and replay- instrumentation, the program can be deterministically replayed even though a program is significantly program instrumented for test coverage analysis.
We have developed ESIC record- and replay- instrumentation software for the PowerPC platform because the PowerPC architecture is one of the most popular architectures in real-time systems. Unlike DEC Alpha processor, which is used in demonstrating software instruction counter method [4], the PowerPC architecture is based on 32-bit register architecture and uses condition code register for conditional branch instructions. These two features act as significant disadvantages against 64-bit DEC Alpha processor. Since a 32-bit register is not big enough to store instruction count, it is required to manage a 64-bit software instruction counter by software method. For the conditional branch instruction, which follows condition code evaluation instruction first, we cannot insert instrumentation codes between an evaluation instruction and conditional branch instruction. So it is required to transform every conditional branch instruction to the opposite form, which will add extra instructions.
Since the PowerPC has 32 32-bit general registers, we use one of them to keep the ESIC value. According to the previous works, the performance degradation due to dedication of one register is negligible [4]. The upper 32-bits of 64-bit ESIC value is kept in memory. We use register r14 to keep the lower 32-bits of ESIC value because r14 is the first callee saved register according to the EABI standards. In the run environment, which follows EABI standard, r14 is securely saved while CPU control is in the code region that is out-of-control from the instrumentation such as kernel codes. 

The ESIC instrumentation component is a second-pass PowerPC assembly program translator. During the first step, it reads an assembly file line by line and makes a symbol table that stores labels and their corresponding location. With this symbol table, the instrumentation component can determine whether each branch instruction is backward or forward branch. In ESIC method, only backward branch is ESIC instrumented. During the second step, it reads the assembly file again and search for three types of instructions, backward branch, jump, and subroutine call. All three types of instruction set begin with character ‘b’ in PowerPC instruction set. The ESIC instrumentation component inserts record- or replay- instrumentation codes before and/or after the found instruction like examples illustrated in Table 7. In Table 3 we show only two different examples of record- and replay- instrumentation in PowerPC architecture. Other instructions are similar to these examples.

Table 7 Record- and Reply- Instrumentation Examples
	Instruction without condition codes
	Record- and replay- instrumented code

	label:

        …

       bla        sub1

        …
	label:

        …

       subi        r14,r14,1

       cmpwi    r14,0

       bne        .LESIC_001

       bla         esic_handler
.LESIC_001:
       bla         sub1

        …

	Instruction with condition codes
	Record- and replay- instrumented code

	label:

        …

       bge        label

        …
	label:

        …

       blt         .LESIC_001

       subi        r14,r14,1

       cmpwi    r14,0

       bne        .LESIC_002

       bla         esic_handler
.LESIC_002:
       b            label

.LESIC_001:

        …


First, the instrumentation for an unconditional branch instruction is shown in the first row of Table 7. Four additional machine instructions are inserted for an unconditional branch instruction. The instrumentation codes decrement ESIC value stored in r14 register and check whether it becomes zero or not. If it is not zero, it continues to call subroutine sub1. Otherwise, it calls esic_handler, which handles underflow of ESIC value. 

Second, if a branch instruction is a conditional branch instruction that refers condition code, we must avoid inserting instrumentation codes before conditional branch instructions. Otherwise, the instrumented codes may alter the value of condition code, and in turn, alter the branch decision. So every conditional branch instruction must be transformed to the opposite form like the example shown in the second row of Table 7. Each conditional branch instruction is replaced with fixed patterns of instruction codes which start with the opposite branch instruction. For example, bge (branch if greater than or equal to) is replaced with blt (branch if less than). According to original semantic of this conditional branch instruction, a branch will not be taken if the result is less than. Since the branch is not taken in this case, we are allowed not to decrement ESIC value. The control goes to the next instruction of “bge label” at LESIC_001. If this branch is taken, it decrements ESIC value and checks underflow and then finally branches to the label.

While writing an assembly program by hand, mnemonics such as “bne (branch if not equal)” are convenient to use for an assembly programmer. But, most compiler uses basic instruction set instead of mnemonics. The basic instruction format for conditional branch is “bc BO,BI,target_addr” in PowerPC architecture. “BI” fields designate the corresponding bit field of the condition register and “BO” fields encode the action on “BI” bit field. For example, the basic instruction format for “bge label” is “bc 4,0,label”. The “BI” value 0 means that it chooses the bit “Negative (LT)” of CR0. The “BO” value of 4 means that it branches if the condition specified by the BI operand, “Negative (LT)”, is FALSE. So, the instruction “bc 4,0,label” is the same as “bge label”. Table 8 shows an instrumentation rule for basic instruction format corresponding to the second row of Table 7.

Table 8  ESIC Instrumentation Examples

	Instruction with condition codes
	Record- and replay instrumented code

	label:

        …

       bc       4,0,label (bge    label)

        …
	label:

        …

       bc         12,0,.LESIC_001 (blt .LESIC_001)
       subi        r14,r14,1

       cmpwi    r14,0

       bne        .LESIC_002

       bla         esic_handler
.LESIC_002:
       b            label

.LESIC_001:

        …


In the example, only the BO field is changed from 4 (branch if FALSE) to 12 (branch if TRUE). So we can apply similar transformation to all feasible combinations of “BO” and “BI” fields.

The basic procedure of ESIC instrumentation component is illustrated in Figure 11.
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Figure 11 ESIC Instrumentation Component
4.3. Event Logger and Replayer

An event logger and a replayer have responsibility of efficient and deterministic logging and delivery of event respectively. While an event logger is a part of record mode execution of programs, an event replayer is for replay mode execution. Since an event logger also causes probe-effect, we must develop highly efficient and predictable event logging method. However, an event replayer runs in replay mode in which execution overhead is not important. 

4.3.1. Event Logger

We classify the events as external and internal events.  External events are triggered by external sources of the program such as interrupts and exceptions. Meanwhile, internal events are triggered by the program itself such as I/O read in polling method. To handle an external event, the corresponding interrupt or exception handler must be modified to log the event. For logging an internal event, user application routine that has responsible for the internal event must be re-written to log the event. The essential content of an event includes the values of ESIC and program counter and the event type. Each event also can include information specific to the event. Unlike external event, which must be distinguished by ESIC and program counter, internal event does not need to be logged with program counter information. The reason is that the occurrence of internal event is deterministic while external events are delivered at exact time and software instruction counter matches.

The other problem is to develop an efficient and deterministically schedulable logging mechanism.  Many embedded systems are not equipped with local file system. Even though they are equipped with local file system, the performance overhead to save the event information is critical to the success of the tool.  Currently, we have developed TCP/IP based logging model for a system without local file system as shown in Figure 12. 
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Figure 12 TCP/IP Event Logging Mechanism

The event logger is composed of two tasks that run on vxWorks target system and Windows NT host system respectively. When either an external or internal event occurs, the corresponding event handler logs the event data in next available slot in current buffer, either BUF 0 or BUF 1. When current buffer is full, TCP/IP event logger client task will be notified. Then the task will send the data in the buffer to the remote server task. The time spent on sending a full buffer must be less than the worst-case (fastest) time taken to fill a buffer. 

Since TCP/IP event logger client task is running with the program under test in the same target machine, it is required that the log task must not interfere the real-time behaviors of the program. The event log data is stored in double buffers. The log task can be invoked to send data stored in one of the buffers when it is full or periodically. It is mandatory to feasibly schedule event log task with application tasks while guaranteeing reliable logging of events without loss. As well as worst-case execution time for processing a buffer, network overheads also need to be considered in scheduling TCP/IP event log task. In a priority-based system, event log task should be allocated lower priority than any other tasks belong to the program under test.

If the program under test is composed of periodic tasks, we can apply rate monotonic algorithm to schedule program tasks and TCP/IP event logger client task. Suppose that there are n tasks in the program under test listed in priority ordering 1< 2<...<n where 1 has the highest priority and n has the lowest. Each task i is associated with a worst-case execution time Ci, a period Ti and a deadline Di. And let n+1 be TCP/IP event logger client task. Then n+1 should have following parameters and their associated restrictions.

Cn+1 : worst-case execution time of TCP/IP event logger client task. It includes buffer management time and transmission time. 

Tn+1 : period of TCP/IP event logger client task. Tn+1 ( Ti and Di (i=1,2,..,n). And Tn+1 should be less that the time taken to fill one buffer, WBF (Worst case Buffer Fill time).

Dn+1 : deadline of TCP/IP event logger client task. We assume that  Dn+1 = Tn+1.
 When we decide the size of the buffer, the constraint of the above three parameters must be met. Based on the necessary and sufficient condition of schedulability [8]

 REF _Ref513918098 \r \h 
[9], task i is schedulable if there exists a 
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The expression Wi( t) indicates the worst cumulative execution demand on the processor made by the tasks with a priority higher than and equal to i during the interval [0,t]. If above condition is met for all n+1 tasks, then it is schedulable.

4.3.2. Event Replayer

The event replayer performs a reverse role of the event logger. Figure 13 shows the mechanism, which is adopted for the event replayer. The converted event trace information stored in a host is transferred to the target via TCP/IP connection. A target maintains double ring buffers to store the event information, which is being scheduled for a delivery. 

An event originally caused by an interrupt or an exception is processed by the external event deliverer. In this case, the temporal and spatial information, i.e. ESIC and PC values respectively, is set and monitored by the ESIC event delivery detection mechanism. When the current ESIC value reaches to zero, the detection mechanism sets a hardware breakpoint to the PC value. The breakpoint exception handler, which is the external event deliverer or dispatcher, dispatches the proper delivery function specific to the type of the current pending event. It then sets the next event read from the event buffer.

The other type of an event, which is originally caused by I/O polling routine, is delivered by the internal event deliverer. In replay mode, it is required to modify the I/O polling routine to deliver the I/O data which is stored in the current pending event.
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Figure 13 TCP/IP Event Replaying Mechanism

4.4. Event Trace Converter

In record and replay mechanism which uses software instruction counter, an event log is composed of SIC (Software Instruction Counter), PC (Program Counter), and event specific information. Both SIC and ESIC record and replay instrumentations guarantee that program counters in record- and replay- instrumented codes are same. But, if we insert unlimited volume of program instrumentation codes in replay mode program for real time software testing, the program counters are no longer the same in both programs. To deliver the events, which were logged in history file generated in record-mode execution, at exact location in program- and replay- instrumented code, we must convert the PC value in a log file to corresponding one in program- and replay- instrumented code. In addition to the match of program counters, we also need to guarantee the match of SIC value of both record- and replay- instrumented codes.

To see the potential influences of inserting program instrumentation in replay mode programs on SIC values, we have analyzed (-Sud ‘s ATAC, which is our leading candidate for the coverage analysis of real-time software. The result shows that there are four different types of program code instrumentations added to original program after using ATAC. We do not consider the addition of data structures, which eventually consumes only the data section of a memory footprint, because they will not affect the value of SIC. The four types are shown in Table 9.

Table 9 Program Code Instrumentation Types in ATAC

	Type
	Description
	SIC
	PC

	static int ZN() { return 132; }
	It is a function definition at the head of the program and generated once for the original program.
	
	(

	static struct aTaC_func *ZL() { return &ZTsubroutine; }
	It is a function definition at the head of the program and generated once for the original program.
	
	(

	Z[0]=&ZTwindDemo
	It is inserted to the head of every function.
	
	(

	aTaC43(Z,4)
	It is inserted either at every basic block or predicate.
	(
	(


The final two columns of SIC and PC indicate whether the corresponding instrumentation type influences on the value of SIC and PC respectively. According to the result of the analysis, we can simply avoid the influence of program instrumentation on SIC values by skipping the assembly line “bl aTaC” in replay instrumentation. With this simple observation, we can keep the same SIC values in both record- and program- & replay- instrumented codes.

The history log file converter matches program counters between record- and program- & replay- instrumented codes using information in assembly code of the instrumented program with extra tags. The architectural view of history log file converter is shown in Figure 14.
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Figure 14 Architectural View of Program Counter Translation

The important assumption to correctly replay recorded events is that the events must be delivered at the exact positions where they are recorded regardless of the inserted instrumentation code. Obviously the added instrumentation codes make the relative PC values different between record- and program- & replay- operations. For example, the function call of aTaC43, preceding almost very original statement, is compiled to 3 or 4 assembly instructions, which increase the PC values of the replay events corresponding to their recording values. Therefore programmer counter translation is necessary. In this report, we discuss the possible solution of program counter translation.

We describe a tag method that firstly tags the differences of the C-codes between record- and program- & replay- modes and then gets the mapping of PC values from record-mode to program_ & record- mode. Here we assume that record- and program- & replay- codes start at the same memory address.

Figure 15 shows the instrumented C-code after tagging some special statements. To do the conversion, we need to compile the C-code to assembly language code, which our conversion algorithm deals with. Our conversion algorithm scans all the lines of the instrumented code and searches for the tags (TTT_HHH, TTT_AAA_X and TTT_BBB_X) and keyword (aTaC) to determine whether the current assembly instruction is instrumentation or not. We have two variables recPC and repPC for recording PC values of original and replay codes respectively. Since every assembly instruction for power PC CPU occupies 1 word (4 bytes) in memory, the algorithm increases repPC by 1 and keeps recPC no change if the current instruction is instrumentation code, and otherwise, increases both recPC and repPC by 1. After scanning all the assembly code, we obtain the mapping information of PC values between record- and program- & replay- modes. With this mapping information, we can get the program- & replay-mode PC value if we input a record-mode one. 

…

__asm__(“TTT_HHH”);

funcion1(…)

{

__asm__("TTT_AAA_0:");



Z[0]=&ZTwindDemo;



aTaC43(Z,0);

__asm__("TTT_BBB_1:"); 

…

aTaC43(Z,K);

…


}

funcion2(…)

{

__asm__("TTT_AAA_2:");



Z[0]=&ZTwindDemo;



aTaC43(Z,0);

__asm__("TTT_BBB_3:"); 

…

aTaC43(Z,K);

…


}




…

Figure 15 Instrumented C-Code after Inserting Tags

Figure 16 describes the conversion algorithm. We should talk more about the block (between tags TTT_AAA_X and TTT_BBB_X). After observing the instrumented code, we found that the function call of aTac43 is sometimes compiled to 3 assembly instructions and otherwise 3. But the length keep unchanged within a function. The first aTaC call of a function is inside the block mentioned above. Thus through dealing with the block as whole, we get the length of aTaC of the current function.  With this algorithm, we just get the mapping relationship between record- and program- & replay- modes. If we want to do real conversion for an input record PC value, we need to program another function locating the position in recPC record, and then search for the corresponding value in repPC record according to the mapping information. With little calculation, we will get the converted PC value. 

recPC=0; repPC=0;

read the first line;

while(current line is an instruction and not EOF)

{


if  (the current instruction is before tag TTT_HHH)


{



repPC ++;



record repPC and recPC at TTT_HHH;


}


else if (scanning block between TTT_AAA_X and TTT_BBB_X)


{



length of aTaC = number of instruction lines in the block – 3;



repPC = repPC + number of instruction lines in the block;



record repPC and recPC at TTT_BBB_X;

}


else if (keyword aTaC outside the above block)


{



repPC = repPC + length of aTaC;



record repPC and recPC at the aTaC line


}


else


{



repPC++;



recPC++;


}


read the next line;

}

Figure 16 Algorithm of PC Converter

4.5. Suds Program Instrumentation

With the exact delivery of the event logged in the execution of record mode program, we can re-play the application deterministically. Using this record and replay mechanism, we can fully control the execution of a replay mode program. With this capability, we can instrument codes for any software testing methods such as white box software testing.  But, due to the significant difference between original record instrumented code and program & replay instrumented code, the exact replay is very challenging job. With the exact mapping of the logged temporal and spatial location of the event to the location of the program & replay instrumented code, we can achieve post-software analysis which requires adding significant amount of instrumentation codes.

Suds implements ATAC run time library, which must be ported to different operating system environment, for performing test coverage analysis. 

4.5.1. Porting ATAC Library to PowerPC and VxWorks Environment

We have succeeded in porting ATAC run time library to the PowerPC and vxWorks real-time operating system environment. The original ATAC run time library assumes that the target platform is equipped with the file system. So the currently available target platforms are UNIX compatibles and MS Windows operating system. This assumption is not always true for the real-time systems. Many real-time systems come without a file system. So we changed the ATAC run time library, atac_rt.o,  to use TCP/IP connection to store the testing trace information. We use two TCP/IP ports for storing master and temporary trace files respectively. We presented the samples obtained in the PowerPC and vxWorks environment in Figure 3 and Figure 4. 

Suds Compilation & Testing Procedures

In this section, we summarize the detail procedures related to Suds and vxWorks testing environment. Figure 16 shows the general flow of Suds testing tool suite in a pair of MS NT operating systems and MS Visual C++.
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Figure 16 Suds Testing Procedure in Windows NT & MS VC++6.0 Environment

Figure 17 shows the detail procedure for testing vxWorks applications with cSuds tool suite in which newly ported Suds vxWorks library is used.
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Figure 17 Suds Testing Procedure in vxWorks & ccppc Environment

Since vxWorks PPC compilation procedure is essential in the project, we included it in Figure 18.
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Figure 18 Tornado 2 PPC Compilation Procedure

5. Modular Record and Replay Experiment with Joystick Application

To demonstrate the deterministic record and replay of real-time software, we prototyped the system using simple real-time application, joystick program. The joystick program uses both interrupt and I/O device access in the program. So it can represent real application well. In the prototype system, device drivers and record- and replay- library packages are designed modularly so that they can be nicely extended to generic record and replay packages.

5.1. Overview of Joystick Application

The objective of the program is to implement a set of real-time tasks to read the joystick positions. The conventional joystick device driver program uses polling method to read a position. But, in this program, we use a high-resolution timer interrupt with which we can calculate the position of a joystick. The joystick is connected to the game port of a SoundBlaster card that resides on ISA bus of MBX860 embedded controller. The development environment consists of NT-based Tornado 2 and vxWorks real-time OS. The joystick reader task is executed every 400ms and reports (in stdout) any change of the joystick positions. The joystick positions include 4 ON-OFF buttons and 3 potential meters (X, Y, and throttle). Figure 19 shows the basic actions in the program. At every 400ms, we generate interrupts, which has very smaller resolution than 400ms, and counts the number of interrupts before the charge to calculate the positions.

The real-time joystick reader needs a timer to activate the task periodically and to measure potential meter positions. The MPC860 processor has several timers and clocks. We use timer1 in its CPM that can generate an interrupt when it becomes expired. To control the timer, we implement a set-time routine and an interrupt handling routine. 

[image: image17.png]
Figure 19 The Joystick Read Operation

5.2. Prototype Software Architecture

Figure 20 shows the modular architecture of the prototype software for record- and replay- mode execution of joystick application program. In record (replay)-mode modular architecture, we have record (replay) library package, joystick record (replay) –mode device driver, and timer1 record (replay) –mode device driver. These libraries and device drivers are not ESIC instrumented. Only the joystick application itself is ESIC instrumented. We explain detail design and implementation issues in subsequent sections. 

Since the system is designed in modular manner, we can easily apply it to other applications with different I/O environments.  Among the modules presented in Figure 20, only the record and replay library packages are common to all applications. The device drivers can be selected or developed according to the applications.
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Figure 20 The Modular Architecture for Record and Replay

5.3. Record Modular Architecture

For each application, Wrapper_rec() is created which calls constructor_rec(), joystick application, and deconstructor_rec(). To invoke record-mode program, running the Wrapper_rec() is enough. In run time, it creates an Event Logger Task, which sends trace data to the host via TCP/IP connection.

5.3.1. Record Library Package

(1) esic_rec_pkg_construction()

This routine initializes all preliminaries before executing record-instrumented user application. It also spawn an event logger task, esic_rec_pkg_logger(). It also set record-instrumentation related global variables and reset the register r14 to 0xffffffff.

(2) esic_rec_pkg_deconstructor()

This routine performs shut down procedures such as closing of sockets and destroying the tasks.

(3) esic_rec_pkg_event_logger()

This routine becomes a task of vxWorks real-time operating system. It creates a socket and connects to the host. It maintains a ring buffer with size 2. Whenever a buffer is filled, it transfers the trace information to the host via a socket connection.

(4) esic_rec_pkg_main()

This routine is a wrapper which calls esic_rec_pkg_construction(), user application entry routine, and esic_rec_pkg_deconstruction() subsequently. It also contains global variables, which are used for record instrumentation.

(5) esic_rec_pkg_get_pc()

This routine returns the current value of the program counter.

(6) esic_rec_pkg_get_lesic()

This routine returns the current value of the ESIC.

(7) esic_rec_pkg_esic_handler()

This routine takes care of the overflow of ESIC.

5.3.2. Joystick_Rec Device Driver

(1) esic_rec_js_init()

This routine initializes the hardware of  the joystick.

(2) esic_rec_js_write()

This routine writes a value of the register of joystick.

(3) esic_rec_js_read()

This routine reads a value from the register of joystick. It also saves the read value in a trace event.

5.3.3. Timer1_Rec Device Driver

(1) esic_rec_timer1_init()

This routine initializes the hardware of a timer1.

(2) esic_rec_timer1_set()

This routine sets registers of timer1.

(3) esic_rec_timer1_isr()

This routine is a basic interrupt service routine of a timer1. It only provides very basic functions to the application. The application related jobs are implemented in an application itself. It also saves the interrupt information in a trace event.

(4) esic_rec_timer_disable()

This routine disables the timer.

5.4. Replay Modular Architecture

For each application, Wrapper_rep() is created which calls constructor_rep(), joystick application, and deconstructor_rep(). To invoke replay-mode program, running the Wrapper_rep() is enough. In run time, it creates an Event Replayer Task, which recevies trace data from the host via TCP/IP connection.

5.4.1. Replay Library Package

(1) esic_rep_pkg_construction()

This routine initializes all preliminaries before executing replay-instrumented user application. It also spawn an event replayer task, esic_rep_pkg_replayer(). It also set replay-instrumentation related global variables. It replaces the instruction breakpoint exception service routine of vxWorks with esic_rep_pkg_ibreak_esr(). It sets the first event which is restored from the host.

(2) esic_rep_pkg_deconstructor()

This routine performs shut down procedures such as closing of sockets and destroying the tasks. It also restores the original instruction breakpoint exception handler of the vxWorks.

(3) esic_rep_pkg_event_replayer()

This routine becomes a task of vxWorks real-time operating system. It creates a socket and connects to the host. It maintains a ring buffer with size 2. Whenever a buffer is emptied, it retrieves the trace information from the host via a socket connection.

(4) esic_rep_pkg_main()

This routine is a wrapper which calls esic_rep_pkg_construction(), user application entry routine, and esic_rep_pkg_deconstruction() subsequently. It also contains global variables, which are used for record instrumentation.

(5) esic_rep_pkg_esic_handler()

This routine takes care of the overflow of ESIC. When the ESIC value of the current trace information is expired, it sets the instruction breakpoint according the value of the program counter.
(6) esic_rep_pkg_ibreak_esr()

This exception handler examines the type of the event and dispatch the proper routine to deliver the event. It also sets the next event.

5.4.2. Joystick_Rep Device Driver

(1) esic_rep_js_init()

This routine does nothing in the replay-mode execution.

(2) esic_rep_js_write()

This routine does nothing in the replay-mode execution.

(3) esic_rep_js_read()

This routine reads a value from the current trace event if the ESIC value is the same. 

5.4.3. Timer1_Rep Device Driver

(1) esic_rep_timer1_init()

This routine does not initialize the hardware.

(2) esic_rep_timer1_set()

This routine does not set registers of timer1.

(3) esic_rep_timer1_isr()

This routine is emulating the basic interrupt service routine of a timer1. It performs only the necessary functions related to the application.

(4) esic_rep_timer1_disable()

This routine does nothing in the replay mode.

6. Summary
In spite of great demands of software testing in real-time systems, there have not been significant research results because software testing such as coverage analysis involves heavy amount of program instrumentation. So we use a two-stage record and replay approach to solve the problem. However, the well-known software instruction counter method for record and replay may not be used in real-time environment due to its intolerable execution overheads. The proposed enhanced software instruction counter method reduces program size and execution overheads that are key constraints in resource limited and time restricted real-time systems. The ESIC method is currently being used in our real-time software testing tool suite, which provides test coverage analysis for real-time applications. 

This report presented the theoretical backgrounds of ESIC method and implementation issues of the real-time software testing tool suite.
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List of Important Program Files attached to this Report

	Function
	Program File Name
	Description

	ATAC Run Time Libarary

(atac-run-time-lib)
	atac_rt.c
	Atac run time library C source file.

	
	atac_rt.h
	Atac run time library C header file.

	
	portable.h
	It defines portability options.

	
	tracecod.h
	It defines codes used in trace file.

	
	version.h
	It defines the version of the atac run time library.

	ESICA Program Analyzer
	Esica.java
	A main program analyzer

	
	StdCLexer.g
	ANSI Standard C parser and language construct classifier – ANTLR rule file

	
	GnuCParser.g
	GNU C parser and language construct classifier – ANTLR rule file

	
	GnuCEmitter.g
	Scope analyzer & Code emitter – ANTLR rule file

	
	CSymbolTable.java
	Symbol table management

	
	TNode.java
	Enhanced abstract syntax tree node structure

	
	TNodeFactory.java CToken.java LineObject.java PreprocessorInfoChannel.java
	Other misc. files

	ESIC instrumentation component
(esic)
	esic.c
	ESIC main C source file.

	
	esic.h
	ESIC header file.

	
	instrument.c
	It includes the instrumentation specific codes.

	Event Trace Converter
	conv.c
	It converts event trace information gathered in record mode into new one for replay & PI instrumented codes.

	Joystick Record Mode Prototype

(joystick-record)
	joystick.c
	Joystick user application C file.

	
	esic_rec_pkg_lib.c
	ESIC record mode package library C source file.

	
	esic_rec_pkg_lib_extern.h
	It exports constant and variables of the package.

	
	esic_rec_js.c
	Joystick device driver for the record mode execution.

	
	esic_rec_js_extern.h
	It exports constant and variables of the joystick driver.

	
	esic_rec_timer1.c
	Timer1 device driver for the record mode execution.

	
	esic_rec_timer1_extern.h
	It exports constant and variables of the timer1 driver.

	Joystick Replay Mode Prototype

(joystick_replay)
	joystick.c
	Joystick user application C file.

	
	esic_rep_pkg_lib.c
	ESIC replay mode package library C source file.

	
	esic_rep_pkg_lib_extern.h
	It exports constant and variables of the package.

	
	esic_rep_js.c
	Joystick device driver for the replay mode execution.

	
	esic_rep_js_extern.h
	It exports constant and variables of the joystick driver.

	
	esic_rep_timer1.c
	Timer1 device driver for the replay mode execution.

	
	esic_rep_timer1_extern.h
	It exports constant and variables of the timer1 driver.

	TCP/IP Host Program for logging and transmission of event trace
	Server.cpp
	It defines the class behaviors for the application.

	
	ServerDlg.cpp
	It is an implementation file for CserverDlg class, user interface for receiving and sending messages

	
	clntsock.cpp
	It is an implementation of the CClientSocket class, supervising message arrival

	
	lstnsock.cpp
	It is an implementation of the CListeningSocket class, monitoring connection request

	
	msg.cpp
	It is an implementation of the CMsg class, interface for data stream

	
	stdafx.cpp
	It is a source file that includes just the standard includes

	
	Server.rc
	source file

	
	clntsock.h
	definition of the CClientSocket class

	
	lstnsock.h
	definition of the CListeningSocket class

	
	msg.h
	definition of the CMsg class

	
	Resource.h
	Microsoft Developer Studio generated include file for resources.

	
	Server.h
	main header file for the SERVER application

	
	ServerDlg.h
	definition of CserverDlg class

	
	stdafx.h
	include file for standard system include files
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