Summary of 2004 Quarter 1 Programming Activities

There have been two main areas of programming work this quarter: adding a java front-end onto the semMet tool, and beginning work on the design document interface. The java front-end is completed; the design document interface is in progress.

Java Front-end

To create a Java front-end for semMet, we incorporated the output from JavaML, an adaptation to IBM’s Jikes compiler. Since JavaML runs in only one directory at a time, a recursive driver was created to run JavaML in every subdirectory of the toBeAnalyzed directory and then extract the needed information (class name, attribute variable and member function names, class hierarchy, and the file (including path) where each class is defined) from each resulting XML file. The semMet system also needs to know the line number within the file where each class and member is defined, and JavaML does not provide this information. We got this information by running grep on the file, given the file location information provided by JavaML. All this information is gathered and output into intermediate files in the same format as was already used by the C++ front-end. From that point, the processing is the same between Java and C++ code.

Due to the addition of the Java front-end, the user interface of semMet was changed slightly. First, the user is asked whether the system was written in C++ or Java. For a Java system, all the user has to do is place all of the source files somewhere inside the toBeAnalyzed directory, and semMet will find and process them.

Design Document Interface

The purpose of the design document interface is to extract the class hierarchy and prose descriptions of each class and member from a design specification. The interface currently accepts text-only files that follow the IEEE standard for design specifications [5] in these regards: there is a section labeled X.Y Module Decomposition containing the class hierarchy in plain text format, and there is a section labeled Z. Detailed Design with prose descriptions of each class and method inside it. The classes must have headers numbered Z.1, Z.2, etc., and the member functions for each class must be subsections of that class (Z.1.1, Z.1.2, etc.)

For example, the decomposition section should have a section like this containing the class hierarchy:

3. Decomposition Description
3.1 Module Decomposition
GrandmaClass
 MamaClass
 BabyClass1
 BabyClass2
 AuntieClass
 CousinClass1
UnrelatedClass1
UnrelatedClass2

Then the detailed design section should look like this:
6. Detailed Design
6.1 Class GrandmaClass
 There is no other class that will always love you like the GrandmaClass will. She will always buy you treats and bake you cookies and spoil you rotten.
6.1.1 GrandmaClass::bake()
 The bake method involves heating objects, usually made of some concoction of flour, water, butter, and sugar, in an oven. The results are tasty treats such as cookies, cakes, and muffins. Grandmas like to fatten people up.
6.1.2 GrandmaClass::knit()
 The knit method creates warm wooly mittens from balls of yarn.
6.2 MamaClass
 The MamaClass will spit on a napkin and wipe your face with it if you get too messy. She makes sure you get your homework done and do your chores.

 If you are good, the MamaClass might take you out for ice cream.
… and so on.

SemMet only works for object-oriented systems, and any other sections that may be in the design specification besides the two above are ignored.

Once the class hierarchy has been extracted from the design specification and the prose descriptions have been associated with each class and member function, natural language processing is performed to determine the part of speech and usage of each word. Then the nouns, verbs, and adjectives are asserted into the knowledge base. From this point on, the processing is the same as for Java and C++ source code.

In other to accomplish this, we found a natural language parser called the Apple Pie Parser. We considered others; those considered for this project are summarized in Table 1. Ultimately, the Apple Pie Parser was chosen. This parser had consistently good results in an unscientific study of sample texts, it was readily available, its output was easy to parse into usable form, and its license agreement is acceptable for NASA’s use of the semMet tool.

	Parser
	Assessment
	Source

	XPOST
	Not practical to incorporate into semMet: written in lisp.
	[3]

 REF _Ref67735374 \r \h
[10]

	Monty Tagger
	Results from most samples sentences were wrong
	[7]

	FnTBL
	Provides no usage information.
	[4]

	LT POS
	Provides no usage information, and use for NASA would be questionable under its license.
	[6]

	Brill Tagger
	Provides no usage information and requires human intervention.
	[1]

	Connexor Machinese Syntax
	Provides all information needed and more in an excellent format; seems very powerful and accurate. However, license terms are unacceptable to NASA.
	[2]

	Apple Pie Parser
	Provides all information needed in a reasonable format; license terms are acceptable for NASA
	[8]

 REF _Ref67217475 \r \h
[9]

Table 1: Natural Language Parsing tools considered for this project

Once the natural language parser was chosen, we had to create a script to find and extract the hierarchy information and the prose descriptions from the design specification. Then we modified the interface for the Apple Pie Parser to be a little more convenient for our processing and created a script to parse the output of the Apple Pie Parser to find the part of speech and usage for each word. This script takes the nouns, verbs, and adjectives culled from the output of the Apple Pie Parser and builds CLIPS facts for them so that they can be asserted into the knowledge base. We integrated these parts with the rest of the semMet system so that from this point, the processing is the same as it would be for Java or C++ source code. We have done initial testing on small, made-up sample design specifications, but we have not yet tested it on any real design specifications for real systems.

References

[1] Brill, E. “Part of Speech Tagger.” http://www.cs.jhu.edu/~brill/RBT1_14.tar.Z. Accessed 3/22/04.
[2] Connexor. “Products > Machinese Syntax.” http://www.connexor.com/m_syntax.html. Last accessed 9/24/03.
[3] Cutting, D., J. Kupiec, J. Pedersen, and P. Sibun. “A practical part-of-speech tagger.” Proceedings of the 3rd Conference on Applied Natural Language Processing, 1992.
[4] Florian, R., and G. Ngai. “fnTBL Toolkit.” http://nlp.cs.jhu.edu/~rflorian/fntbl/index.html. Last accessed 3/22/04.
[5] Institute of Electrical and Electronics Engineers. IEEE Recommended Practice for Software Design Descriptions. IEEE Standard 1016-1998. IEEE, New York, 1998.
[6] Language Theory Group. “LT POS.” http://www.ltg.ed.ac.uk/software/pos/index.html. Last accessed 9/24/03.
[7] Liu, H. “Monty Tagger v1.2: Commonsense-informed part of speech tagging.” http://web.media.mit.edu/~hugo/montytagger/. Accessed 3/18/04.
[8] Sekine, S. “Apple Pie Parser.” http://nlp.cs.nyu.edu/app/index.html. Last accessed 3/16/04.
[9] Sekine, S., and R. Grishman. “A Corpus-Based Probabilistic Grammar with Only Two Non-terminals.” Fourth International Workshop on Parsing Technology, 1995.
[10] XEROX PARC. “Xerox Part of Speech Tagger.” ftp://parcftp.xerox.com/pub/tagger/tagger-1-0.tar.Z. Last Accessed 3/22/04.
