Return on Investment of Independent Verification and Validation Study
Phase IIA Report – Predictive Model Characteristics

July 11,2003

July 11, 2003

	Attention:
	Ms. Kathleen Pierson
Contracting Officer, Code 210.3
NASA - Goddard Space Flight Center
Building 11, Room S-215A
Greenbelt, MD 20771
	Richard Grigg

NASA Software IV&V Facility

100 University Dr.

Fairmont, WV 26554-8818

	Subject:
	Computing Direct Return on Investment for Software IV&V

	Reference:
	Contract Number: NAS2-96024

CM Number: NAS2-96024-03-115

Dear Ms. Pierson and Mr. Grigg:

Titan Corporation is pleased to provide the Computing Direct Return on Investment for Software IV&V report, DID 06, deliverable under Task Order Number 37, Performance of Part A and B of Phase 2 of Return on Investment proposal, for Contract Number NAS2-96024. Enclosed is an electronic version of the Computing Direct Return on Investment for Software IV&V report for your review.

Should you have any questions, please contact the undersigned.

Approved,

James B. Dabney

ROI Study Principal Investigator

Titan Corporation

Phone: (281) 480-4101

Fax: (281) 480-6328
Enclosures: Computing Direct Return on Investment for Software IV&V report

	Distribution:
	K. Pierson/NASA-GSFC

R. Grigg/NASA-Fairmont

W. Deadrick/NASA-Fairmont
	J. Dicks/Titan-AverStar

K. Williams/Titan-AverStar

	Contract Number: NAS2-96024
	CM Number: NAS2-96024-03-115

Prepared for:

[image: image37.wmf]
NASA IV&V Facility

Fairmont, WV 26554

	DID Number: 06

	Independent Verification and Validation (IV&V)

of NASA Program Software

	Computing Direct Return on Investment
for Software Independent Verification and Validation

	July 11, 2003

	

	100 University Drive

Fairmont, WV 26554-8818[image: image1.png]

Abstract

Direct ROI is the ratio of reduction in development cost arising from early issue detection by independent verification and validation (IV&V) to the cost of IV&V. This report presents a methodology to compute direct ROI from readily available project data. The method is applied in four case studies in which IV&V was applied to mission-critical NASA software. For the four cases, direct ROI ranged from 1.24 to 4.93, indicating that use of IV&V resulted in overall cost reduction for each case.

Table of Contents

11
Introduction

12
Background

33
Methodology

33.1
Relative Cost to Fix Ratios

53.2
Project Cost Data Available

63.3
COCOMO-Based Rework Cost Estimates

83.4
Input Information

83.4.1
IV&V Information

83.4.2
Developer Information

94
Case Studies

94.1
Case A

104.2
Case B

124.3
Case C

134.4
Case D

145
Summary

156
Future Work

157
References

1 Introduction

A standard management measure for determining the worth of an investment is return on investment (ROI). For software independent verification and validation (IV&V), we believe that there are many benefits and therefore many components of ROI. For example, benefits include reduced development cost, increased confidence in the final product, improved quality, reduced risk, and improved safety. Unfortunately, all of these benefits are difficult to measure. Among these benefits, reduced development cost is the least difficult to quantify. We refer to ROI based solely on reduced development cost as direct ROI. This report outlines a methodology to compute direct ROI from historical data for a particular project and illustrates its application to four mission-critical NASA software projects.

We define direct ROI as the ratio (Cx-Ci)/CIVV, where Cx is the project cost without IV&V, Ci is the project cost with IV&V, and therefore the difference Cr = (Cx-Ci) is reduction in development cost due to early issue identification by the IV&V team. CIVV is the cost of the IV&V effort. Cost can be expressed in any consistent unit. Typically, equivalent person-month (EPM) is the most convenient unit.

The denominator of the ROI ratio is usually fairly easy to obtain from IV&V project records. The numerator, on the other hand, can only be estimated. While it is possible to determine the actual development cost, the cost savings due to early issue discovery and resolution cannot be known with certainty since it is not possible to know when (or even if) each issue identified by IV&V would have been found had IV&V not been used. Therefore, the central task in computing direct ROI is to devise a credible estimate of the cost savings.

The basis of our approach to computing Cr is to compute rework cost for the actual with-IV&V data and to conservatively estimate the rework cost without IV&V by assuming that all issues identified by IV&V would have been discovered later in the project by the developer with the same distribution as other issues discovered by the developer. For some projects, actual rework costs are documented. For most projects, rework costs must be estimated using a tool such as COCOMO-II [BAB00], [BCH95]. Expected value of without-IV&V rework cost can then be computed using developer issue data and estimates of rework cost escalation resulting from delayed issue discovery.

The outline of this report is as follows. First, we will briefly discuss previous investigations related to IV&V ROI. Next, we will provide a detailed description of the direct ROI computation methodology. Then, we will present results of applying this methodology to four mission-critical software projects from different application domains. Finally, we will summarize results and recommend future work.

2 Background

IV&V has many benefits, but it is difficult to quantify those benefits because they entail cost and risk avoidance. However, IV&V can require a substantial investment, so it is important that the benefits of IV&V be understood and quantified. Several studies reported over the last several years have shed light on IV&V ROI and provide valuable insight.

Arthur [AGG98], [AGH99] conducted a controlled experiment in which two teams of students developed software to the same set of user requirements. One team included IV&V (57% of project staffing) and the other did not. The study computed the mean effort to remove faults and also included a suite of acceptance tests. The team that used IV&V had an overall mean effort to remove a fault that was less than 50% that of the non-IV&V team. Thus, even with the relatively large IV&V staff, the team that used IV&V removed faults in a much more cost-effective manner. Additionally, the project that used IV&V resulted in software that passed 33 of 36 acceptance test cases, compared to 11 of 36 for the team that did not use IV&V.

One of the earliest investigations of the benefits of IV&V was performed at the NASA Software Engineering Laboratory [PMC84]. This study involved two small (65 KSLOC) low-criticality projects, each of which required approximately three developers. In both cases, the IV&V staffing was approximately 15% of the total project staffing. These two projects were compared with two similar-sized projects that did not employ IV&V. Although in both cases IV&V located a significant number of errors early in the lifecycle, overall project cost for the projects that used IV&V was similar to the reference projects. Furthermore, delivered product quality was judged to be no better than the reference projects. Therefore, the study concluded that IV&V was not cost-effective for either project. The data published for this study does not permit computation of ROI, but given that there was no significant reduction in development costs, it would appear that ROI was less than 1.0. Even though the results of this study were negative, it provides the valuable insight that IV&V is not guaranteed to be cost-effective. Therefore, the study supports the need to devise a methodology to measure IV&V ROI and to predict ROI so that IV&V is applied to those projects for which it will have the greatest benefit.

A case study by Rogers [RMM00] compared two sets of computer software configuration items (CSCIs) developed by the same organization. One set of CSCIs received full-lifecycle IV&V; the CSCIs in the other set received either no IV&V or only late-lifecycle IV&V. Total function points delivered and counts of errors identified in the test phase were used to compute the reduction in defect density resulting from IV&V. With this defect density reduction, an estimate of cost to remove a defect from Jones [CJ97], and actual IV&V cost, ROI was estimated to be in the range
[image: image2.wmf]1.251.82

ROI

££

. The ROI model used in this study provides a useful approximation of ROI. However, the approximation is limited in that actual project data is not used to estimate defect removal costs.

Eickelmann [EABH01] developed a model to estimate IV&V ROI based on developer Capability Maturity Level, IV&V scope, and IV&V budget as a percentage of project budget. This model is based on several key assumptions. First, it is assumed that project rework cost (without IV&V) is solely a function of CMM level. Next, the model assumes that, if IV&V is allocated exactly 10% of the project budget, full-lifecycle IV&V will discover every defect during the development phase in which the defect is introduced. Finally, the IV&V defect discovery rate is assumed to be directly proportional to IV&V budget if the IV&V budget is less than 10% of the project budget and that no benefit (in the direct ROI sense) is realized for IV&V expenditures in excess of 10% of the project budget. No data from projects that actually employed IV&V was used to construct the model, and therefore the model can estimate only average upper bounds on IV&V ROI, given the assumptions on error introduction rates and rework costs.

In summary, the studies bearing on IV&V ROI demonstrate the following

· The efficacy, and therefore the ROI, of IV&V can vary considerably.

· Employed properly, IV&V can be extremely beneficial, resulting in higher software quality and reduced cost to remove defects.

· No model has been proposed to date that uses actual project cost and error data accumulated in active NASA projects to determine IV&V ROI.

3 Methodology

In order to compute ROI, it is necessary to compute the project cost with IV&V and estimate the project cost without IV&V. The basis of computing the without-IV&V cost is the escalation of cost to fix an error as the project proceeds. This section describes the direct ROI methodology, starting with the relative cost-to-fix ratios. Next, we discuss the use of COCOMO-II for cost estimation and finally the data collection for a typical project.

3.1 Relative Cost to Fix Ratios

It is well-known that the cost to fix a software defect increases as the project proceeds. This fact has been recognized for many years [BWB81] and is confirmed by recent data [JR00], [JR02], [TM03], [CIG03]. This cost escalation is often used as a justification for software engineering process improvements and software quality assurance activities [SMT92], [MKS01]. The escalation of cost to fix a defect has been reported by numerous sources. Table 1 presents a sample of estimates. The standard often cited is Boehm [BWB81]. Estimates from Rothman [JR00], [JR02] are based on recent experience and include single-project case studies (Case B, Case C). The escalation rate quoted by Pavlina [SP03] is frequently cited, but is of uncertain origin.

Table 1: Reported cost to fix a requirements error based on phase found

	Source
	Phase Requirements issue found

	
	Requirements
	Design
	Code
	Test

	[BWB81]
	1
	4.5
	10
	30 - 70

	[CH01]
	195
	489
	997
	7136

	[CIG03]
	139
	455
	977
	7136

	[JR00]
	
	1
	6.5
	15

	[JR00] Case B
	
	
	125
	500

	[JR00] Case C
	
	
	60
	2400

	[JR02]
	1
	20
	45
	250

	[SP03]
	1
	10
	100
	1000

	[TM03]
	
	1
	
	10

Based on the results listed in Table 1, a conservative approximation is shown in Table 2. Table 2 also lists the data of Table 1 scaled to this approximation and the mean and median for each of the phases. Clearly, the approximations we have selected are conservative.

Table 2: Cost-to-fix estimates scaled to study approximation

	Source
	Phase Requirements issue found

	
	Requirements
	Design
	Code
	Test

	Approximation
	1
	5
	10
	50

	[BWB81]
	1
	5
	10
	50

	[CH01]
	1
	3
	5
	37

	[CIG03]
	1
	3
	7
	51

	[JR00]
	
	5
	33
	75

	[JR00] Case B
	
	
	10
	40

	[JR00] Case C
	
	
	10
	400

	[JR02]
	1
	20
	45
	250

	[SP03]
	1
	10
	100
	1000

	[TM03]
	
	5
	
	50

	Mean
	1
	7.3
	27.5
	217

	Median
	1
	5
	21.5
	51

It is also well known that if an error is not detected before a software product is delivered (leaks to operations), the costs associated with correcting the error are even higher. For a requirements error, the estimates range from 100 [CIG03] to 1000 or more [SP03] times the cost if the defect had been found in the requirements phase. For the sake of conservatism, the direct ROI model does not account for defect leakage to operations.

Less attention has been paid in the literature to the cost-to-fix escalation for deficiencies other than requirements errors. However, the little data that has been published (for example [JR00], [TM03]) indicate that the per-phase rate of cost escalation is similar to that experienced with requirements errors. Therefore, we use the approximations shown in Table 3 for design, code, and test issues.

Table 3: Assumed relative cost-to-fix ratios

	Issue type
	Phase issue found

	
	Requirements
	Design
	Code
	Test

	Requirements
	1
	5
	10
	50

	Design
	
	1
	2
	10

	Code
	
	
	1
	5

	Test
	
	
	
	1

3.2 Project Cost Data Available

On projects for which the software developer tracks the cost to fix each defect corrected, it is necessary only to estimate the cost to fix each error identified by IV&V, had IV&V not been present. This estimate is based on the assumption that the developer would have found each error identified by IV&V in a subsequent lifecycle phase, and the relative (per phase) developer issue discovery probability distribution would be the same as that actually exhibited by the developer for developer-discovered issues. For issues discovered by IV&V in the test phase, we assume that the developer would have discovered the issues by expending the same effort as expended by IV&V in the test phase.

To illustrate the computation, assume that IV&V discovered a requirements issue in the design lifecycle phase. Using the cost-to-fix ratios of Table 3, the estimated cost to fix the error had IV&V not been present is

[image: image3.wmf]5

/

)

50

10

(

t

c

fD

P

P

C

+

=

[image: image4.wmf]fD

i

x

C

c

c

=

where
[image: image5.wmf]i

c

 is the actual recorded cost to fix the IV&V-discovered issue, the probabilities of error discovery in the coding phase
[image: image6.wmf]c

P

 and testing phase
[image: image7.wmf]t

P

 are

[image: image8.wmf]/()

ccct

PDDD

=+

,

[image: image9.wmf]/()

ttct

PDDD

=+

,

where
[image: image10.wmf]c

D

 is the number of requirements issues discovered by the developer in the code phase and
[image: image11.wmf]t

D

 is the number of requirements issues discovered by the developer in the test phase.

The return on investment is the ratio

[image: image12.wmf]xIVVtesti

IVV

cCc

ROI

C

+-

=

åå

where
[image: image13.wmf]IVVtest

C

is the IV&V cost during the test phase and
[image: image14.wmf]IVV

C

is the total IV&V cost.

3.3 COCOMO-Based Rework Cost Estimates

For most of the projects studied, direct estimates of rework cost are not available. Therefore it is necessary to estimate rework costs for the actual with-IV&V data and the without-IV&V prediction. COCOMO-II [BAB00], [BCH95] provides a means to compute effort required to develop software based on source lines of code (SLOC). To account for rework, COCOMO-II uses a term, BRAK, which is an estimate of the SLOC equivalent of the rework effort. The actual development cost (in EP months) and the delivered SLOC is normally available, and it is possible to produce fairly accurate estimates of BRAK from issue logs and databases. Therefore, the project data and artifacts provide information sufficient to calibrate COCOMO-II accurately for each project. Using this data to calibrate COCOMO-II to the project, it is possible to estimate the without-IV&V BRAK and then compute a total without-IV&V development cost.

Function points provide a means to associate the size of a software product with its functionality [DOD99], [FPUG00]. A single unadjusted function point denotes a functional behavior of a software system. Function points are attractive because it is less difficult, early in a project, to estimate functional characteristics than to estimate directly SLOC. The function point methodology starts with characterization of the functional characteristics and classifying each by function point type. Next, next each individual function point is multiplied by a scale factor
[image: image15.wmf]w

k

 that depends on type of function point and complexity. This product is adjusted for development process characteristics, resulting in adjusted function points. Finally, adjusted function points can be multiplied by a language scale factor
[image: image16.wmf]L

k

 that converts adjusted function points to SLOC. The function point methodology is used to estimate BRAK SLOC.

To compute BRAK, the function points for each issue are assessed first. This is accomplished by reviewing each issue report and tabulating the number and complexity of each type of function point. Then, we compute the BRAK associated with each type of function point for each issue as

[image: image17.wmf]wLs

BRAKFPkkk

=

where
[image: image18.wmf]FP

is the number of function points of a particular type and complexity,
[image: image19.wmf]w

k

 is the scale factor from [BCH95] that depends on the type of function point and complexity,
[image: image20.wmf]L

k

 is the language scale factor [BAB00] that relates SLOC to FP for a particular programming language, and
[image: image21.wmf]s

k

is a scale factor that accounts for reduction in effort resulting from early issue detection. The basis for
[image: image22.wmf]s

k

is a requirements issue discovered in the test phase, thus requiring complete rework for the particular requirement. Thus, for a requirements issue discovered in the test phase,
[image: image23.wmf]s

k

is 1.0. Values of
[image: image24.wmf]s

k

computed directly from Table 3 are listed in Table 4.

Table 4: SLOC reduction factors

	Issue type
	Phase found
	
[image: image25.wmf]s

k

	Requirements
	Requirements
	0.02

	Requirements
	Design
	0.1

	Requirements
	Code
	0.2

	Requirements
	Test
	1.0

	Design
	Design
	0.02

	Design
	Code
	0.04

	Design
	Test
	0.2

	Code
	Code
	0.02

	Code
	Test
	0.1

	Test
	Test
	0.02

Next, we must estimate the without-IV&V BRAK. For each function point type for each IV&V issue, the without-IV&V BRAK is computed from

[image: image26.wmf]wLsD

BRAKFPkkk

=

where all terms are as previously defined except that
[image: image27.wmf]s

k

is replaced by
[image: image28.wmf]sD

k

which is an average of
[image: image29.wmf]s

k

for the remaining phases weighted by the percentage of developer-discovered issues per phase, in a manner identical to that used to compute
[image: image30.wmf]x

c

. Thus,
[image: image31.wmf]s

k

is project-independent and
[image: image32.wmf]sD

k

is project-dependent.

Note that for the with-IV&V case, we compute BRAK using both developer- and IV&V- discovered issues. For the without-IV&V case, we recompute BRAK only for IV&V-discovered issues. BRAK for developer-discovered issues remains the same and thus the increment to BRAK is due exclusively to IV&V-discovered issues.

COCOMO-II is a learning curve model that uses a multiplicative coefficient and a scale factor (exponent). In simplified form, the basic COCOMO-II equation is

[image: image33.wmf]E

PMEMSLOC

=×

where
[image: image34.wmf]PM

is equivalent person months of effort,
[image: image35.wmf]EM

is the multiplicative coefficient determined empirically, and
[image: image36.wmf]E

 is the scale factor exponent. For the projects studied to date, the nominal scale factor exponent (1.06) was used, implying a slight diseconomy of scale. Therefore, COCOMO-II calibration entails computing the multiplicative coefficient such that the computed development effort for the actual with-IV&V case is the same as the actual development effort experienced. Once COCOMO-II is calibrated using actual project data and without-IV&V BRAK is estimated, we add delivered SLOC, actual BRAK due to developer-discovered issues and estimated without-IV&V BRAK for IV&V-discovered issues and compute a without-IV&V project cost. The ratio of the cost differential to IV&V cost is then the ROI.

3.4 Input Information

In order to compute ROI using the methodology discussed in the previous sections, it is necessary to extract a large amount of information from project (developer and IV&V) databases. This section discusses that information.

3.4.1 IV&V Information

The issue list should include both formally reported issues maintained in developer and/or IV&V databases and reported issues not maintained in a database but which have a specific response from the developer (e.g., issues which resulted in software product rework, typically raised at milestone reviews). For each issue, the following characteristics are needed:

· Lifecycle phase found (requirements, design, code, test)

· Issue type (requirements, design, code, test)

· Issue size in function points (including function point type and complexity) or rework cost from developer databases.

It is also necessary to determine the size of the IV&V effort in consistent units (EPM or EP hours, for example)

3.4.2 Developer Information

In order to compute total BRAK, it is necessary to devise some means to determine the number and type of developer-discovered issues per phase. Ideally, this will be available from developer databases permitting accurate function point counts as done for IV&V issues. In most cases, that information is not available. Alternatively, if the percentage of total issues identified by IV&V for each phase is known (or estimated), it is possible to estimate the total number of issues per phase and number of developer issues per phase. Additionally, the following information is required:

· Total developer effort for the project (in same units as IV&V effort)

· Size of project, either in SLOC or function points (which can be converted to SLOC) if COCOMO-II is to be used. Reused code is accounted for using the COCOMO-II ESLOC technique [BAB00].

4 Case Studies

Four case studies were accomplished to validate the methodology. These studies were for software configuration items (CSCI) from four different mission-critical domains:

· Manned spacecraft onboard software

· Mission critical ground-based software

· Launch vehicle

· Interplanetary spacecraft

This section describes the four case studies, referred to as Case A – Case D. Note that there is no particular correspondence to the case designation and the order of domains listed above.

4.1 Case A

Case A was a moderately sized development effort. The project required 226.4 EPM of developer effort and 23 EPM of IV&V effort. Detailed records of all IV&V issues were available from an issue tracking database and IV&V weekly activity reports.

Detailed records of developer-discovered issues were not available. Therefore, a modified Delphi [AC00] approach involving developer and IV&V managers was used to estimate developer issue discovery rates relative to IV&V.

Table 5 lists the issue distribution for the IV&V team and the developer. The developer overall issue discovery probability mass per phase Pi is also shown.

Table 5: Case A issue distribution

	Phase
	IV&V Issues
	Developer Issues
	Total Issues
	i
	Pi

	Requirements
	7
	40
	47
	R
	0.08

	Design
	47
	47
	94
	D
	0.09

	Code
	128
	260
	388
	C
	0.52

	Test
	74
	150
	224
	T
	0.31

Table 6 shows the BRAK computation for the actual with- and estimated without-IV&V cases. Table 7 shows the ROI results computation for Case A. Note that this CSCI entailed reused software, so the effective SLOC due to reuse is computed using COCOMO-II procedures. After calibrating COCOMO-II using the with-IV&V data (and assuming the nominal scale factor), direct ROI was computed to be 2.07

Table 6: Case A BRAK computation

	Issue
type
	Phase
found
	ks
	ksD
	AFPIVV
(FP kw kl)
	BRAK
	Total BRAK

	
	
	
	
	
	IV&V
	Dev
	With
IV&V
	W/O
IV&V

	Req
	Req
	0.02
	0.452
	96
	119
	675
	794
	3367

	Req
	Des
	0.1
	0.493
	
	
	
	
	

	Req
	Code
	0.2
	1.000
	
	
	
	
	

	Req
	Test
	1.0
	1.092
	
	
	
	
	

	Des
	Des
	0.02
	0.099
	345
	428
	428
	855
	2536

	Des
	Code
	0.04
	0.200
	510
	1265
	2568
	3833
	8892

	Des
	Test
	0.2
	0.218
	
	
	
	
	

	Code
	Code
	0.02
	0.100
	
	
	
	
	

	Code
	Test
	0.1
	0.109
	
	
	
	
	

	Test
	Test
	0.02
	0.022
	459
	569
	1156
	1724
	1777

	Total
	
	
	
	
	2381
	4827
	7206
	16572

Table 7: Case A results computation

	
	With IV&V
	W/O IV&V

	New SLOC
	25800
	25800

	Reuse ESLOC
	16200
	16200

	BRAK
	7207
	16571

	Total Code
	49207
	58571

	EPM Developer
	226.4
	273.9 (COCOMO-II)

4.2 Case B

Case B was ongoing at the time the study was performed. Therefore, the issue discovery rate was conservatively assumed to be uniform across the lifecycle. This case was a relatively large software project, requiring 1947 EPM for the developer and 108 EPM for IV&V. No issues were recorded for the design phase because the developer did not produce any formal design artifacts. IV&V issues were reported in a formal database. Developer issues were extracted from an integration test database and requirements change logs. The developer records did not contain sufficient detail to determine function points. Therefore, it was assumed that on average, the per-issue functional content of developer issues was similar to IV&V issues.

Table 8: Case B issue distribution

	Phase
	Developer
	IV&V
	i
	Pi

	Req
	495
	219
	R
	0.25

	Des

	D
	0.25

	Code
	543
	326
	C
	0.25

	Test
	232
	100
	T
	0.25

Table 9 shows the BRAK computation for Case B and Table 10 shows the effort computation. The ROI was computed to be 1.24.

Table 9: Case B BRAK computation

	Issue
type
	Phase
found
	ks
	ksD
	AFPIVV
(FP kw kl)
	BRAK
	Total BRAK

	
	
	
	
	
	IV&V
	Dev
	With
IV&V
	W/O
IV&V

	Req
	Req
	0.02
	0.433
	88
	225
	509
	735
	5390

	Req
	Des
	0.1
	0.6
	
	
	
	
	

	Req
	Code
	0.2
	
	
	
	
	
	

	Req
	Test
	1.0
	
	
	
	
	
	

	Des
	Des
	0.02
	0.12
	22
	56
	0
	56
	338

	Des
	Code
	0.04
	
	
	
	
	
	

	Des
	Test
	0.2
	
	
	
	
	
	

	Code
	Code
	0.02
	0.1
	526
	1346
	0
	1347
	6733

	Code
	Test
	0.1
	
	
	
	2243
	2243
	2243

	Test
	Test
	0.02
	0.021
	
	
	
	
	

	Total
	
	
	
	
	1627
	2752
	4381
	14704

Table 10: Case B results computation

	
	With IV&V
	W/O IV&V

	New SLOC
	125874
	125874

	Reuse ESLOC
	36964
	36964

	BRAK
	4381
	14704

	Total Code
	167219
	177542

	EPM Developer
	1947
	2081(COCOMO)

4.3 Case C

Case C was a moderately-sized project which required 606 EPM for the developer and 67 EPM for IV&V. IV&V issues were recorded in a formal issue database. Developer issues were recorded in an issue database, but with insufficient detail to support function point analysis. Therefore, the functional content of developer issues was assumed to be, on average per-issue, the same as the functional content of IV&V issues. Table 11 lists the issue discovery rates for the developer and IV&V. Note that sufficient detailed information was available from the developer issue database to permit computation of issue type-specific developer issue discovery probability distributions.

Table 11: Case C issue discovery rates

	Type
	Phase
found
	IV&V
	Dev
	PD
	PC
	PT

	Req
	Req
	17
	206
	0.347
	0.108
	0.545

	Req
	Des
	5
	100
	
	0.165
	0.835

	Des
	Des
	29
	59
	
	0.122
	0.878

Table 12 shows the BRAK computation for case C and Table 13 shows the effort computation. ROI was computed to be 4.93.

Table 12: Case C BRAK computation

	Issue
type
	Phase
found
	ks
	ksD
	AFPIVV
(FP kw kl)
	BRAK
	Total BRAK

	
	
	
	
	
	IV&V
	Dev
	With
IV&V
	W/O
IV&V

	Req
	Req
	0.02
	0.601
	84
	215
	2095
	2309
	8561

	Req
	Des
	0.1
	0.868
	24
	307
	2992
	3300
	5659

	Req
	Code
	0.2
	
	
	
	
	
	

	Req
	Test
	1.0
	
	
	
	
	
	

	Des
	Des
	0.02
	0.180
	228
	584
	5685
	6269
	10950

	Des
	Code
	0.04
	
	
	
	
	
	

	Des
	Test
	0.2
	
	
	
	
	
	

	Code
	Code
	0.02
	
	
	
	
	
	

	Code
	Test
	0.1
	
	
	
	
	
	

	Test
	Test
	0.02
	
	
	
	
	
	

	Total
	
	
	
	
	1106
	10772
	11878
	25170

Table 13: Case C effort computation

	
	With IV&V
	W/O IV&V

	New SLOC
	15494
	15494

	Reuse ESLOC
	0
	0

	BRAK
	11878
	25170

	Total Code
	27372
	40664

	EPM Developer
	606
	936.5 (COCOMO)

4.4 Case D

Case D was for a moderately-sized CSCI. This project maintained accurate records of the cost to fix all formally reported issues, in units of equivalent person hours (EP hours). For issues reported in milestone reviews, hours to fix were estimated based on knowledge of developer workloads, and confirmed by developer management. This project required 102000 EP hours for the developer and 8540 EP hours for IV&V (2600 in the test phase).

Table 14 lists the hours to fix all issues identified by IV&V, and Table 15 lists the computation of without-IV&V rework estimate. The ROI was computed to be 3.14.

Table 14: Project D developer hours to fix IV&V-discovered issues

	Type
	Phase Found

	
	Req
	Des
	Code
	Test

	Req
	93
	687
	687
	440

	Des
	
	17
	17
	29

	Code
	
	
	10180
	1167

	Test
	
	
	
	4

Table 15: Project D rework effort

	Issue
type
	Phase
found
	Actual or estimated
hours
	CfD
	W/O IV&V
hours (est)

	Req
	Req
	160
	17.81
	2849.4

	Req
	Des
	155
	5.12
	794.1

	Req
	Code
	73
	5.00
	365.0

	Req
	Test
	129
	1.00
	129.0

	Des
	Des
	1791
	7.04
	12614.9

	Des
	Code
	1
	5.00
	5.0

	Des
	Test
	573
	1.00
	573.0

	Code
	Code
	396
	5.00
	1980.0

	Code
	Test
	192
	1.00
	192.0

	Test
	Test
	1441
	1.00
	1441.0

	Total
	
	4911
	
	20943.4

5 Summary

The direct ROI model presented here is straightforward to apply, but in most cases, the issue analysis required considerable effort and domain expertise. However, it appears that little effort would be required to capture the needed data in real time as the project proceeds. The four case studies demonstrated that, even with the extremely conservative assumptions concerning issue leakage, IV&V can reduce direct development costs. For the four cases, direct ROI ranged from 1.24 to 4.93 as shown in Table 16.

Table 16: ROI summary

	Case
	ROI

	A
	2.07

	B
	1.24

	C
	4.93

	D
	3.14

6 Future Work

The four case studies demonstrated that IV&V has the potential to reduce direct development costs for NASA mission-critical software projects, using the baseline Titan IV&V process. The direct ROI methodology does not capture all elements of ROI and the conservative assumptions used here may result in significant underestimation of ROI. To acquire a more complete understanding of ROI, the direct model should be extended to more accurately reflect the software development process. This will entail in some cases two test phases (integration and operational testing) as well as a defect leakage model that accounts for defect leakage to operations. The direct ROI model should also be augmented to account for quantifiable indirect benefits such as reduced maintenance cost, more complete testing, expected value based on severity of issue, and less leakage to operations.

An integrated ROI model will be a useful assessment tool to provide one measure of IV&V success. Augmented with a defect introduction and removal model such as COQUALMO [CB99], a predictive ROI model should be produced. The predictive model will permit more accurate screening of projects that are candidates for IV&V using the baseline IV&V process.

A final extension of an integrated ROI methodology will be integration of the ROI measurement model with a software process model [RK00] to produce a tool for IV&V process tailoring and optimization.

7 References

[AC00] Cline, Alan, “Prioritization Process Using Delphi Technique,” White paper from Carolla Development, 2000.

 [AGG98] Arthur, J.D., Groener, M.K., Gupta, S., Cannon, M., Khan, Z., “Reducing the mean time to remove faults through early fault detection: An experiment in independent verification and validation,” Virginia Tech Department of Computer Science Report, Blacksburg, VA, 1998.

[AGH99] Arthur, J.D., Groener, M.K., Hayhurst, K.J., Holloway, C.M., “Evaluating the effectiveness of independent verification and validation,” IEEE Computer, October 1999, pp. 79 – 83.

[BAB00] Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, D., Steece, B., Software Cost Estimation with COCOMO II, Prentice Hall, Upper Saddle River, NJ, 2000.

[BCH95] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R., “The COCOMO 2.0 Software Cost Estimation Model,” University of Southern California, 1995.

[BWB81] Boehm, B. W., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[CB99] Chulani, S., Boehm, B., “Modeling software defect introduction and removal: COQUALMO (Constructive Quality Model),” USC Technical Report, University of Southern CA, 1999.

[CH01] C. Hoffman, “Mitigating software development risk,” Virtual Consulting, Inc., 2001

[CIG03] “Case study: Finding defects earlier yields enormous savings,” Cigital, www.cigital.com, 2003.

[CJ97] Jones, C., Software Quality:Analysis and Guidelines for Success, International Thomson Computer Press, Boston, MA, 1997.

[DOD99] Parametric Estimating Handbook, U.S. Department of Defense, 1999.

[EABH01] Eickelmann, N., Anant, A., Baik, J., Harrison, W., Developing Risk-Based Financial Analysis Tools and Techniques to Aid IV&V Decision Making, NASA Contract S-54493-G Technical Report, NASA IV&V Facility, Fairmont, WV, 2001.

[FPUG00] Function Point Counting Practices Manual, Release 4.1.1, The International Function Point Users’ Group, 2000.

[JR00] Rothman, J., “What does it cost you to fix a defect? And why should you care?” Rothman Consulting Group, Inc., www.jrothman.com, October, 2000.

[JR02] Rothman, J., “What does it cost to fix a defect?” StickMinds.com, February, 2002.

[MKS01] “From Software Quality Control to Quality Assurance,” Mortice Kern Systems Inc., 2001.

[PMC84] Page, G., McGarry, F. E., and Card, D. N., “A practical experience with independent verification and validation,” Proceedings of the 8th International Computer Software and Applications Conference, IEEE Computer Society Press, 1984.

[RK00] Raffo, D.M., and Kellner, M.I., “Empirical analysis in software process simulation modeling,” Journal of Systems and Software, 2000.

[RMM00] Rogers, R.A., McCaugherty, D.B., Martin, F., “A case study of IV&V return on investment,” Proceedings of the NDIA 3rd Annual Systems Engineering and Supportability Conference, October, 2000.

[RCL98] Rus, Iona, Colofello, James, Lakey, Peter, “Software process simulation for reliability strategy assessment”, Journal of Systems and Software, 1998.

[SMT92] Schneider, G. M., Martin, J., and Tsai, W. T., “An experimental study of fault detection in user requirements documents,” ACM Transactions on Software Engineering and Methodology, Vol 1, No 2, April,1992, pp 188 – 204.

[SP03] Pavlina, S., “Zero-defect software development,”, Dexterity Software, www.dexterity.com, 2003.

 [TM03] McGibbon, T., “Return on investment from software process improvement,” www.dacs.dtic.mil, 2003.

DID Number: 06
2
CM Number: NAS2-96024-03-111

_1115730781.unknown

_1119115814.unknown

_1119422357.unknown

_1119422443.unknown

_1119116935.unknown

_1119117036.unknown

_1119117077.unknown

_1119116999.unknown

_1119115815.unknown

_1115731219.unknown

_1115742163.unknown

_1115742991.unknown

_1115743141.unknown

_1115742235.unknown

_1115741579.unknown

_1115730901.unknown

_1108637015.unknown

_1109142151.unknown

_1115730780.unknown

_1115730779.unknown

_1108733631.unknown

_1108733747.unknown

_1108637139.unknown

_1108637153.unknown

_1108636801.unknown

_1108636841.unknown

_980773955.doc
[image: image1.png]

