SIAT C++

Version 2.1 Installation Guide

Titan Systems Corporation

Software Interface

Analysis Tool

SIAT C++

Version 2.1 Installation Guide

Contract Number: NAS2-96024

CM Number: NAS2-96024-02-132

This project was funded in part by a Center Software Initiative for the NASA Software Independent Verification and Validation Facility

[image: image1.jpg]f\ % TITARN SYSTEMS CORPORATION
A\

Change Information Page

	Change Log

	Document Number
	Status / Issue
	Publication Date

	NAS2-96024-02-132
	Initial
	September 12, 2002

	
	
	

	
	
	

Table of Contents

11.
Introduction

1.1.
Purpose
1
1.2.
Scope
1
1.3.
Definitions, acronyms, and abbreviations
1
1.4.
References
2
1.5.
Overview
3
2.
SIAT C++ Installation Prerequisites
5
3.
SIAT C++ Executable Code Installation and Configuration
7
4.
Standard Header Library Installation
12
5.
Installing and Configuring Libraries for SIAT C++ Analysis
14

1. Introduction

1.1. Purpose

The purpose of this SIAT Version 2.1 Installation Guide is to specify how to install and configure 1) the SIAT C++ executable code, 2) the standard header libraries, and 3) CSCI libraries for analysis by software analysts.

This document is intended to be used by 1) the person (possibly the library maintainer) installing SIAT C++ on a system, who will perform tasks 1 and 2 above, and 2) the library maintainer, who will perform task 3 above.

1.2. Scope

The scope of this SIAT Version 2.1 Installation Guide is the software that comprises SIAT C++ and CSCI libraries to be installed for analysis using SIAT C++.

SIAT C++ is a tool to help software analysts browse a set of C/C++ source files, and to aid in the identification of data that is potentially involved in external interfaces. The interface presented to the software analyst is dynamic HTML and Java applets rendered by a World Wide Web (WWW) browser.

The anticipated benefits of SIAT C++ include enhanced source code browsing capabilities and external interface identification and verification capabilities for the software analyst.

1.3. Definitions, acronyms, and abbreviations

CSCI – Computer Software Configuration Item. In this document, the words CSCI and Library are used interchangeably.

DSM – Dynamic Service Module – A shared object library loaded by Netscape Enterprise Server to provide session management and other functionality required by SIAT C++.

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

IEEE – The Institute of Electrical and Electronics Engineers

IP – Internet Protocol

Library - A particular set of C/C++ source files that are prepared by a library maintainer for use by SIAT C++. Multiple versions of one Library may be available for use by SIAT C++ at the same time. In this document, the words CSCI and Library are used interchangeably.

NES – Netscape Enterprise Server

Version (of a Library) – Versions of a library indicate the same library, but with potentially different source files or different versions of the source files in the library.

SIAT – Software Interface Analysis Tool (SIAT by itself usually refers to the SIAT tool that analyzes Ada source code)

SIAT C++ - Software Interface Analysis Tool for C/C++

TCP – Transmission Control Protocol

URL – Uniform Resource Locator

WWW – World Wide Web

XREF – The executable program that dynamically provides responses to software analyst requests.

1.4. References

IEEE Std 610-1990, IEEE Standard Computer Dictionary, A Compilation of IEEE Standard Computer Glossaries, 1990.

SIAT C++ Software Requirement Specification, Document: NAS2-96024-01-224, November 15, 2001.

SIAT C++ Software Design Document, Document: NAS2-96024-00-231, December 6, 2000.

SIAT Version 2.1 Users Guide, Document: NAS2-96024-02-131, September XX, 2002.

1.5. Overview

This document describes detailed procedures for installing the SIAT C++ executable code and libraries.

The rest of this document is organized as follows.

· Section 2 contains information about prerequisites that must be satisfied prior to installing SIAT C++ and libraries.

· Section 3 contains detailed procedures for installing and configuring the SIAT C++ executable code.

· Section 4 contains detailed procedures for installing the standard header libraries.

· Section 5 contains detailed procedures for installing and configuring CSCI libraries for analysis by software analysts.

In order to make this installation guide generically apply to a wide range of possible installations, the following naming conventions will be used throughout the rest of this document. When these names appear in the rest of the document, they will be enclosed in square brackets ([]). The person installing SIAT C++ should replace these bracketed names with the appropriate values for the actual installation.

SIAT C++ Root Path: The absolute path to the directory where the SIAT C++ executable code will be installed. Following installation of the SIAT C++ executable code, this directory will contain subdirectories named “code” and “docs”.

CSCI Library Name: The name to be displayed and used in SIAT C++ for a CSCI library that is installed and configured for analysis by software analysts. CSCI Library Names should conform to standard UNIX directory naming conventions for normal (unescaped) characters that may be used. In particular, special characters should not be used in the CSCI Library Name.

CSCI Library Version: The version to be displayed and used in SIAT C++ for a CSCI library version that is installed and configured for analysis by software analysts. CSCI Library Versions should conform to standard UNIX directory naming conventions for normal (unescaped) characters that may be used. In particular, special characters should not be used in the CSCI Library Version.

SIAT C++ NES Web Server Instance Path: The absolute path to the directory containing information for the particular Netscape Enterprise Server Web Server Instance that will be used to serve SIAT C++. (This directory should contain a subdirectory named “config”). Typically, there is a base directory for Netscape Enterprise Server with a subdirectory for each actual web server instance that runs on the host (multiple NES Web Server Instances may be run, each listening on a different TCP/IP port).

PostgreSQL Root Path: The absolute path to the directory where the PostgreSQL relational database management system software is installed.

PostgreSQL SIAT C++ Database: The name of the PostgreSQL database used to store SIAT C++ information.

2. SIAT C++ Installation Prerequisites

This section contains information about prerequisites that must be satisfied prior to installing SIAT C++.

Throughout this document, all steps should be performed using the login of the user that the SIAT C++ NES Web Server Instance runs as. It is possible to perform the installation as another user. If another user login is used, 1) all files/directories installed must be readable by the user that the SIAT C++ NES Web Server Instance runs as, 2) the directory [SIAT C++ Root Path]/docs/siat/users must be writable by the user that the SIAT C++ NES Web Server Instance runs as, and 3) a user with write permissions to [SIAT C++ NES Web Server Instance Path]/config/obj.conf must edit that file (described in Section 3).

Note that where directory paths are given in this document, UNIX symbolic links may be freely used to create the illusion of those paths. There are several instances where symbolic links can be advantageously used when installing SIAT C++. First, they can be used to make it quick and easy to switch between multiple parallel installations of the SIAT C++ Executable Code. This can be done by performing multiple installations and then using a symbolic link named [SIAT C++ Root Path] to switch between pointing to one installation to pointing to another installation. Second, symbolic links can be used to mitigate disk space problems by allowing the SIAT C++ Executable Code, each Standard Header Library Installation, and each Installed Library for SIAT C++ Analysis to be independently stored on separate disks or partitions, if desired. It should be noted that the NES Web Server Instance serving SIAT C++ must be configured to enable the following of symbolic links (even if none of the above symbolic link strategies are used). This configuration may be performed using the NES Administration Server (please refer to NES Administration Server documentation for more information on configuring NES Web Server Instances).

The following prerequisites are stated in the SIAT C++ Software Requirement Specification:

· The host platform for SIAT C++ must be hardware that supports the SUN Solaris operating system version 2.5.1 or later.

· The host platform must use the SUN Solaris operating system version 2.5.1 or later.

· The host platform must have Netscape Enterprise Server version 3.5 or higher installed.

In addition, the following prerequisites must be met:

· Perl version 5 or later must be installed. Preferably, Perl will be installed in /usr/local/bin/. If it is not, the first line of each Perl script used by SIAT C++ must be modified to indicate the correct absolute path to Perl. The Perl scripts are in [SIAT C++ Root Path]/code/bin/ and have the suffix “.pl”. Perl is freely available and freely redistributable and can be obtained in many ways including from the World Wide Web. Thus if this prerequisite is not already met, it can be easily met by obtaining and installing Perl on the host platform.

· The gunzip utility program must be installed. The gunzip utility program is freely available (as part of the GNU zip utilities) and freely redistributable and can be obtained in many ways including from the World Wide Web. Thus if this prerequisite is not already met, it can be easily met by obtaining and installing the gunzip utility program on the host platform.

· PostgreSQL version 7.1.3 must be installed. PostgreSQL is freely available and freely redistributable and can be obtained in many ways including from the World Wide Web. Thus if this prerequisite is not already met, it can be easily met by obtaining and installing PostgreSQL on the host platform.

3. SIAT C++ Executable Code Installation and Configuration

SIAT C++ is distributed as a binary distribution (i.e. all executable code is already compiled and linked) in a tar/gzip file. The name of the file is typically siatcpp.tar.gz.

First, install the SIAT C++ Executable Code:

1. Login to the SIAT C++ host machine.

2. Copy or move the SIAT C++ tar/gzip file into the directory [SIAT C++ Root Path] (if the [SIAT C++ Root Path] directory does not exist, it must first be created).

3. Execute the command: cd [SIAT C++ Root Path]

4. Execute the command: gunzip –c siatcpp.tar.gz | tar –xvf – (if the SIAT C++ tar/gzip file is not named siatcpp.tar.gz, use the appropriate name in place of siatcpp.tar.gz in this command). This initially untars/unzips the files into a subdirectory named siatcpp.

5. Execute the command: mv siatcpp/* .; rmdir siatcpp

[SIAT C++ Root Path] should now contain the following subdirectories:

· code – Executable SIAT C++ code.

· code/analyzer – The C/C++ static code analyze README with usage restrictions.

· code/analyzer/bin – The C/C++ static code analyzer executable.

· code/bin – Bourne Shell, Korn Shell, and Perl scripts used by SIAT C++.

· code/config – Contains xref.cfg, database.cfg, and dsm.obj.conf. xref.cfg is the text configuration file that holds information on the libraries/versions of code installed for analysis by software analysts. database.cfg is the text configuration file that holds connection parameters to the database. dsm.obj.conf describes the modifications needed in the NES configuration file obj.conf to use DSM.

· code/dsm – The Dynamic Service Module shared object library, which manages user sessions for SIAT C++.

· code/engine – The xref engine executable, which dynamically provides responses to software analyst requests.

· docs – SIAT C++ dynamic HTML and applet. This directory also contains the subdirectory where CSCI libraries for analysis by software analysts are installed.

· docs/siat – Contains links to the SIAT C++ main HTML page and the SIAT C++ error HTML page.

· docs/siat/applets – The Java graph applet, which displays graphs in response to certain software analyst requests.

· docs/siat/css – Cascading Style Sheets used to provide markup styles to SIAT C++ HTML pages.

· docs/siat/documentation – The SIAT C++ Users Guide Microsoft Word document.

· docs/siat/html – The SIAT C++ static HTML pages.

· docs/siat/images – Images used in the SIAT C++ HTML pages.

· docs/siat/javascript – JavaScript used in the SIAT C++ HTML pages.

· docs/siat/sources – The subdirectory where CSCI libraries for analysis by software analysts are installed.

· docs/siat/users – Contains a directory per SIAT C++ user. Each user’s subdirectory contains user specific configuration information.

· docs/var/tmp – A link to /var/tmp, used for storing temporary files. Note: /var/tmp is assumed to exist as a directory for temporary files on the host machine. If it does not exist, either the directory /var/tmp must be created for the user that the SIAT C++ NES Web Server Instance runs as to store temporary files or this link must be recreated to point to a valid directory for storing temporary files on the host machine.

Next, configure the SIAT C++ NES Web Server Instance with information regarding the SIAT C++ Executable Code installation (The file [SIAT C++ Root Path]/config/dsm.obj.conf can be consulted for additional details on configuration.):

6. Edit the file [SIAT C++ NES Web Server Instance Path]/config/obj.conf. Add or modify the following three lines in that file. Long lines may be split into multiple lines by adding a backslash (\) and a new line within a line.

· Init fn="load-modules" shlib="[SIAT C++ Root Path]/code/dsm/libdsm.so" funcs="dsm,dsm_init"

This line makes libdsm.so and the functions it provides (dsm_init and dsm) known to NES.

· Init fn="dsm_init" db_name="" db_user="" db_auth="" db_config="[SIAT C++ Root Path]/code/config/database.cfg" max_states="100" document_root="[SIAT C++ Root Path]/docs" error_msg_file="[SIAT C++ Root Path]/code/dsm/error_msgs" xref_engine="[SIAT C++ Root Path]/code/engine/xref" xref_config="[SIAT C++ Root Path]/code/config/xref.cfg" utils_path="[SIAT C++ Root Path]/code/bin/" xref_timeout="86400" debug="on"

This line describes how to initialize DSM (by calling dsm_init and passing name="value" pairs). The db_name, db_user, and db_auth parameters are unused placeholders. These parameters are expected to be present, but are ignored. The max_states parameter controls the number of simultaneous user sessions allowed and its value should not be changed. The db_config, document_root, error_msg_file, xref_engine, xref_config, and utils_path parameters indicate file and directory locations that must be passed to DSM. These parameters should be set as indicated above. The xref_timeout parameter represents the amount of time, in seconds, the xref engine should wait after processing a request from the user for their session before terminating itself (i.e. before assuming that the user has stopped their session but not stopped the xref engine with the exit command). If this value is set to 0, it means wait forever. (Remember, HTTP is stateless, so without an explicit command to exit, SIAT C++ has no way of knowing if the user has terminated their session.) Note that the number 86400 is the number of seconds in one day. This parameter may be changed as desired. The debug parameter controls whether debugging information is logged or not. If the debug parameter is found, very verbose debugging output will be written to the server’s error log. The value of the debug parameter is irrelevant; its presence turns debug logging on. To turn it off, remove the parameter.

· Service fn="dsm" method="(GET|HEAD|POST)" type="text/*"

This line describes when to call dsm (i.e. for what HTTP methods and file types).

In addition, the line that starts

· NameTrans fn="document-root" root=

Should be changed to

· NameTrans fn="document-root" root="[SIAT C++ Root Path]/docs"

This line indicates the “root” of the SIAT C++ NES Web Server Instance. It must be kept in sync with the document_root parameter value used to initialize DSM above.

The NES Web Server Instance must be stopped and restarted in order for the modifications to [SIAT C++ NES Web Server Instance Path]/config/obj.conf to take effect. Stopping and restarting the NES Web Server Instance can be performed with the NES Web Server Instance stop and start scripts or by using the NES Administration Server (please refer to NES Web Server and NES Administration Server documentation for more information on stopping and starting NES Web Server Instances).

After configuring the NES Web Server Instance, a PostgreSQL database must be created for storing SIAT C++ information. These steps assume that the siat_dbo and siat_user PostgreSQL users have already been created (The file [SIAT C++ Root Path]/config/dsm.obj.conf can be consulted for additional details on configuration of the SIAT C++ database in PostgreSQL and creating these users):

7. Execute the command: [PostgreSQL Root Path]/bin/psql -U siat_dbo -d template1 (this logs the siat_dbo user in to the psql command line client for PostgreSQL)

8. Execute the command: CREATE DATABASE [PostgreSQL SIAT C++ Database]; (this creates the PostgreSQL database for storing SIAT C++ information)

9. Execute the commands:

· \c [PostgreSQL SIAT C++ Database] siat_dbo

· \i [SIAT C++ Root Path]/code/sql/createschema.sql (this creates the tables and sequences and grants the permissions needed for storing SIAT C++ information)

10. \q (this quits the psql command line client for PostgreSQL)

Finally, configure SIAT C++ to be able to connect to the new SIAT C++ database in PostgreSQL.

11. Edit the file [SIAT C++ Root Path]/code/config/database.cfg. Add or modify the following three lines in that file:

· db_name=name (name should be changed to [PostgreSQL SIAT C++ Database], the name of the database created in step 8. above)

· db_user=user (user should be changed to the name of the PostgreSQL user that SIAT C++ will connect to the database as, typically siat_user)

· db_auth=auth (auth should be changed to the password of the PostgreSQL user that SIAT C++ will connect to the database as)

4. Standard Header Library Installation

Almost any nontrivial C or C++ program relies on library (such as Rogue Wave) functionality and especially C, C++, compiler, and operating system standard library functionality. When analyzing user supplied CSCI libraries, it may occasionally be desirable to include header library files for library functionality in the analysis. In order to analyze them, the header libraries must be installed for use by SIAT C++. Note, however, that these libraries should not be included in xref.cfg for direct selection for analysis by a software analyst. Also note that, any time a new installation of the SIAT C++ Executable Code is performed that modifies the format of the SIAT C++ metadata files, the header libraries must be reinstalled. Analyzing the header libraries involves the following steps:

1. Login to the SIAT C++ host machine.

2. Set the environment variable SIAT to have the value: [SIAT C++ Root Path].

3. Execute the command:

$SIAT/code/bin/analyze_standard_headers.ksh

Note: This script is configured for use on the SIAT C++ development host. The script is hardcoded for the standard header directories that exist on that host and the locations of those standard headers. These locations must be changed in the script to correspond to the headers available and their locations on the installation host. In addition, the Korn shell script [SIAT C++ Root Path]/code/bin/analyze.ksh makes the same assumptions about where and what standard headers exist; thus, these two scripts must be kept in sync with respect to the names and locations of the standard headers available. It should also be noted that all code to be analyzed (including standard headers) must exist in a directory named [SIAT C++ Root Path]/docs/siat/sources/[library]/[version], where library and version must conform to standard UNIX directory naming conventions for normal (unescaped) characters that may be used (i.e. the analyzed code must be two directories beneath the directory [SIAT C++ Root Path]/docs/siat/sources/).

The list of directories used on the development host and the library and version names used for analysis are shown in the table below:

	Standard header directory
	Library Name
	Library Version
	Comment

	/opt/FSFlibg++/lib/g++-include
	FSFlibg++
	g++-include
	GCC standard C++ headers

	/usr/include
	usr
	include
	Solaris 2.5 standard headers

5. Installing and Configuring Libraries for SIAT C++ Analysis

Typically, the SIAT C++ Executable Code and Standard Header Libraries are only installed when new versions of SIAT C++ are released. However, depending on the needs of the software analysts using SIAT C++ for analysis, libraries to be analyzed using SIAT C++ will be installed and configured frequently. This section describes how to install and configure a new library for analysis by software analysts using SIAT C++. Note that, any time a new installation of the SIAT C++ Executable Code is performed that modifies the format of the SIAT C++ metadata files, the libraries installed for SIAT C++ analysis must be reinstalled.

First, install the CSCI Library Version:

1. Login to the SIAT C++ host machine.

2. Set the environment variable SIAT to have the value: [SIAT C++ Root Path].

3. Execute the command: cd $SIAT/docs/siat/sources

4. If the [CSCI Library Name] directory does not already exist, create it by executing the command: mkdir [CSCI Library Name]

5. Execute the command: cd [CSCI Library Name]

6. Create the [CSCI Library Version] directory by executing the command: mkdir [CSCI Library Version] (this version should not already exist).

7. Execute the command: cd [CSCI Library Version]

8. Copy the source files for the CSCI library version into the current directory.

9. $SIAT/code/bin/analyze.ksh [CSCI Library Name] [CSCI Library Version] (Note that there is also a script called $SIAT/code/bin/clean.sh that can be used to delete all of the generated metadata files except the log. This can be used if reinstallation of a CSCI library version is desired.)

10. A log file called Analyze-[CSCI Library Name]-[CSCI Library Version].log is created. This log contains information on the library source files analyzed, including any warnings or errors found in analyzing each source file. It is up to the library maintainer in conjunction with the software analyst who provided the CSCI library version to determine if anything should be done to remedy any warnings or errors found and if the CSCI library version should be reinstalled. Often the errors are for symbols and constructs in standard header libraries that are not of interest anyway for analysis, and so they can be ignored. Some errors are due to the (lack of) portability of the analyzed code from the development environment to the analysis environment. Here, environment refers to the hardware, operating system, and compiler.

Next, configure SIAT C++ to make the new CSCI library version available to software analysts using SIAT C++:

11. Edit the file [SIAT C++ Root Path]/code/config/xref.cfg (create it if it does not exist and then edit it). Add the following 3 lines in consecutive order to that file:

CSCI: [CSCI Library Name]

[SIAT C++ Root Path]/docs/siat/sources/[CSCI Library Name]/[CSCI Library Version] [CSCI Library Version] /siat/sources/[CSCI Library Name]/[CSCI Library Version]

END_CSCI

If the first and last line already exist in the xref.cfg file, but with a different version in the middle line(s), it is sufficient to add another line before or after any version line with the information for the newly installed version. That is, multiple versions of a library can be listed between a set of “CSCI: [CSCI Library Name]” and “END_CSCI” lines. However, note that each CSCI or Library must appear between a separate set of “CSCI: [CSCI Library Name]” and “END_CSCI” lines. Also, free text comments may be added to this file anywhere outside of the “CSCI: [CSCI Library Name]” / “END_CSCI” blocks.

PAGE
ii

