SIAT C++

SOFTWARE Requirement Specification

Titan Systems Corporation

Software Interface

Analysis Tool

SIAT C++

Software Requirement Specification

Contract Number: NAS2-96024

CM Number: NAS2-96024-01-224

This project was funded in part by a Center Software Initiative for the NASA Software Independent Verification and Validation Facility

[image: image2.jpg]f\ % TITARN SYSTEMS CORPORATION
A\

Change Information Page

	Change Log

	Document Number
	Status / Issue
	Publication Date

	NAS2-96024-00-193
	Initial
	October 20, 2000

	NAS2-96024-01-224
	SIAT C++ Version 2.x
	November 15, 2001

	
	
	

Table of Contents

11.
Introduction

1.1.
Purpose
1
1.2.
Scope
1
1.3.
Definitions, acronyms, and abbreviations
1
1.4.
References
4
1.5.
Overview
5
2.
Overall description
7
2.1.
Product perspective
7
2.2.
Product functions
8
2.3.
User characteristics
22
2.4.
Constraints
22
2.5.
Assumptions and dependencies
23
3.
Specific requirements
24
3.1.
External interface requirements
24
3.2.
System features
25
3.3.
Performance requirements
40
3.4.
Design constraints
40
3.5.
Software system attributes
40
3.6.
Other requirements
41
Appendix A.
Requirement to Version Allocation
42

Table of Figures

8Figure 1: SIAT C++ Main Use Case Diagram

Table of Tables

45Table 1: Requirement to Version Allocation

1. Introduction

1.1. Purpose

The purpose of this Software Requirement Specification is to define the requirements that the Software Interface Analysis Tool (SIAT) for C++ (SIAT C++) will satisfy.

This document is intended to be used by program managers and software requirement engineers who need to develop and understand the requirements for SIAT C++. This document is also intended to be used by software designers and implementers who need to understand what SIAT C++ is intended to do so that they may create a design and implementation for SIAT C++. This document is also intended to be used by test engineers to design test cases and procedures to verify the functionality of SIAT C++.

1.2. Scope

The scope of this Software Requirement Specification is the software that comprises SIAT C++.

SIAT C++ is a tool to help software analysts browse a set of C/C++ source files, and to aid in the identification of data that is potentially involved in external interfaces. The interface presented to the software analyst will be HTML rendered by a World Wide Web (WWW) browser.

The anticipated benefits of SIAT C++ include enhanced source code browsing capabilities and external interface identification and verification capabilities for the software analyst.

1.3. Definitions, acronyms, and abbreviations

Analysis Note – A textual note generated by a software analyst that is associated with a particular source code file. An analysis note can be saved and retrieved at a later time for viewing and editing.

Control Flow Graph – A diagram for a particular C/C++ function that shows the flow of control (such as sequential execution, branching, or looping) among the statements that comprise that function.

Data Flow Graph – A diagram that identifies the variables in a system or computer program and shows which variables are used to calculate the values of each other.

Dependency Graph – A diagram that identifies the source files in a C/C++ system or computer program and shows which files include one another via #include preprocessor directives.

External Data Item – See PUII.

External Interface – An interface between two pieces of software that is not discernable strictly from the source code (i.e. function calls within an executable are not external interfaces, a shared file written by one executable and read by another is an external interface, shared memory segments between two executables are an external interface, shared messages on a common bus are an external interface). External Interfaces are represented and analyzed in SIAT C++ using external data items, a.k.a. PUIIs or GIDs. External data items are user defined symbols that provide a mapping between data in one executable and data in another executable, used for the purpose of jointly tracing dataflow throughout the two executables.

Function Call Graph – A diagram that identifies the C/C++ functions in a system or computer program and shows which C/C++ functions call one another.

Global Data Flow Graph – A Data Flow Graph for which Global Variable Identifiers that are associated with the same Project-Unique Identifier of Interface (PUII) are considered to represent the same variable.

Global Identifier (GID) – See PUII.

Global Variable Identifier – An Identifier of a variable that has global scope.

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

Identifier – The distinguishing name of a function, structure, union, class, enumeration, structure member, union member, class member, enumeration constant, typedef name, variable, or namespace in a C/C++ computer program.

Identifier Declaration – An Identifier declaration introduces the Identifier name into a translation unit or redeclares the Identifier name introduced by previous declarations. An Identifier declaration specifies the interpretation and attributes of the object to which this Identifier refers.

Identifier Definition – An Identifier declaration is an Identifier definition unless one of the following applies:

· it declares a function without specifying the function’s body

· it contains the extern specifier and neither an initializer nor a function-body

· it contains a linkage-specification, is not declared in the brace enclosed declaration sequence for the linkage-specification, and has neither an initializer nor a function-body

· it declares a static data member in a class declaration

· it is a class name declaration

· it is a typedef declaration, a using-declaration, or a using-directive

Identifier Reference – A usage of an Identifier in a computer program that is neither an Identifier Declaration nor an Identifier Definition.

IEC – The International Electrotechnical Commission

IEEE – The Institute of Electrical and Electronics Engineers

Inheritance Type Hierarchy Tree - A diagram that identifies the classes in a system or computer program and shows the inheritance relationships between those classes.

ISO – The International Organization for Standardization

Library - A particular set of C/C++ source files that are prepared by a library maintainer for use by SIAT C++. Multiple versions of one Library may be available for use by SIAT C++ at the same time.

Master Library - The set of Libraries selected by a software analyst during an analysis Session. The Master Library provides a context for interpreting the requests that the software analyst makes during their Session

Project-Unique Identifier of Interface (PUII) – A unique name that is used to specify an external interface. This unique name is associated with a list of global variable Identifiers that represent the same external interface and thus the same logical data in multiple programs.

Session – A mechanism that preserves analyst specific state information while the analyst is using the SIAT C++ system. A SIAT C++ Session stores the Master Library selected by the software analyst. A session is created when a software analyst logs in to the SIAT C++ system. A session for a particular software analyst ends when the software analyst ends their session or when a software analyst’s session has been inactive for a system configurable amount of time.

SIAT - Software Interface Analysis Tool (SIAT by itself usually refers to the SIAT tool that analyzes Ada source code).

SIAT C++ - Software Interface Analysis Tool for C++.

URL – Uniform Resource Locator

Version (of a Library) – Versions of a library indicate the same library, but with potentially different source files or different versions of the source files in the library.

WWW – World Wide Web

1.4. References

The C Programming Language, Second Edition, Brian W. Kernighan and Dennis M. Ritchie, 1988.

IEEE Std 610-1990, IEEE Standard Computer Dictionary, A Compilation of IEEE Standard Computer Glossaries, 1990.

IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications, 1998.

ISO/IEC 14882, First Edition 1998-09-01, Programming languages – C++, 1998.

Response Summary Reorder (Excel Spreadsheet), Response Summary (Worksheet), October 2001 (summarization and scoring of individual responses to SIAT C++ Enhancement Questionnaire).

SIAT C++ Enhancements Questionnaire, October 2001.

SIAT C++ Interface Design Review, Document: NAS2-96024-00-232, December 2000.

SIAT C++ Software Requirement Specification, Document: NAS2-96024-00-193, October 20, 2000.

SIAT Version 1.0 Demonstration, Document: NAS2-96024-01-147, June 2001.

SIAT Version 1.1 Demonstration, Document: NAS2-96024-01-189, September 2001.

1.5. Overview

The rest of this document is organized as follows.

· Section 2 gives an overall description of SIAT C++. This includes the following sections.

· Section 2.1 indicates the product perspective of SIAT C++ with respect to its environment.

· Section 2.2 lists the major product functionality provided by SIAT C++ in terms of use case scenarios.

· Section 2.3 describes the intended users of SIAT C++.

· Section 2.4 lists applicable constraints that limit development of SIAT C++.

· Section 2.5 indicates any assumptions and dependencies related to the development of SIAT C++.

· Section 3 lists the specific requirements of SIAT C++. This includes the following sections.

· Section 3.1 lists the external interface requirements of SIAT C++.

· Section 3.2 breaks down the functional requirements into system features and lists the particular functional requirements for each system feature.

· Section 3.3 lists the performance requirements for SIAT C++.

· Section 3.4 lists the design constraints for SIAT C++.

· Section 3.5 lists the software system attributes for SIAT C++.

· Section 3.6 lists other requirements for SIAT C++.

· Appendix A contains a table allocating the requirements to SIAT C++ Versions.

2. Overall description

2.1. Product perspective

SIAT C++ interacts with no other external software systems. The only external entities that interact with SIAT C++ are the software analyst and the library maintainer.

The software analyst is the primary user of SIAT C++. The software analyst uses SIAT C++ to browse a set of C/C++ source files and to aid in the identification of data that is potentially involved in external interfaces. SIAT C++ provides web browser representations of the source files. This includes font coloring and different font faces for specific sets of C/C++ tokens. The web browser representation also includes hyperlinks between identifier references and their associated declarations and definitions. SIAT C++ also provides the capability for the software analyst to determine and display in their web browser inheritance type hierarchies for types in the software files, function call graphs for functions in the software files, data flow graphs for variables in the software files, dependency graphs to describe the inclusion hierarchy between the software files, and control flow graphs to show flow of control within functions in the software files. SIAT C++ also provides the capability to regard multiple variables as representing the same external interface data and to generate and display in a web browser global data flow graphs including these relationships. SIAT C++ provides string and C++ language specific construct searches of the software files and displays the results of such searches in the software analyst’s web browser. Also, SIAT C++ provides the capability for a software analyst to bookmark particular locations in source files so that the bookmark location can easily be retrieved later. Finally, SIAT C++ provides the capability for a software analyst to add analysis notes to source files to support knowledge sharing and retention by being able to view and share analysis notes.

The library maintainer uses SIAT C++ through a command line interface to add and remove libraries of C/C++ software files to the set of libraries available for analysis by the software analysts.

SIAT C++ runs as a client/server product using the HTTP protocol on the World Wide Web.

Product functions

This section includes the Use Case scenarios that describe the functionality performed by SIAT C++ in response to stimulus from an external actor. The Use Case diagram for all SIAT C++ Use Cases is given below.

[image: image1.wmf]

Library Maintainer

Software Analyst

Maintain Source Libraries

Configure Master Library

Log In to SIAT C++

Browse Library Source Files

Perform Type Analysis

Perform Function Call Analysis

Perform Data F

low Analysis

Perform Dependency Analysis

Perform External Interface

Analysis with PUIIs

Perform External Interface

Analysis without PUIIs

Perform Control Flow Analysis

Use Bookmarks

Knowledge Sharing with

Analysis Notes

Figure 1: SIAT C++ Main Use Case Diagram

Use Case – Log In to SIAT C++

2.1.1.1. Brief Description:

This use case provides the capability for the software analyst to log in to the SIAT C++ system.

2.1.1.2. Flow of Events:

This use case begins when the user (software analyst) starts their web browser and requests the URL for the SIAT C++ system. The SIAT C++ system then displays a web page to the user. The web page requests a username and password. The user then fills in the username and password and submits the web page. SIAT C++ returns a web page that allows the user to configure their master library for this session.

The user then can perform the capabilities in the other use cases. When the user is done, the user requests to end their session. SIAT C++ then terminates the session for the user and returns the user to the initial web page for SIAT C++. If a user’s session has been inactive for a system configurable amount of time, SIAT C++ terminates the session for the user.

2.1.2. Use Case - Maintain Source Libraries

2.1.2.1. Brief Description:

This use case provides the capability for library maintainer to add or delete libraries of C/C++ source code for analysis by software analysts through SIAT C++.

2.1.2.2. Flow of Events:

This use case begins when a decision has been made to add or delete a library of C/C++ source code for analysis. This decision should be communicated to the software analysts by the library maintainer, since there is no SIAT C++ automated mechanism to inform software analysts of library addition or deletion other than changing the libraries that may be selected for analysis.

If the request is to delete a library of C/C++ source code for analysis, the library maintainer requests SIAT C++ to delete all stored information for the library that was derived by SIAT C++ when the library was added. The library maintainer then removes the source code files (or the links to them) for the library from the SIAT C++ working directory structure.

If the request is to add a library of C/C++ source code for analysis, the library maintainer adds the source code files (or the links to them) for the library to the SIAT C++ working directory structure. The library maintainer then requests SIAT C++ to add this set of C/C++ source files as a new library that is available for analysis with SIAT C++.

2.1.3. Use Case - Configure Master Library

2.1.3.1. Brief Description:

This use case provides the capability for a software analyst to configure the Master Library for their analysis session.

2.1.3.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case.

The web page returned by SIAT C++ indicates the libraries and the version numbers available for analysis. The software analyst then selects one or more libraries for analysis and submits their request. SIAT C++ validates the request to ensure that only one version of any particular library is requested. If the request is invalid, an error is returned. If the request is valid, SIAT C++ returns a web page with links to each of the selected libraries.

2.1.4. Use Case - Browse Library Source Files

2.1.4.1. Brief Description:

This use case provides the capability for the software analyst to browse the software files for a library. This includes jumping between references, definitions, and declarations of identifiers, and finding particular text strings and C/C++ constructs.

2.1.4.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst then selects any of the global items for the library. SIAT C++ responds by displaying the source file containing that item as a source file outline frame and a source file listing frame of the returned web page. The global item selected is displayed at the top of the source file listing frame. The software analyst can then scroll through the file, choose another global item from the library listing, or select a reference, definition, or declaration of an identifier.

If a reference of an identifier is selected, the software analyst can select to see the definition of the identifier. SIAT C++ receives the request and displays the source file containing the definition (if it exists) or declaration (if the definition does not exist) of the identifier, with the definition or declaration at the top of the source file listing.

If a declaration of an identifier is selected, the software analyst can select to see the definition. If the software analyst selects to see a definition of an identifier, SIAT C++ receives the request and displays the source file containing the definition (if it exists) of the identifier, with the definition of the identifier at the top of the source file listing.

If a definition or declaration of an identifier is selected, the software analyst can select to see all declarations of the identifier. If this is requested, a listing of all source file locations where this identifier is declared is generated and displayed by SIAT C++. The software analyst can then select one declaration from the listing, and SIAT C++ will display the source file containing that declaration, with the identifier declaration at the top of the source file listing.

If a definition or declaration of an identifier is selected, the software analyst can select to see all references to the identifier, all references where the identifier is used, or all references where the identifier is modified. If this is requested, a listing of all source file locations that reference this identifier is generated and displayed by SIAT C++. The software analyst can then select one reference from the listing, and SIAT C++ will display the source file containing that reference, with the reference to the identifier at the top of the source file listing.

Also, if a definition or declaration of an identifier is selected, the software analyst can select to see the project-unique identifier of interface (PUII) (if one is associated with this identifier) and all global variable identifiers related to this PUII. SIAT C++ responds by displaying the PUII related to this identifier and a list of all global variable identifiers which are related through this PUII (see 2.2.9. Use Case - Perform External Interface Analysis with PUIIs).

At any time, the software analyst can also select to search for all occurrences of a particular text string in the library. When making this selection, the software analyst also specifies whether the search should be case sensitive or not and whether comments only, code only, or comments and code should be searched for the string. SIAT C++ then processes all this information and then generates and displays a listing of all source file locations that contain this text string. The software analyst can then select one item from the listing, and SIAT C++ will display the source file containing that instance of the text string, with the instance of the text string at the top of the source file listing.

Also, at any time, the software analyst can also select to search for particular C/C++ constructs, such as classes, derived classes, and structs, in the library. SIAT C++ then processes the search request and generates and displays a listing of all source file locations that contain this C/C++ construct. The software analyst can then select one item from the listing and SIAT C++ will display the source file containing that instance of the C/C++ construct, with the instance of the C/C++ construct at the top of the source file listing.

2.1.5. Use Case - Perform Type Analysis

2.1.5.1. Brief Description:

This use case provides the capability for a software analyst to analyze a type defined in software files in the library.

2.1.5.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst then selects any of the global items for the library. SIAT C++ responds by displaying the source file containing that item as a source file outline frame and a source file listing frame of the returned web page. The global item selected is displayed at the top of the source file listing frame.

The software analyst can then scroll through the file, select a type defined in the file, and choose to display the type hierarchy for that type. SIAT C++ responds by displaying the textual and graphical inheritance type hierarchy containing that type.

The software analyst can then select a type from the textual or graphical graph, and SIAT C++ will display the source file containing the definition of that type, with the definition of that type at the top of the source file listing.

2.1.6. Use Case - Perform Function Call Analysis

2.1.6.1. Brief Description:

This use case provides the capability for a software analyst to analyze the call graph of a function defined in the software files in the library.

2.1.6.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst then selects any of the global items for the library. SIAT C++ responds by displaying the source file containing that item as a source file outline frame and a source file listing frame of the returned web page. The global item selected is displayed at the top of the source file listing frame.

The software analyst can then scroll through the file, select a function defined in the file, and choose to display the function call graph including that function. SIAT C++ responds by displaying the textual and graphical function call graph containing that function.

The software analyst can then select a function from the textual or graphical graph, and SIAT C++ will display the source file containing the definition of that function, with the definition of that function at the top of the source file listing.

2.1.7. Use Case - Perform Data Flow Analysis

2.1.7.1. Brief Description:

This use case provides the capability for a software analyst to analyze the data flow of a variable in the software files in the library.

2.1.7.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst then selects any of the global items for the library. SIAT C++ responds by displaying the source file containing that item as a source file outline frame and a source file listing frame of the returned web page. The global item selected is displayed at the top of the source file listing frame.

The software analyst can then scroll through the file, select a variable defined in the file, and choose to display the data flow graph for that variable. SIAT C++ responds by displaying the textual and graphical data flow graph for that variable inclusive of the variables that affect it and the variables that it affects.

The software analyst can then select a variable from the textual graph, and SIAT C++ will display the source file containing the definition of that variable, with the definition of that variable at the top of the source file listing.

Also, the software analyst can select a data flow between two variables from the textual or graphical graph, and SIAT C++ will display the source file containing the location where the one variable affects the other, with the location where the one variable affects the other at the top of the source file listing.

2.1.8. Use Case - Perform Dependency Analysis

2.1.8.1. Brief Description:

This use case provides the capability for a software analyst to analyze the source file inclusion dependency hierarchy between the software files in the library.

2.1.8.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst then selects any of the global items for the library. SIAT C++ responds by displaying the source file containing that item as a source file outline frame and a source file listing frame of the returned web page. The global item selected is displayed at the top of the source file listing frame.

The software analyst can then select to display the source file dependencies for the source file being displayed. SIAT C++ responds by displaying the textual and graphical file inclusion dependency hierarchy that includes this file.

The software analyst can then select a source file from the textual or graphical graph, and SIAT C++ will display the source file, with the beginning of the source file at the top of the source file listing.

2.1.9. Use Case - Perform External Interface Analysis with PUIIs

2.1.9.1. Brief Description:

This use case provides the capability for a software analyst to analyze an external interface associated with a PUII. In particular, the software analyst can verify the format against a design document definition of the PUII (i.e. field names, formats, etc.), if one exists, and can follow the data flow through an external interface into the software functions in the library.

2.1.9.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst can then select to view a list of all the PUIIs for the library. SIAT C++ then displays a list containing an entry for each PUII to global variable identifier mapping that is defined for the library.

The software analyst can then select a PUII or a global variable identifier from this list. If a PUII is selected, SIAT C++ generates and displays a list of all the global variable identifiers that are related through this PUII.

If an entire listing of PUIIs or the listing for one PUII is displayed, the software analyst can select a global variable identifier from the list.

If a global variable identifier is selected, the software analyst can then select to see the definition or declaration of the identifier (see 2.2.4. Use Case - Browse Library Source Files); to see all references to that identifier (see 2.2.4. Use Case - Browse Library Source Files); or to see the data flow graph for this identifier (see 2.2.7. Use Case - Perform Data Flow Analysis).

If the software analyst selects to see all references to that identifier, all references where that identifier is used, or all references where that identifier is modified, the software analyst can then investigate each function where the identifier is referenced. This can include generating a call graph for each function (see 2.2.6. Use Case - Perform Function Call Analysis), and checking the effect of each function on the identifier in the current function.

If the software analyst selects to see the definition or declaration of the identifier, the software analyst can then verify the field names, format, etc. of the identifier against any design document that defines the PUII.

Note that the identifier may be used as part of an identifier of a larger abstract data type. The software analyst may need to determine the identifier of the larger abstract data type, and then select to see the definition or declaration of that identifier, to see all references to that identifier, or to see the data flow graph for that identifier. Thus the software analyst may need to iteratively trace the use and definition of the original identifier, both by itself and as part of larger constructs.

If a PUII is selected from the entire listing of PUIIs or the listing for one PUII, the software analyst can then select to display the global data flow graph for this PUII. SIAT C++ responds by displaying the textual and graphical data flow graph for the PUII. This global data flow graph is a combination of the data flow graphs for all the global variable identifiers related to this PUII, where all the global variable identifiers are treated as representing the same data entity.

The software analyst can then select a variable from the textual graph, and SIAT C++ will display the source file containing the definition of that variable, with the definition of that variable at the top of the source file listing.

Also, the software analyst can select a data flow between two variables from the textual or graphical graph and SIAT C++ will display the source file containing the location where the one variable affects the other, with the location where the one variable affects the other at the top of the source file listing.

2.1.10. Use Case - Perform External Interface Analysis without PUIIs

2.1.10.1. Brief Description:

This use case provides the capability for a software analyst to analyze an external interface not associated with a PUII. In particular, the software analyst can verify the field names, format, etc. against an applicable design document definition, if one exists, and can follow the data flow through an external interface into the software functions in the library.

2.1.10.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

Since no PUIIs are available, the software analyst must first determine global variable identifiers that may be used to represent an external interface. This can be done by first building a list of keywords associated with the mechanism for implementing the interface and a list of keywords associated with the likely name of the interface.

The software analyst can then find language constructs that may be used in defining external interfaces, such as classes and structs. When the results of such searches are displayed, the software analyst can then search the results for the keywords that were built earlier in order to determine types that might be associated with the external interface being investigated and then to determine global variable identifiers declared of these types. These global variable identifiers may then be selected.

If a global variable identifier is selected, the software analyst can then select to see the definition or declaration of the identifier (see 2.2.4. Use Case - Browse Library Source Files); to see all references to that identifier, all references where that identifier is used, or all references where that identifier is modified (see 2.2.4. Use Case - Browse Library Source Files); or to see the data flow graph for this identifier (see 2.2.7. Use Case - Perform Data Flow Analysis).

If the software analyst selects to see all references to that identifier, all references where that identifier is used, or all references where that identifier is modified, the software analyst can then investigate each function where the identifier is referenced. This can include generating a call graph for each function (see 2.2.6. Use Case - Perform Function Call Analysis), and checking the effect of each function on the identifier in the current function.

If the software analyst selects to see the definition or declaration of the identifier, the software analyst can then verify the field names, format, etc. of the identifier against a design document that defines the external interface, if one exists.

Note that the identifier may be used as part of an identifier of a larger abstract data type. The software analyst may need to determine the identifier of the larger abstract data type, and then select to see the definition or declaration of that identifier, to see all references to that identifier, or to see the data flow graph for that identifier. Thus the software analyst may need to iteratively trace the use and definition of the original identifier, both by itself and as part of larger constructs.

If a global variable identifier is selected, the software analyst can then select to display the global data flow graph for this global variable identifier. SIAT C++ responds by displaying the textual and graphical data flow graph for the global variable identifier.

The software analyst can then select a variable from the textual or graphical graph, and SIAT C++ will display the source file containing the definition of that variable, with the definition of that variable at the top of the source file listing.

Also, the software analyst can select a data flow between two variables from the textual or graphical graph, and SIAT C++ will display the source file containing the location where the one variable affects the other, with the location where the one variable affects the other at the top of the source file listing.

2.1.11. Use Case - Perform Control Flow Analysis

2.1.11.1. Brief Description:

This use case provides the capability for a software analyst to analyze the control flow of a function defined in the software files in the library.

2.1.11.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst then selects any of the global items for the library. SIAT C++ responds by displaying the source file containing that item as a source file outline frame and a source file listing frame of the returned web page. The global item selected is displayed at the top of the source file listing frame.

The software analyst can then scroll through the file, select a function definition in the file, and choose to display the control flow graph for that function. SIAT C++ responds by displaying the graphical control flow graph for that function.

The software analyst can then select a statement from the graphical graph, and SIAT C++ will display the source file containing the definition of that function, with the selected statement at the top of the source file listing.

2.1.12. Use Case – Use Bookmarks

2.1.12.1. Brief Description:

This use case provides the capability for a software analyst to save, go to, and delete bookmarks.

2.1.12.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst can then use the capabilities in some of the other use cases to analyze the source code files. Whenever SIAT C++ is displaying a source file, the software analyst can choose to save a bookmark for the current location in the source file. When the software analyst chooses to save a bookmark, SIAT C++ saves the current location being displayed at the top of the source file listing, and the text of the line at the top of the source file listing.

While in a session, the software analyst may, at any later time, select to display the bookmark list. SIAT C++ then displays the list of bookmarks, with the source file name and text saved from the source file listing on a line. The software analyst can select any line from the list of bookmarks and choose to go to that bookmark. When a line is selected to go to, SIAT C++ will display the source file indicated on the line and will position the source file listing so that the line which was at the top of the source file listing when this bookmark was saved is again displayed at the top of the source file listing. Note that SIAT C++ retains the information in the bookmark list between sessions for the software analyst.

Also, when the bookmark list is displayed, the software analyst can select a bookmark from the list of bookmarks and choose to delete that bookmark. When a bookmark is selected for deletion, SIAT C++ shall remove that bookmark from the list of bookmarks.

2.1.13. Use Case – Knowledge Sharing with Analysis Notes

2.1.13.1. Brief Description:

This use case provides the capability for a software analyst to save, retrieve, edit, and generate reports of analysis notes associated with source files.

2.1.13.2. Flow of Events:

This use case begins when a software analyst logs in, using the Log In to SIAT C++ use case, and configures their master library for the session, using the Configure Master Library for Analysis use case.

The software analyst then selects one of the libraries from the list of libraries in the master library. SIAT C++ receives the library request and generates a web page with all the global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

The software analyst can then use the capabilities in some of the other use cases to analyze the source code files. Whenever SIAT C++ is displaying a source file, the software analyst can choose to annotate the source file with a textual note called an analysis note.

While displaying a source file, the software analyst may, at any later time, select to retrieve and display the analysis notes for the source file. Note that SIAT C++ retains the analysis notes between sessions for the software analyst and can display analysis notes from all software analysts who have annotated the source file.

After displaying an analysis note generated by the software analyst, the software analyst can edit or delete the analysis note.

Finally, the software analyst can generate reports of analysis notes that can contain analysis notes for a specific file or the entire library and may be produced to include only the software analyst’s notes or all software analysts’ notes.

Analysis notes can be used to record observations, problems, or clarifying information about the source code. They promote knowledge sharing between software analysts who are analyzing the same source code.

2.2. User characteristics

The software analyst users of SIAT C++ are anticipated to have experience in the development of C/C++ source code. SIAT C++ is not intended to replace this experience, but rather to provide a tool for personnel with that experience to better navigate and analyze the source code libraries that have been installed for analysis.

The library maintainer users of SIAT C++ are anticipated to be those SIAT C++ development and maintenance personnel who will be responsible for ensuring that the proper source code libraries are available for analysis by the software analysts.

2.3. Constraints

None.

2.4. Assumptions and dependencies

None.

3. Specific requirements

3.1. External interface requirements

3.1.1. User Interfaces

3.1.1.1. SIAT C++ shall provide a WWW browser interface for all software analyst interactions.

3.1.1.2. SIAT C++ shall provide browser content that can be rendered by Netscape Navigator, Version 4.X, where X = 5 or higher.

3.1.1.3. SIAT C++ shall provide browser content that can be rendered by Internet Explorer, Version 5.

3.1.1.4. SIAT C++ shall provide a command line interface for the library maintainer interface for library / source file preparation.

3.1.2. Hardware Interfaces

3.1.2.1. SIAT C++ shall use a hardware platform that supports Sun Solaris 2.5.1 as the hardware supporting Sun Solaris, Netscape Enterprise Server, and the server side SIAT C++ code.

3.1.3. Software Interfaces

3.1.3.1. SIAT C++ shall use Netscape Enterprise Server Version 3.5 or higher as the HTTP server that services requests for SIAT C++ data.

3.1.3.2. SIAT C++ shall use a Sun Solaris 2.5.1 or higher as the operating system supporting Netscape Enterprise Server and the server side SIAT C++ code.

3.1.4. Communication Interfaces

None.

3.2. System features

3.2.1. General Features

3.2.1.1. Introduction/Purpose

This subsection describes the general features that SIAT C++ provides. These include the type of software that can be analyzed, and the session concept for a software analyst who logs in.

3.2.1.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.1.3. Functional Requirements

3.2.1.3.1. SIAT C++ shall accept as input C and C++ source code that can be compiled without errors.

3.2.1.3.2. SIAT C++ shall allow a software analyst to log in to the SIAT C++ system by supplying a username that identifies the software analyst to the system and a password.

3.2.1.3.3. SIAT C++ shall maintain a separate session for each software analyst who is logged in.

3.2.1.3.4. SIAT C++ shall terminate a software analyst’s session after a system configurable amount of time of inactivity.

3.2.2. Library / Source File Preparation

3.2.2.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support adding and removing libraries and source files from the set of libraries and source files that are available for analysis by the software analyst. The library maintainer is responsible for adding and removing libraries.

3.2.2.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.2.3. Functional Requirements

3.2.2.3.1. SIAT C++ shall allow the library maintainer to add a set of C and C++ source files as a new library that can be analyzed with SIAT C++.

3.2.2.3.2. SIAT C++ shall allow the library maintainer to remove a library, including the associated set of C and C++ source files, from the set of libraries that can be analyzed with SIAT C++.

3.2.2.3.3. SIAT C++ shall maintain one or more versions of the same named library, each of which has a different version identifier.

3.2.3. Master Library Configuration

3.2.3.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support a software analyst configuring the master library for their session.

3.2.3.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.3.3. Functional Requirements

3.2.3.3.1. When a software analyst logs in, SIAT C++ shall allow the software analyst to select from the list of available libraries the libraries that the software analyst wants to be part of the master library associated with their session.

3.2.3.3.2. When a software analyst requests to reconfigure their master library, SIAT C++ shall allow the software analyst to select from the list of available libraries the libraries that the software analyst wants to be part of the master library associated with their session.

3.2.3.3.3. SIAT C++ shall allow only one version of a library to be part of the master library for the software analyst’s session at any given time.

3.2.3.3.4. SIAT C++ shall allow a software analyst to add a library to the master library for the software analyst’s session.

3.2.3.3.5. SIAT C++ shall allow a software analyst to delete a library from the master library for the software analyst’s session.

3.2.3.3.6. SIAT C++ shall allow a software analyst to select a library from the master library to work with.

3.2.3.3.7. When the software analyst selects a library, SIAT C++ shall display name and version information for the library.

3.2.4. Library and Source Code Browsing

3.2.4.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support browsing the libraries and source code that is available for analysis by the software analyst.

3.2.4.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.4.3. Functional Requirements

3.2.4.3.1. When the software analyst selects a library, SIAT C++ shall display the list of global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols), along with the type of global symbol (function, class, structure, union, enumeration, macro), and the file name where the global symbol is defined.

3.2.4.3.2. SIAT C++ shall allow a software analyst to select a global function, class, structure, union, enumeration, macro, or file name from the list of items displayed for a library.

3.2.4.3.3. When a global function, class, structure, union, enumeration, or macro is selected, SIAT C++ shall show the source file where the item is defined with the point where the item definition begins at the top of the displayed portion of the source file.

3.2.4.3.4. When a file name is selected, SIAT C++ shall show the source file with the beginning of the source file at the top of the displayed portion of the source file.

3.2.4.3.5. When displaying a source file, SIAT C++ shall display a source file outline and a source file listing.

3.2.4.3.6. When displaying a source file, SIAT C++ shall display the following in the source file outline: the source file name; global function, class, structure, union, enumeration, variable, and macro names declared or defined in the source file; and include preprocessor directives in the source file.

3.2.4.3.7. When the source file name is selected in the source file outline, SIAT C++ shall position the source file listing at the top of the source file.

3.2.4.3.8. When a function, class, structure, union, enumeration, variable, or macro name is selected in the source file outline, SIAT C++ shall position the source file listing at the beginning of the declaration or definition of that item.

3.2.4.3.9. When an include preprocessor directive is selected in the source file outline, SIAT C++ shall position the source file listing at the beginning of the include preprocessor directive.

3.2.4.3.10. When displaying a source file, SIAT C++ shall display the entire text of the source file in a source file listing.

3.2.4.3.11. When displaying a source file, SIAT C++ shall display the following types of items in distinct fonts/colors in the source file listing and the source file outline:

· comments

· preprocessor directives

· keywords

· constants

· string literals

· operators

· identifiers (class/struct/union/enum tag, class/struct/union member, enum constant, typedef name, variable, function, macro, or included file name)

3.2.4.3.12. For a selected referenced identifier in a source file listing, SIAT C++ shall show the source file where the identifier is defined with the point where the identifier definition begins at the top of the displayed portion of the source file. (Note that in some cases, the identifier definition is not in any source file in the library. In these cases, the identifier definition cannot be shown, but the identifier declaration is shown if it exists.)

3.2.4.3.13. For a selected defined or declared identifier in a source file listing, SIAT C++ shall allow the software analyst to choose from the list of declarations for the identifier and show the source file where the selected identifier declaration occurs with the point where the selected identifier declaration begins at the top of the displayed portion of the source file.

3.2.4.3.14. For a selected declared identifier in a source file listing, SIAT C++ shall show the source file where the identifier is defined with the point where the identifier definition begins at the top of the displayed portion of the source file. (Note that in some cases, the identifier definition is not in any source file in the library. In these cases, the identifier definition cannot be shown.)

3.2.4.3.15. When displaying the list of global functions, classes, structures, unions, enumerations, and macros defined in the library (global symbols); along with the type of global symbol (function, class, structure, union, enumeration, macro) and the file name where the global symbol is defined, SIAT C++ shall, based on user choice, sort the listing alphabetically by global symbol, type of global symbol, or file name where the global symbol is defined.

3.2.5. Locating References to Identifiers

3.2.5.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support locating references to identifiers in the source code. References include source code locations where types are referenced; where variables are used or modified; where functions are called or referenced; and where files are referenced by include preprocessor statements.

3.2.5.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.5.3. Functional Requirements

3.2.5.3.1. For a selected declared or defined type identifier (class/struct/union/enum tag, enum constant, or typedef name) in a source file listing, SIAT C++ shall display a list of all locations in all source files in the library where this type identifier is referenced.

3.2.5.3.2. SIAT C++ shall allow the software analyst to select one location where a specific type identifier is referenced from the list of locations in all source files in the library where this type identifier is referenced.

3.2.5.3.3. When a location where a specific type identifier is referenced is selected from the list, SIAT C++ shall show the source file with the location where this reference to the type identifier occurs at the top of the displayed portion of the source file.

3.2.5.3.4. For a selected declared or defined object identifier (class/struct/union member or variable) in a source file listing, SIAT C++ shall display a list of all locations in all source files in the library where this object is used or modified.

3.2.5.3.5. SIAT C++ shall allow the software analyst to select one location where a specific object identifier is used or modified from the list of locations in all source files in the library where this object identifier is used or modified.

3.2.5.3.6. When a location where a specific object identifier is used or modified is selected from the list, SIAT C++ shall show the source file with the location where this object identifier is used or modified at the top of the displayed portion of the source file.

3.2.5.3.7. For a selected declared or defined function identifier in a source file listing, SIAT C++ shall display a list of all locations in all source files in the library where this function identifier is called or referenced.

3.2.5.3.8. SIAT C++ shall allow the software analyst to select one location where a specific function identifier is called or referenced from the list of all locations in all source files in the library where this function identifier is called or referenced.

3.2.5.3.9. When a location where a specific function identifier is called or referenced is selected from the list, SIAT C++ shall show the source file with the location where this function is called or referenced at the top of the displayed portion of the source file.

3.2.5.3.10. For a selected file identifier specified for inclusion (by #include) in a source file listing, SIAT C++ shall display a list of all locations in all source files in the library where this file identifier is specified for inclusion.

3.2.5.3.11. SIAT C++ shall allow the software analyst to select one location where a specific file identifier is specified for inclusion from the list of all locations in all source files in the library where this file identifier is specified for inclusion.

3.2.5.3.12. When a location where a specific file identifier is specified for inclusion is selected from the list, SIAT C++ shall show the source file with the location where this file is specified for inclusion at the top of the displayed portion of the source file.

3.2.6. Dependencies between Identifiers

3.2.6.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support identification of dependencies between identifiers. This includes determining inheritance type hierarchies, function call graphs, data flow graphs, and source file inclusion dependencies.

3.2.6.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.6.3. Functional Requirements

3.2.6.3.1. For a selected declared or defined class/struct tag identifier in a source file listing, SIAT C++ shall display textually and graphically the inheritance type hierarchy tree of which this class/struct is a member.

3.2.6.3.2. SIAT C++ shall display an inheritance type hierarchy tree as an indented textual list of types where indentation indicates that a type identifier is in parent-child relationships with the type identifiers indented under it.

3.2.6.3.3. SIAT C++ shall display an inheritance type hierarchy tree as a directed graph where the type identifiers are the nodes and the edges indicate the parent-child relationships.

3.2.6.3.4. When displaying an inheritance type hierarchy tree, SIAT C++ shall, for a selected type identifier (from the indented list or from the graph nodes), show the source file where the type identifier is defined or declared with the point where the definition or declaration begins at the top of the displayed portion of the source file.

3.2.6.3.5. For a selected declared or defined function identifier in a source file listing, SIAT C++ shall display textually and graphically the call graph (calls to and called by) of which this function identifier is a member.

3.2.6.3.6. SIAT C++ shall display a call graph as an indented textual list of function identifiers where indentation indicates that a function identifier is in caller-callee relationships with the function identifiers indented under it.

3.2.6.3.7. SIAT C++ shall display a call graph as a directed graph where the function identifiers are the nodes and the edges indicate which function identifiers call which other function identifiers.

3.2.6.3.8. When displaying a call graph, SIAT C++ shall, for a selected function identifier (from the indented list or from the graph nodes), show the source file where the function identifier is defined or declared with the point where the definition or declaration begins at the top of the displayed portion of the source file.

3.2.6.3.9. For a selected declared or defined object identifier (class/struct/union member identifier or variable identifier) in a source file listing, SIAT C++ shall display textually and graphically the data flow graph (assigned to and assigned from) of which this object is a member.

3.2.6.3.10. SIAT C++ shall display the data flow graph based on all source files in the current library.

3.2.6.3.11. SIAT C++ shall display a data flow graph as an indented textual list of object identifiers where indentation indicates that an object identifier is in affects-affected by relationships with the object identifiers indented under it.

3.2.6.3.12. SIAT C++ shall display a data flow graph as a directed graph where the object identifiers are the nodes and the edges indicate which object identifiers affect which other object identifiers.

3.2.6.3.13. When displaying a data flow graph, SIAT C++ shall, for a selected object identifier (from the indented list or from the graph nodes), show the source file where the other object identifier is affecting the selected object identifier with the point where the other object identifier affects the selected object identifier at the top of the displayed portion of the source file.

3.2.6.3.14. When displaying a data flow graph, SIAT C++ shall, for a selected object identifier (from the indented list), show the source file where the object identifier is defined or declared with the point where the definition or declaration begins at the top of the displayed portion of the source file.

3.2.6.3.15. For the current source file in a source file listing, SIAT C++ shall display textually and graphically the dependency graph (all source files that are (recursively) included by this source file) for this source file.

3.2.6.3.16. SIAT C++ shall display a dependency graph as an indented textual list of source file identifiers where indentation indicates that a source file identifier is in include-included by relationships with the source file identifiers indented under it.

3.2.6.3.17. SIAT C++ shall display a dependency graph as a directed graph where the source file identifiers are the nodes and the edges indicate which source file identifiers include which other source file identifiers.

3.2.6.3.18. When displaying a dependency graph, SIAT C++ shall, for a selected source file identifier (from the indented list or from the graph nodes), show the selected source file with the top of the selected source file at the top of the displayed portion of the source file.

3.2.7. Function Control Flow

3.2.7.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support identification of control flow between statements in a function.

3.2.7.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.7.3. Functional Requirements

3.2.7.3.1. For a selected declared or defined function identifier in a source file listing, SIAT C++ shall display graphically the control flow graph for the statements that comprise the selected function.

3.2.7.3.2. SIAT C++ shall display a control flow graph as a directed graph (possibly with cycles) where the statements are the nodes and the edges indicate the flow of control from statement to statement.

3.2.7.3.3. When displaying a control flow graph, SIAT C++ shall, for a selected statement (from the graph nodes), show the source file containing the statement with the point where the statement begins at the top of the displayed portion of the source file.

3.2.8. Project-Unique Identifiers of Interfaces (PUIIs)

3.2.8.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support Project-Unique Identifiers of Interfaces (PUIIs) for external interfaces. Project-Unique Identifiers of Interfaces (PUIIs) are used in order to track external interfaces between multiple entities. A Project-Unique Identifier of an Interface (PUII) is mapped to the actual global variable identifiers that implement the interface in the source and destination code for the interface.

3.2.8.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.8.3. Functional Requirements

3.2.8.3.1. SIAT C++ shall input data that defines all PUIIs for external interfaces and maps these PUIIs to the global variable identifiers in the source code files.

3.2.8.3.2. SIAT C++ shall display all PUIIs for a library in an all PUII result set.

3.2.8.3.3. SIAT C++ shall display the all PUII result set as a list, where each item in the list is a pair including a PUII and one global variable in a source code file.

3.2.8.3.4. SIAT C++ shall display the all PUII result set in ascending alphabetical order of the PUIIs, with the global variables in the source code files being arranged in ascending alphabetical order for each PUII.

3.2.8.3.5. SIAT C++ shall allow the software analyst to select a PUII in the all PUII results set.

3.2.8.3.6. When a PUII is selected, SIAT C++ shall display a single PUII result set that is all global variable identifiers in all source files in all libraries in the master library that are related through this one PUII that identifies these variables as being associated names for the same interface.

3.2.8.3.7. For a selected declared or defined global variable identifier in a source file listing, SIAT C++ shall display a single PUII result set that is a list of global variable identifiers that are related to this global variable identifier through one PUII that identifies these variables as being associated names for the same interface.

3.2.8.3.8. When displaying a single PUII result set, SIAT C++ shall, for the set of all global variable identifiers in the result set, display the global data flow graph (assigned to and assigned from) of which these global variables are a member, considering these global variables all represent the same data entity.

3.2.8.3.9. SIAT C++ shall display the global data flow graph for a PUII based on all source files in the master library.

3.2.8.3.10. SIAT C++ shall display a global data flow graph as an indented textual list of object (class/struct/union member identifier or variable identifier) identifiers where indentation indicates that an object identifier is in affects-affected by relationships with the object identifiers indented under it.

3.2.8.3.11. SIAT C++ shall display a global data flow graph as a directed graph where the object identifiers are the nodes and the edges indicate which object identifiers affect which other object identifiers.

3.2.8.3.12. When displaying a global data flow graph, SIAT C++ shall, for a selected object identifier (from the indented list or from the graph edges), show the source file where the other object identifier is affecting the selected object identifier with the point where the other object identifier affects the selected object identifier at the top of the displayed portion of the source file.

3.2.8.3.13. When displaying a global data flow graph, SIAT C++ shall, for a selected object identifier (from the indented list), show the source file where the object identifier is defined or declared with the point where the definition or declaration begins at the top of the displayed portion of the source file.

3.2.8.3.14. When displaying a single PUII result set or an all PUII result set, SIAT C++ shall, for a selected global variable identifier in the result set, show the source file where the class/struct/union member or variable identifier is defined or declared with the point where the identifier definition or declaration begins at the top of the displayed portion of the source file.

3.2.8.3.15. When displaying a single PUII result set or an all PUII result set, SIAT C++ shall, for a selected global variable identifier in the result set, display a list of all locations in all source files in the library where the global variable identifier is used or modified.

3.2.8.3.16. SIAT C++ shall allow the software analyst to select one location where a specific global variable identifier is used or modified from the list of all locations in all source files in the library where this global variable identifier is used or modified.

3.2.8.3.17. When a location where a specific global variable identifier is used or modified is selected from the list, SIAT C++ shall show the source file with the location where this global variable identifier is used or modified at the top of the displayed portion of the source file.

3.2.9. Find Strings

3.2.9.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support searching for strings within the libraries and source code being analyzed by the software analyst.

3.2.9.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.9.3. Functional Requirements

3.2.9.3.1. SIAT C++ shall allow the software analyst to select to search all the source files in a library for a particular text string or for text strings matching a particular regular expression.

3.2.9.3.2. SIAT C++ shall allow the software analyst to select to search all the source files in a master library (i.e. all the source files in all the libraries associated with the master library for the session) for a particular text string or for text strings matching a particular regular expression.

3.2.9.3.3. Based on the selection made by the software analyst, SIAT C++ shall perform either case sensitive or case insensitive text string searches.

3.2.9.3.4. Based on the selection made by the software analyst, SIAT C++ shall search for text strings in either all text in the source files, or only text that is not within a C or C++ comment in the source files, or only text that is within a C or C++ comment in the source files.

3.2.9.3.5. SIAT C++ shall display the results of a text string search as a list of all locations in all source files where the text string was found.

3.2.9.3.6. SIAT C++ shall allow the software analyst to select one location where the text string was found from the list.

3.2.9.3.7. When a location where the text string was found is selected from the list, SIAT C++ shall show the source file with the location where this text string occurs at the top of the displayed portion of the source file.

3.2.10. Find Constructs

3.2.10.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to support searching for specific language constructs within the libraries and source code being analyzed by the software analyst.

3.2.10.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.10.3. Functional Requirements

3.2.10.3.1. Upon software analyst request, SIAT C++ shall search all the source files in a library for all class definitions.

3.2.10.3.2. Upon software analyst request, SIAT C++ shall search a source file listing for all class definitions.

3.2.10.3.3. Upon software analyst request, SIAT C++ shall search all the source files in a library for all struct definitions.

3.2.10.3.4. Upon software analyst request, SIAT C++ shall search a source file listing for all struct definitions.

3.2.10.3.5. Upon software analyst request, SIAT C++ shall search all the source files in a library for all union definitions.

3.2.10.3.6. Upon software analyst request, SIAT C++ shall search a source file listing for all union definitions.

3.2.10.3.7. Upon software analyst request, SIAT C++ shall search all the source files in a library for all pointer definitions.

3.2.10.3.8. Upon software analyst request, SIAT C++ shall search a source file listing for all pointer definitions.

3.2.10.3.9. Upon software analyst request, SIAT C++ shall search all source files in a library for all derived class definitions.

3.2.10.3.10. Upon software analyst request, SIAT C++ shall search a source file listing for all derived class definitions.

3.2.10.3.11. Upon software analyst request, SIAT C++ shall search all the source files in a library for all try statements.

3.2.10.3.12. Upon software analyst request, SIAT C++ shall search a source file listing for all try statements.

3.2.10.3.13. Upon software analyst request, SIAT C++ shall search all the source files in a library for all throw statements.

3.2.10.3.14. Upon software analyst request, SIAT C++ shall search a source file listing for all throw statements.

3.2.10.3.15. SIAT C++ shall display the results of searches for class definitions, struct definitions, union definitions, pointer definitions, derived class definitions, try statements, or throw statements as a list of all locations in all source files where the particular construct was found.

3.2.10.3.16. SIAT C++ shall allow the software analyst to select one location where the particular construct was found from the list of locations in all source files where the particular construct was found.

3.2.10.3.17. When a location where the particular construct was found is selected from the list, SIAT C++ shall show the source file with the location where this particular construct occurs at the top of the displayed portion of the source file.

3.2.11. Bookmark Source Code

3.2.11.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to allow a software analyst to place bookmarks in the source code.

3.2.11.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.11.3. Functional Requirements

3.2.11.3.1. SIAT C++ shall allow the software analyst to save a bookmark to the current location in the source file listing.

3.2.11.3.2. When SIAT C++ saves a bookmark to the current location in the source file listing, SIAT C++ shall save the source file name and the line number of the current location as the bookmark file and line location.

3.2.11.3.3. SIAT C++ shall allow a software analyst to retrieve their list of bookmarks.

3.2.11.3.4. SIAT C++ shall display the list of bookmarks as a list, with the line of the bookmark displayed and the source file of the bookmark displayed.

3.2.11.3.5. SIAT C++ shall order the list of bookmarks displayed alphabetically by source file name.

3.2.11.3.6. SIAT C++ shall allow a software analyst to delete a bookmark from their list of bookmarks.

3.2.11.3.7. When a bookmark is selected for display by a software analyst, SIAT C++ shall display the source file associated with the selected bookmark from the list, with the top of the source file listing positioned so that the line corresponding to the line number in the bookmark location is at the top of the source file listing.

3.2.11.3.8. SIAT C++ shall preserve the software analyst’s bookmark list between sessions so that the same bookmark list, which was available when the software analyst ended their session, is again available when the software analyst starts their next session.

3.2.12. Analysis Notes

3.2.12.1. Introduction/Purpose

This subsection describes the functionality that SIAT C++ provides to allow a software analyst to annotate source code with analysis notes, to retrieve analysis notes for source code at a later time, to edit analysis notes, and to generate reports of analysis notes.

3.2.12.2. Stimulus/Response sequence

The stimulus/response sequences for SIAT C++ are described in the Use Cases presented in Section 2.2 of this document.

3.2.12.3. Functional Requirements

3.2.12.3.1. SIAT C++ shall allow the software analyst to annotate the source file being displayed with analyst generated textual notes called analysis notes that are saved for later retrieval.

3.2.12.3.2. SIAT C++ shall allow the software analyst to retrieve and display analysis notes for a source file being displayed.

3.2.12.3.3. SIAT C++ shall allow the software analyst to delete analysis notes that the software analyst has saved.

3.2.12.3.4. SIAT C++ shall allow the software analyst to edit analysis notes that the software analyst has saved.

3.2.12.3.5. SIAT C++ shall allow the software analyst to retrieve a report of analysis notes.

3.2.12.3.6. SIAT C++ shall include in the report of analysis notes the analysis notes created by the current software analyst or analysis notes created by all software analysts, based on user choice.

3.2.12.3.7. SIAT C++ shall include in the report of analysis notes the analysis notes associated with the source file being displayed or analysis notes associated with all source files in the library, based on user choice.

3.3. Performance requirements

None.

3.4. Design constraints

None.

3.5. Software system attributes

None.

3.6. Other requirements

None.

Appendix A.
Requirement to Version Allocation

The following table shows the allocation of requirements to SIAT C++ Deliverable Versions.

Currently, the versions defined are 1.0, 1.1, 2.0, 2.1, and Post-2.1

	Requirement Number
	SIAT C++ Version

	3.1.1.1.
	1.0

	3.1.1.2.
	1.0

	3.1.1.3.
	2.0

	3.1.1.4.
	1.0

	
	

	3.1.2.1.
	1.0

	
	

	3.1.3.1.
	1.0

	3.1.3.2.
	1.0

	
	

	3.2.1.3.1.
	1.0

	3.2.1.3.2.
	1.0

	3.2.1.3.3.
	1.0

	3.2.1.3.4.
	1.0

	
	

	3.2.2.3.1.
	1.0

	3.2.2.3.2.
	1.0

	3.2.2.3.3.
	1.0

	
	

	3.2.3.3.1.
	1.0

	3.2.3.3.2.
	1.0

	3.2.3.3.3.
	1.0

	3.2.3.3.4.
	1.0

	3.2.3.3.5.
	1.0

	3.2.3.3.6.
	1.0

	3.2.3.3.7.
	1.0

	
	

	3.2.4.3.1.
	1.0

	3.2.4.3.2.
	1.0

	3.2.4.3.3.
	1.0

	3.2.4.3.4.
	1.0

	3.2.4.3.5.
	1.0

	3.2.4.3.6.
	1.0

	3.2.4.3.7.
	1.0

	3.2.4.3.8.
	1.0

	3.2.4.3.9.
	1.0

	3.2.4.3.10.
	1.0

	3.2.4.3.11.
	1.0

	3.2.4.3.12.
	1.0

	3.2.4.3.13.
	1.0

	3.2.4.3.14.
	1.0

	3.2.4.3.15.
	2.0

	
	

	3.2.5.3.1.
	1.0

	3.2.5.3.2.
	1.0

	3.2.5.3.3.
	1.0

	3.2.5.3.4.
	1.0

	3.2.5.3.5.
	1.0

	3.2.5.3.6.
	1.0

	3.2.5.3.7.
	1.0

	3.2.5.3.8.
	1.0

	3.2.5.3.9.
	1.0

	3.2.5.3.10.
	1.0

	3.2.5.3.11.
	1.0

	3.2.5.3.12.
	1.0

	
	

	3.2.6.3.1.
	1.0

	3.2.6.3.2.
	1.0

	3.2.6.3.3.
	1.0

	3.2.6.3.4.
	1.0

	3.2.6.3.5.
	1.0

	3.2.6.3.6.
	1.0

	3.2.6.3.7.
	1.0

	3.2.6.3.8.
	1.0

	3.2.6.3.9.
	2.0

	3.2.6.3.10.
	2.0

	3.2.6.3.11.
	2.0

	3.2.6.3.12.
	2.0

	3.2.6.3.13.
	2.0

	3.2.6.3.14.
	2.0

	3.2.6.3.15.
	1.0

	3.2.6.3.16.
	1.0

	3.2.6.3.17.
	1.0

	3.2.6.3.18.
	1.0

	
	

	3.2.7.3.1.
	2.0

	3.2.7.3.2.
	2.0

	3.2.7.3.3.
	2.0

	
	

	3.2.8.3.1.
	1.0

	3.2.8.3.2.
	1.0

	3.2.8.3.3.
	1.0

	3.2.8.3.4.
	1.0

	3.2.8.3.5.
	1.0

	3.2.8.3.6.
	1.0

	3.2.8.3.7.
	2.0

	3.2.8.3.8.
	2.1

	3.2.8.3.9.
	2.1

	3.2.8.3.10.
	2.1

	3.2.8.3.11.
	2.1

	3.2.8.3.12.
	2.1

	3.2.8.3.13.
	2.1

	3.2.8.3.14.
	2.0

	3.2.8.3.15.
	2.0

	3.2.8.3.16.
	2.0

	3.2.8.3.17.
	2.0

	
	

	3.2.9.3.1.
	1.1

	3.2.9.3.2.
	1.1

	3.2.9.3.3.
	1.1

	3.2.9.3.4.
	1.1

	3.2.9.3.5.
	1.1

	3.2.9.3.6.
	1.1

	3.2.9.3.7.
	1.1

	
	

	3.2.10.3.1.
	1.1

	3.2.10.3.2.
	1.1

	3.2.10.3.3.
	1.1

	3.2.10.3.4.
	1.1

	3.2.10.3.5.
	1.1

	3.2.10.3.6.
	1.1

	3.2.10.3.7.
	1.1

	3.2.10.3.8.
	1.1

	3.2.10.3.9.
	1.1

	3.2.10.3.10.
	1.1

	3.2.10.3.11.
	1.1

	3.2.10.3.12.
	1.1

	3.2.10.3.13.
	1.1

	3.2.10.3.14.
	1.1

	3.2.10.3.15.
	1.1

	3.2.10.3.16.
	1.1

	3.2.10.3.17.
	1.1

	
	

	3.2.11.3.1.
	2.0

	3.2.11.3.2.
	2.0

	3.2.11.3.3.
	2.0

	3.2.11.3.4.
	2.0

	3.2.11.3.5.
	2.0

	3.2.11.3.6.
	2.0

	3.2.11.3.7.
	2.0

	3.2.11.3.8.
	2.0

	
	

	3.2.12.3.1
	2.1

	3.2.12.3.2
	2.1

	3.2.12.3.3
	2.1

	3.2.12.3.4
	2.1

	3.2.12.3.5
	2.1

	3.2.12.3.6
	2.1

	3.2.12.3.7
	2.1

Table 1: Requirement to Version Allocation

i

_1066219558.doc

Knowledge Sharing with Analysis Notes

Use Bookmarks

Perform Control Flow Analysis

Perform External Interface Analysis without PUIIs

Perform External Interface Analysis with PUIIs

Perform Dependency Analysis

Perform Data Flow Analysis

Perform Function Call Analysis

Perform Type Analysis

Browse Library Source Files

Log In to SIAT C++

Configure Master Library

Maintain Source Libraries

Software Analyst

Library Maintainer

