SIAT C++

SOFTWARE DesigN Document

AverStar, Inc.

Software Interface

Analysis Tool

SIAT C++

Software Design Document

Contract Number: NAS2-96024

CM Number: NAS2-96024-00-231

[image: image8.png]
This project was funded in part by a Center Software Initiative for the NASA Software Independent Verification and Validation Facility

Change Information Page

	Change Log

	Document Number
	Status / Issue
	Publication Date

	NAS2-96024-00-231
	Initial
	December 6, 2000

	
	
	

	
	
	

Table of Contents

11.
Introduction

1.1.
Purpose
1
1.2.
Scope
1
1.3.
Definitions, acronyms, and abbreviations
1
1.4.
References
2
1.5.
Overview
3
2.
SIAT C++ Context Diagram
5
2.1.
Overview
5
2.2.
Context Diagram
5
2.3.
Context Diagram Description
6
3.
SIAT C++ Physical View
8
3.1.
Overview
8
3.2.
Physical View Diagram
8
4.
SIAT C++ Process View
9
4.1.
Overview
9
4.2.
Process View Diagram
10
4.3.
Process View Description
11
5.
SIAT C++ Development / Decomposition View
13
5.1.
Overview
13
5.2.
SIAT C++ Analyzer
14
5.3.
Netscape Enterprise Server
17
5.4.
SIAT C++ Engine
19
5.5.
WWW Browser
22
6.
SIAT C++ User Interface View
24
6.1.
Overview
24
6.2.
SIAT C++ Start Page
24
6.3.
Welcome to SIAT
24
6.4.
Login
25
6.5.
Library Selection
25
6.6.
Master Library
25
6.7.
Library Source Code List
25
6.8.
Source Code Display
26
6.9.
Analysis Graph Display
26
6.10.
Results
27

1. Introduction

1.1. Purpose

The purpose of this Software Design Document is to specify the design for the Software Interface Analysis Tool (SIAT) for C++ (SIAT C++).

This document is intended to be used by software designers and program managers who need to develop and understand the design for SIAT C++. This document is also intended to be used by the software implementers who are implementing SIAT C++. This document may also be of use to test engineers in designing test cases and procedures to verify the functionality of SIAT C++.

1.2. Scope

The scope of this Software Design Document is the software that comprises SIAT C++.

SIAT C++ is a tool to help software analysts browse a set of C/C++ source files, and to aid in the identification of data that is potentially involved in external interfaces. The interface presented to the software analyst will be dynamic HTML and Java applets rendered by a World Wide Web (WWW) browser.

The anticipated benefits of SIAT C++ include enhanced source code browsing capabilities and external interface identification and verification capabilities for the software analyst.

1.3. Definitions, acronyms, and abbreviations

COTS – Commercial Off The Shelf

CSS – Cascading Style Sheets

DSM - Dynamic Service Module

EDG – Edison Design Group

EIA – Electronic Industries Association

GIF – Graphical Interchange Format

IEC – The International Electrotechnical Commission

IEEE – The Institute of Electrical and Electronics Engineers

ISO – The International Organization for Standardization

HTML – HyperText Markup Language

HTTP – Hypertext Transfer Protocol

LAN – Local Area Network

NES – Netscape Enterprise Server

SIAT – Software Interface Analysis Tool (SIAT by itself usually refers to the SIAT tool that analyzes Ada source code)

SIAT C++ - Software Interface Analysis Tool for C++

TCP/IP - Transmission Control Protocol/Internet Protocol

WWW – World Wide Web

1.4. References

Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, Addison Wesley, 1998.

IEEE Std 1016-1998, IEEE Recommended Practice for Software Design Descriptions, IEEE, 1998.

IEEE Std 1016.1-1993, IEEE Guide to Software Design Descriptions, IEEE, 1993.

IEEE/EIA 12207.1-1997, IEEE/EIA Guide, Industry Implementation of International Standard ISO/IEC 12207: 1995, (ISO/IEC 12207) Standard for Information Technology – Software Life Cycle Processes – Life Cycle Data, IEEE/EIA, 1998.

Intermetrics, Inc., Software Interface Analysis Tool (SIAT), Architecture Definition Document (NASA Center Initiative, DID06 Contract NAS2-96024, December 30, 1997.

Philippe B. Kruchten, “The 4+1 View Model of Architecture”, IEEE Software, November 1995, pp. 42-50.

Edward Yourdon, Modern Structured Analysis, Prentice Hall, 1989.

1.5. Overview

The current state of software engineering recommends the use of multiple views of a design in order to convey the various aspects of the design. This statement is based on information in IEEE Std 1016-1998, IEEE Recommended Practice for Software Design Descriptions; Software Architecture in Practice, chapter 2; IEEE 12207.1-1997 Software life cycle processes – Life cycle data; and “The 4+1 View Model of Architecture”. Accordingly, this document will try to present the following views in order to provide a thorough design description of the SIAT C++ system.

1. A context diagram, describing SIAT C++ as a single system level process. The terminators in the diagram are the external entities to SIAT C++. The flows in the diagram are the communication events between SIAT C++ and the external entities. This diagram is intended to provide a top-level orientation of the system with respect to its environment.

2. A physical view, describing the physical hardware on which the executable processes run and the underlying physical/operating system level communication pathways used.

3. A process view, describing the various executable processes that make up SIAT C++ and the control flow and data flow between those processes. This view will also discuss the mapping between processes and physical hardware.

4. A development/decomposition view, describing the static system, process, sub process, and module breakdown of SIAT C++.

5. A user interface view, describing the user interfaces to SIAT C++.

The rest of this document is organized as follows.

· Section 2 will present the context diagram for the SIAT C++ system.

· Section 3 will present the physical view for the SIAT C++ system.

· Section 4 will present the process view of the SIAT C++ system.

· Section 5 will present the development/decomposition view of the SIAT C++ system. This view will present the bulk of the information needed for the implementation phase of the SIAT C++ system.

· Section 6 will present the user interface view of the SIAT C++ system.

In the various sections, different types of diagrams and notations will be employed. This is in an effort to use the best parts of the many notations that are currently in use. Each section will indicate the diagramming/notational techniques used.

2. SIAT C++ Context Diagram

2.1. Overview

SIAT C++ interacts with no other external software systems. The only external entities that interact with SIAT C++ are the software analyst and the library maintainer.

2.2. Context Diagram

The context diagram uses the Yourdon/DeMarco notation described in Modern Structured Analysis. A circle denotes a process (e.g. the entire SIAT C++ system, viewed as a process). An arrow denotes a flow. A rectangle denotes a terminator (e.g. an external entity).

[image: image1.wmf]

installation status

Library Maintainer

Software Analyst

SIAT C++

install source

library request

login request

configure master library request

browse library source file request

perform analys

is request

login response

master library file list

library source file

analysis results

Legend:

Flow

Process

Terminator

Context Diagram

2.3. Context Diagram Description

2.3.1. Library Maintainer

The Library Maintainer is responsible for installing libraries (collections of source code) so that they can be browsed and analyzed by the Software Analyst via SIAT C++.

The Library Maintainer is also responsible for the occasional removal of libraries or collections of source code that are no longer needed by Software Analysts for analysis.

2.3.2. Software Analyst

The Software Analyst uses SIAT C++ as a tool for browsing and analyzing C/C++ source code. The Software Analyst establishes a session with SIAT C++ by making a login request. Once a session is established, the Software Analyst makes a request to configure the master library to contain the libraries that the Software Analyst desires to analyze.

Once the master library has been configured, the Software Analyst can browse keyword colored, hypertext linked versions of the source code in the chosen libraries. The Software Analyst can navigate through the hyperlinks to browse from one source file to another. The Software Analyst can also choose to perform context appropriate analysis on the source files. Examples of such analysis are: determine calls to and called by graphs for a chosen function, determine type hierarchies for a chosen structure or class, determine file dependencies for a chosen source file, perform data flow analysis for a chosen variable, perform external interface data flow analysis for a chosen variable, find all uses of particular constructs in the source files in a library, and find strings in the source files in a library.

2.3.3. SIAT C++

SIAT C++ provides services to the Library Maintainer and the Software Analyst.

In response to library installation requests, SIAT C++ reports successful and unsuccessful source file installations.

In response to login requests, SIAT C++ reports successful or unsuccessful login, and starts a session for a successful login. In response to master library configuration requests, SIAT C++ performs the appropriate configuration and returns a list of source files available for analysis in that configuration to the Software Analyst.

In response to browse library source file requests, SIAT C++ displays a keyword colored, hypertext linked version of the requested source file.

In response to an analysis request on a particular identifier, SIAT C++ displays a textual and graphical tree of the analysis information requested. The analysis information that can be provided is function call graphs, type hierarchies, source file dependency trees, data flow graphs, external interface data flow graphs, and control flow graphs.

In response to requests to find all occurrences of a construct in the source files in a library or to find all occurrences of a string in the source files in a library, SIAT C++ displays lists of results indicating the item found and the location where it was found.

3. SIAT C++ Physical View

3.1. Overview

SIAT C++ is a client/server application. The server physically runs on Sun Sparc hardware and the Sun Solaris 2.5.1 operating system. The client physically runs on the Software Analyst’s computer. Many clients can be connected to the SIAT C++ server at once. There is no hardware or operating system requirement for the computer the client runs on. The only requirement of the client is that it be able to run Netscape Navigator, Version 4.X, where X=5 or higher or Microsoft Internet Explorer, Version 4 or higher, and that it be able to communicate over a network using HTTP over TCP/IP. The only requirements for communication between the client host and the server host are that they are connected by a network supporting TCP/IP (Ethernet LAN, Internet, etc.) and that they can send and receive HTTP over TCP/IP across that network.

3.2. Physical View Diagram

The physical view of the system uses the component and connection notation from Software Architecture in Practice. A filled box represents a processor. A heavy line indicates a primary network.

[image: image2.wmf]

Software Anal

yst’s

Host Machine

SIAT C++ Host

Machine

Any network supporting TCP/IP (e.g.

Ethernet LAN or Internet)

Data and control are HTTP over TCP/IP

Legend:

Primary

Network

Processor

Software Analyst’s

Host Machine

Software Analyst’s

Host Machine

…

4. SIAT C++ Process View

4.1. Overview

SIAT C++ is a client/server application. The client processes consist of a WWW browser; either Netscape Navigator, Version 4.X, where X=5 or higher, or Microsoft Internet Explorer, Version 4 or higher.

The server processes consist of the SIAT C++ Analyzer, the SIAT C++ Cross Reference Engine, and the Netscape Enterprise Server web server.

Within this section, the term process refers to an instance of an executable program that is running on a particular platform.

Process View Diagram

The process view diagram is a level 0 data flow diagram and uses the Yourdon/DeMarco notation described in Modern Structured Analysis. A circle denotes a process. An arrow denotes a flow. A rectangle denotes a terminator (e.g. an external entity). A roundtangle denotes a data store.

[image: image3.wmf]

analysis data

html marked

up source

analysis request

browse source

request

browse

source

request

analysis

request

analysis request

browse source request

html marked

up source

analysis

data

C/C++ Source Code

Static SIAT C++

Files (html, java,

javascript, c

ss, gif)

C/C++ Source Code

Metadata (html, xref,

…)

1.

SIAT C++

Analyzer

3.

SIAT C++

Engine(s)

2.

Netscape

Enterprise

Server

4.

WWW

Browser

Software Analyst

Library Maintainer

install source

libraries request

Legend:

Flow

Process

Termin

ator

Store

analysis data

html marked

up source

installation status

Figure 0

4.2. Process View Description

The following paragraphs describe the processes and data stores from the process view diagram. In addition, the description of each process indicates whether it is a server process or a client process. This indicates the mapping between the process view and the physical view; server processes execute on the SIAT C++ Host Machine, client processes run on each Software Analyst’s Host Machine.

4.2.1. SIAT C++ Analyzer (1.)

The SIAT C++ Analyzer is a server process. When a new set of C/C++ source code is to be made available for analysis, the library maintainer installs it on the SIAT C++ Host Machine. Installation consists of placing the code in the appropriate directory, making this directory known in a configuration file as a library available for analysis, and running the SIAT C++ Analyzer on the source code in order to generate files of metadata about the source code. This metadata consists of HTML versions of the source code for browsing, and graph information for source file dependencies, type hierarchies, call graphs, data flow graphs, and control flow graphs.

4.2.2. Netscape Enterprise Server (2.) / SIAT C++ Cross Reference Engine (3.)

Netscape Enterprise Server and the SIAT C++ Cross Reference Engine are server processes. When a Software Analyst uses a SIAT C++ session, they are communicating via HTTP from their web browser to Netscape Enterprise Server on the SIAT C++ Host Machine. Netscape Enterprise Server controls one instance of the SIAT C++ Cross Reference Engine process for each user. Analysis requests to browse C/C++ source files are handled directly by Netscape Enterprise Server. Netscape Enterprise Server passes other analysis requests from the user on to the appropriate SIAT C++ Cross Reference Engine process for that user. It then receives responses from the SIAT C++ Cross Reference Engine process for that user and passes the response data back to the user.

4.2.3. WWW Browser (4.)

WWW Browser is a client process. The Software Analyst uses the WWW Browser to establish and configure a SIAT C++ analysis session. The data passed to the WWW Browser from Netscape Enterprise Server consists of HTML data, JavaScript data, CSS data, Java applets, and data for the Java applets that the WWW Browser renders.

4.2.4. C/C++ Source Code

The C/C++ Source Code data store is the collection of C/C++ Source Code that is made available via SIAT C++ for analysis by Software Analysts. The Library Maintainer adds additional source code manually by adding the appropriate source code files in an appropriate location for SIAT C++.

4.2.5. C/C++ Source Code Metadata

The C/C++ Source Code Metadata store contains metadata about the C/C++ Source Code that is to be made available via SIAT C++ for analysis by Software Analysts. The types of metadata available are as follows. There are HTML marked up versions of the original C/C++ source files. The marked up versions allow the files to be viewed in a WWW browser. The marked up versions include highlighting of keywords, string constants, etc.; hyperlinks between definitions, declarations, and references to types, variables, and functions; and context sensitive menus to provide other analysis information on types, variables, and functions, such as call graphs, and type hierarchy graphs. There is also metadata that allows easy generation of call graphs, type hierarchy graphs, etc., such as lists of caller-callee pairs from which call graphs can be constructed.

4.2.6. Static SIAT C++ Files

Numerous static files are also needed in order to render the correct interface in the Software Analyst’s WWW browser. These include static HTML pages, for information that does not depend on the source files being analyzed (such as the SIAT C++ start page), CSS (cascading style sheet) files to define the colors and fonts of the various information displayed, JavaScript files to define the menus of analysis commands available, GIF images to provide graphics for the web pages displayed, etc.

5. SIAT C++ Development / Decomposition View

5.1. Overview

Within this section, the term process refers to a collection of executable code that provides a certain transformation function between the data input to the code and the data output from the code. These processes may be portions of an executable program or an entire executable program.

There are several different kinds of processes in SIAT C++. The WWW browser client portion of the system is entirely COTS. The Software Analyst user interacts with this portion of the system in the same manner as they would normally interact with a WWW browser. Data is sent to and from the client via HTTP over TCP/IP. The particular types of data sent are HTML, JavaScript, Java, CSS, and GIF.

The SIAT C++ Analyzer portion of the SIAT C++ server is comprised of a COTS portion and a custom portion. The COTS portion is the C++ Front End from the Edison Design Group. A custom portion is added to the EDG C++ Front End code in order to generate C/C++ Source Code Metadata that is needed by the SIAT C++ Engine.

The Netscape Enterprise Server portion of the SIAT C++ server is actually comprised of a COTS portion (the main portion of Netscape Enterprise Server) and a custom portion, the Dynamic Service Module (DSM). The Dynamic Service Module portion is responsible for maintaining the mapping between a user of SIAT and a particular instance of the SIAT C++ cross reference engine that is associated with that user. The Dynamic Service Module is responsible for routing requests for analysis data from the user to the appropriate SIAT C++ Engine.

The SIAT C++ Engine portion of the SIAT C++ server is an entirely custom portion of software. It is responsible for receiving requests for analysis data from the user via the Dynamic Service Module. It then accesses the C/C++ Source Code Metadata in order to formulate the appropriate response to the user. Finally, it returns a response to the Dynamic Service Module to be forwarded to the user.

In addition to these processes, there is a collection of static SIAT C++ data that will be developed to support the data sent to the WWW browser client. This static data will include HTML pages, CSS style sheets to control the styles applied to HTML data returned to the user, JavaScript files to facilitate menu facilities in the HTML data returned to the user, and Java code to implement a graph applet in the browser that will be used to graphically depict graph analysis data produced by the SIAT C++ Engine.

5.2. SIAT C++ Analyzer

5.2.1. SIAT C++ Analyzer Diagram

The following diagram is the level 1 data flow diagram for SIAT C++ Analyzer and uses the Yourdon/DeMarco notation described in Modern Structured Analysis. A circle denotes a process. An arrow denotes a flow. A rectangle denotes a terminator (e.g. an external entity). A roundtangle denotes a data store.

[image: image4.wmf]

C/C++ Source Code

C/C++ Source Code

Metadata

(HTML,symbol…)

1.1.

Scan/

Parse

Source

1.2.

Extract

Lexical

Token Info

1.3.

Extract

Symbol

Cross Ref

Library Maintainer

install source

libraries request

Legend:

Flow

P

rocess

Terminator

Store

1.4.

Extract

Include

File Info

1.5.

Extract

Type Hier

Info

1.9.

Create

HTML of

Source

1.6.

Extract

Call Graph

Info

1.7.

Extract

Data Flow

Info

lexical info

symbol info

include file

info

type info

fun

ction

call/

definition

info

data flow

info

lexical

metadata

symbol

metadata

include file

metadata

type hier

metadata

call graph

metadata

data flow

metadata

lexical and

symbol

metadata

HTML

version

of source

1.8.

Extract

Control

Flow Info

contr

ol

flow info

control flow

metadata

installation

status

Figure 1 -SIAT C++ Analyzer

5.2.2. SIAT C++ Analyzer Description

5.2.2.1. Scan / Parse Source (1.1.)

Scan / Parse Source consists primarily of the EDG C++ Front End, and any driver scripts necessary to invoke it with the appropriate arguments. The EDG C++ Front End is a C/C++ compiler front end that is written in C and performs scanning, parsing, syntactic analysis, semantic analysis, symbol management, and other typical compiler front end tasks on C/C++ source files that are input to it.

5.2.2.2. Extract Lexical Token Info (1.2.)

Extract Lexical Token Info processes data generated by the EDG C++ Front End code, with the objective of writing out lexical token metadata to a file for later use. Lexical token metadata includes the token found; its value; its source file, line, and column start position; and other pertinent information.

5.2.2.3. Extract Symbol Cross Ref (1.3.)

Extract Symbol Cross Ref processes data generated by the EDG C++ Front End code, with the objective of writing out symbol cross reference metadata to a file for later use. Symbol cross reference metadata includes a unique symbol identifier (unique within the translation unit associated with the given source file), the full symbol name, the type of usage of the symbol (definition, declaration, reference, etc.), the location of this usage of the symbol, the type of the symbol, and other pertinent information.

5.2.2.4. Extract Include File Info (1.4.)

Extract Include File Info processes data generated by the EDG C++ Front End code, with the objective of writing out metadata regarding (header) files (recursively) included within the source file being processed. Include file metadata includes the including file name and the included file name.

5.2.2.5. Extract Type Hier Info (1.5.)

Extract Type Hier Info processes data generated by the EDG C++ Front End code, with the objective of writing out metadata regarding type inheritance (i.e. class inheritance). Type inheritance hierarchy metadata includes the base class name in an inheritance relationship and the derived class name in the same inheritance relationship.

5.2.2.6. Extract Call Graph Info (1.6.)

Extract Call Graph Info processes data generated by the EDG C++ Front End code, with the objective of writing out call graph metadata. Call graph metadata includes the name of the calling function and the name of the called function in a function call relationship.

5.2.2.7. Extract Data Flow Info (1.7.)

Extract Data Flow Info processes data generated by the EDG C++ Front End code, with the objective of writing out data flow metadata. Data flow metadata includes the name of the affecting variable and the name of the affected variable in a relationship where one variable affects another, such as in an assignment statement (e.g. x=y;).

5.2.2.8. Extract Control Flow Info (1.8.)

Extract Control Flow Info processes data generated by the EDG C++ Front End code, with the objective of writing out control flow metadata. Control flow metadata includes the statements in a function, the type of statement (unconditional, conditional, iterative), and the flow of control between the statements.

5.2.2.9. Create HTML of Source (1.9.)

Create HTML of Source processes a C/C++ source file, together with its associated lexical token metadata and symbol cross reference metadata in order to write out metadata for the HTML marked up version of the C/C++ source file.

5.3. Netscape Enterprise Server

5.3.1. Netscape Enterprise Server (NES) Diagram

The following diagram is the level 1 data flow diagram for Netscape Enterprise Server and uses the Yourdon/DeMarco notation described in Modern Structured Analysis. A circle denotes a process. An arrow denotes a flow. A rectangle denotes a terminator (e.g. an external entity). A roundtangle denotes a data store.

[image: image5.wmf]

analysis

request

analysis

request

analysis request

browse source request

analysis data

html marked up source

analysis

data

analysis

data

html marked

up source

Static SIAT C/C++

Files (html, java,

javascript,

css, gif)

C/C++ Source Code

Metadata

(HTML,symbol…)

2.1.

NES COTS

2.2.

DSM Dyn

Service

Module

Legend:

Flow

Process

Terminator

Store

browse source

request

Figure 2 - Netscape Enterprise Server

5.3.2. Netscape Enterprise Server Description

5.3.2.1. NES COTS (2.1.)

NES COTS is Netscape Enterprise Server. This process receives requests from the Software Analyst’s web browser. Netscape Enterprise Server provides the ability to customize the handling of requests. This is done by writing a shared object library, and then publishing its interface in a configuration file for Netscape Enterprise Server. For requests matching the interface of the shared object library in the configuration file, Netscape Enterprise Server passes the request on to the shared object library. Netscape Enterprise Server handles other requests itself. The DSM Dynamic Service Module is a shared object library that handles requests to login, configures the master library, and performs analysis requests. Netscape Enterprise Server handles browsing library source files itself.

5.3.2.2. DSM Dynamic Service Module (2.2.)

DSM Dynamic Service Module is a custom shared object library. This process receives requests from Netscape Enterprise Server that Netscape Enterprise Server has been configured to pass along (i.e. requests for data from the SIAT C++ Engine). DSM then formulates a request for the appropriate analysis data and sends the request to the appropriate SIAT C++ Engine. The SIAT C++ Engine then returns the appropriate analysis data to DSM. DSM then passes the data on to NES for forwarding to the Software Analyst’s browser for display.

The main function of DSM is to retain, via cookies, a mapping between browser requests and the appropriate user specific session of the SIAT C++ Engine. It also reformats the request as appropriate for the SIAT C++ Engine.

5.4. SIAT C++ Engine

5.4.1. SIAT C++ Engine Diagram

The following diagram is the level 1 data flow diagram for the SIAT C++ Engine and uses the Yourdon/DeMarco notation described in Modern Structured Analysis. A circle denotes a process. An arrow denotes a flow. A rectangle denotes a terminator (e.g. an external entity). A roundtangle denotes a data store.

[image: image6.wmf]

source

data

construct

data

control flow

graph request

find string

request

find construct

request

analysis

data

analysis

data

analysis

data

data

flow data

control

flow data

da

ta flow

graph request

call graph

request

type hier

request

include hier

request

call graph

data

type hier

data

include

hier data

analysis

request

C/C++ Source Code

Metadata

(HTML,symbol…)

3.1.

Parse

Request

3.2.

Create

Include

Hier Graph

Legend:

Flow

Process

Terminator

Store

3.3.

Create

Type Hier

Graph

3.4.

Create

Call Graph

3.5.

Create

Data Flow

Graph

analysis

data

analysis

data

analysi

s

data

3.6.

Create

Control

FlowGraph

analysis

data

3.7.

Find

Construct

3.8.

Find String

Figure 3 - SIAT C++ Engine Diagram

5.4.2. SIAT C++ Engine Description

5.4.2.1. Parse Request (3.1.)

Parse Request is responsible for receiving an analysis request from Netscape Enterprise Server. It then determines if the request is for an include hierarchy graph, a type hierarchy graph, a call graph, a data flow graph, a control flow graph, find construct data, or find string data. It then passes the request on to the appropriate process to actually satisfy the request.

5.4.2.2. Create Include Hier Graph (3.2.)

Create Include Hier Graph receives a request from Parse Request to build an include hierarchy graph for a particular file. It retrieves include hierarchy data from the C/C++ Source Code Metadata, formulates the appropriate result for the requested file, and returns the analysis data to Netscape Enterprise Server.

5.4.2.3. Create Type Hier Graph (3.3.)

Create Type Hier Graph receives a request from Parse Request to build a type hierarchy graph for a particular type. It retrieves type hierarchy data from the C/C++ Source Code Metadata, formulates the appropriate result for the requested type, and returns the analysis data to Netscape Enterprise Server.

5.4.2.4. Create Call Graph (3.4.)

Create Call Graph receives a request from Parse Request to build a call graph for a particular function. It retrieves call data from the C/C++ Source Code Metadata, formulates the appropriate result for the requested function, and returns the analysis data to Netscape Enterprise Server.

5.4.2.5. Create Data Flow Graph (3.5.)

Create Data Flow Graph receives a request from Parse Request to build a data flow graph for a particular variable. It retrieves data flow data from the C/C++ Source Code Metadata, formulates the appropriate result for the requested variable, and returns the analysis data to Netscape Enterprise Server.

5.4.2.6. Create Control Flow Graph (3.6.)

Create Control Flow Graph receives a request from Parse Request to build a control flow graph for a particular function. It retrieves control flow data from the C/C++ Source Code Metadata, formulates the appropriate result for the requested function, and returns the analysis data to Netscape Enterprise Server.

5.4.2.7. Find Construct (3.7.)

Find Construct receives a request from Parse Request to find all occurrences of a particular construct in the source files in a library. It retrieves construct usage data from the C/C++ Source Code Metadata, formulates the appropriate result for the requested function, and returns the analysis data to Netscape Enterprise Server.

5.4.2.8. Find String (3.8.)

Find String receives a request from Parse Request to find all occurrences of a string in the source files in a library. It retrieves source data from the C/C++ Source Code Metadata, formulates the appropriate result for the requested function, and returns the analysis data to Netscape Enterprise Server.

5.5. WWW Browser

5.5.1. WWW Browser

The following diagram is the level 1 data flow diagram for the WWW Browser and uses the Yourdon/DeMarco notation described in Modern Structured Analysis. A circle denotes a process. An arrow denotes a flow. A rectangle denotes a terminator (e.g. an external entity). A roundtangle denotes a data store.

[image: image7.wmf]

analysis data

html marked up source

analysis request

browse source request

4.1.

WWW

Browser

Legend:

Flow

Process

Terminator

Store

Softw

are Analyst

analysis data

html marked up source

analysis request

browse source request

Figure 4 - WWW Browser

5.5.2. WWW Browser Description

5.5.2.1. WWW Browser (4.1.)

The WWW Browser is entirely a COTS product. This process receives input from the Software Analyst (via keyboard or mouse) and formulates requests to send to Netscape Enterprise Server. Requests may be to login, configure the master library, browse a library source file, or perform analysis on a library source file or symbol in a library source file. The WWW Browser then receives responses from Netscape Enterprise Server and displays the results to the user. Results may be a login response, a master library file list, a library source file, or analysis results. Functionality of the WWW Browser that is used by SIAT C++ includes the ability to render HTML, JavaScript, CSS, and Java data to the user.

6. SIAT C++ User Interface View

6.1. Overview

This section will describe the content of the interfaces that the SIAT C++ Software presents to the user.

There are two major users of SIAT C++. The first is the Library Maintainer. This user logs in to the SIAT C++ Host Machine. The interface for this user is the command line interface provided by the UNIX shell. Most of the operations performed by this user are standard UNIX shell operations. This includes commands to copy the C/C++ files that are to be analyzed as a library into the appropriate location on the host machine. This also includes commands to delete a set of files that are no longer to be made available for analysis. The only exception to using UNIX shell commands is the SIAT C++ Analyzer command. It is run in the directory in which the C/C++ files are placed, processes the C/C++ Source Code files, and generates C/C++ Source Code Metadata. This command is also run from the UNIX Shell command line.

The other major user of SIAT C++ is the Software Analyst. This user interfaces with SIAT C++ via a WWW browser on the Software Analyst’s Host Machine. The following sections will describe the content of the pages that are displayed in the WWW browser to the Software Analyst. The pages displayed include: SIAT C++ Start Page, Welcome to SIAT, Login, Library Selection, Master Library, Library Source Code List, Source Code Display, Analysis Graph Display, and Results. The underlined phrases below indicate the actions that can be taken from each displayed page.

6.2. SIAT C++ Start Page

This page describes SIAT C++ and provides the option to connect to the SIAT C++ System. Selecting connect takes the Software Analyst to the Welcome to SIAT page.

6.3. Welcome to SIAT

If the Software Analyst is a user of the SIAT C++ System (i.e. has a cookie indicating this), this page provides selections for the following. First, there is a selection for starting a SIAT session (for the username previously created), i.e. displaying the Library Selection page. Second, there is a selection for logging in as a different user, i.e. displaying the Login page.

If the Software Analyst has not previously used the SIAT C++ System (or has no cookie indicating this), this page only provides a selection for logging in, i.e. displaying the Login page.

6.4. Login

This page accepts a user name and password as input and provides a selection to start a SIAT session. When start a SIAT session is chosen, the Software Analyst is taken to the Welcome to SIAT page (and is now a user of the SIAT C++ system).

6.5. Library Selection

This page allows the Software Analyst to select the libraries and versions of those libraries to be analyzed during the current session. Note that multiple libraries can be chosen for analysis; however, only one version of each library can be chosen. This page provides a selection to open the chosen libraries for analysis.

6.6. Master Library

This page provides a selection for each of the libraries chosen during Library Selection. The Software Analyst can then select a library for analysis. The Software Analyst can also select to find a particular construct in all source files in the library or to find a particular string in all source files in the library. Note that this page, unlike the previously listed pages, is persistent. Even when pages listed later are displayed, this page remains available in a separate WWW browser window so that the Software Analyst can choose to switch their analysis to a different library in the list of libraries that were selected for analysis.

6.7. Library Source Code List

This page provides a list of source files that comprise the library chosen for analysis from the Master Library Page. Each of these source files is selectable for display. When a source file is selected, the Source Code Display page is shown. The Software Analyst can also select to find a particular construct in all source files in the library or to find a particular string in all source files in the library. Note that this page also remains persistent in its own WWW browser window, so that other source files in the currently chosen library can be easily selected for display. The library and associated information displayed on this page changes when a new selection is made from the Master Library page.

6.8. Source Code Display

This page provides a file navigation frame, an outline frame, and a full text view frame of the selected source code file. The outline contains significant symbols in the file with hyperlinks to their actual location in the full text view. This facilitates easy navigation of the full text of the source code file.

The full text view is a syntax colored and hyperlinked display of the source code file that was selected. Keywords, constants, and other significant C/C++ token types are colored for easy identification. Function, variable, and type symbols are hyperlinked so that intra-file and inter-file navigation is possible to the symbol definition, declaration, and references.

The full text view also provides analysis selections for the symbols. These selections include type hierarchy, call graph, dependency graph, data flow graph, and control flow graph displays. However, only the selections that are pertinent to the type of symbol displayed (function, variable, type) are actually active. When one of these analysis selections is selected, the Analysis Graph Display page is shown.

This page is also persistently available in its own WWW browser window; however, the contents change each time a new source code file is displayed. The file navigation frame permits navigating between the various source code files that have been previously displayed.

6.9. Analysis Graph Display

This page provides a text and graphical display of the graphs associated with the symbol and graph type selected from the analysis selections in the Source Code Display page.

The graphs shown are rooted at the symbol selected from the Source Code Display page. The graphs shown are directional. One set of graphs show the tree emanating up the relationship from the root symbol (e.g. the callers of a function when a call graph is shown). The other set of graphs show the tree emanating down the relationship from the root symbol (e.g. the callees of a function when a call graph is shown).

This page is also persistently available in its own WWW browser window; however, the contents change whenever a new analysis graph is displayed.

6.10. Results

This page provides a list of symbols or strings found via a find construct or find string selection, or a list of symbols when references to a particular symbol are requested. The list indicates each location where each symbol is found. Each of the symbol locations found is selectable. When a symbol location is selected from the list, the source code file containing this location is displayed. The source file display is scrolled so that the location selected is at the top of the source file display – thus this instance where the symbol is found is shown at the top of the source file display.

�

27

_1036912482.doc

installation status

Terminator

Process

Flow

Legend:

login response

master library file list

library source file

analysis results

login request

configure master library request

browse library source file request

perform analysis request

install source library request

SIAT C++

Library Maintainer

Software Analyst

_1023368260

_1023368559

_1036914277.doc

analysis request

browse source request

Store

Terminator

Process

Flow

Legend:

2.2.

DSM Dyn Service Module

2.1.

NES COTS

C/C++ Source Code Metadata (HTML,symbol…)

Static SIAT C/C++ Files (html, java, javascript, css, gif)

html marked up source

analysis data

analysis request

analysis request

browse source request

analysis data

analysis data

html marked up source

_1023368260

_1023368559

_1037004005.doc

type info

include file

info

1.7.

Extract Data Flow Info

1.4.

Extract Include File Info

1.9.

Create HTML of Source

1.6.

Extract Call Graph Info

Store

install source libraries request

Terminator

Process

Flow

Legend:

Library Maintainer

lexical info

1.3.

Extract Symbol Cross Ref

1.2.

Extract Lexical Token Info

1.5.

Extract Type Hier Info

1.1.

Scan/ Parse Source

C/C++ Source Code Metadata (HTML,symbol…)

symbol info

C/C++ Source Code

function call/ definition info

data flow info

lexical metadata

symbol metadata

include file metadata

type hier metadata

call graph metadata

data flow metadata

lexical and symbol metadata

HTML version of source

1.8.

Extract Control Flow Info

control flow info

control flow metadata

installation status

_1023368260

_1023368559

_1037011543.doc

include hier request

type hier request

3.7.

Find Construct

analysis data

3.4.

Create Call Graph

control

flow data

Store

3.8.

Find String

Terminator

Process

Flow

Legend:

analysis data

data flow graph request

3.6.

Create Control FlowGraph

3.2.

Create Include Hier Graph

control flow graph request

3.1.

Parse Request

C/C++ Source Code Metadata (HTML,symbol…)

call graph request

include hier data

data

flow data

call graph data

analysis data

3.3.

Create Type Hier Graph

analysis data

analysis request

analysis data

type hier data

analysis data

3.5.

Create Data Flow Graph

analysis data

find construct request

find string request

construct data

source data

_1023368260

_1023368559

_1036913394.doc

analysis request

analysis request

browse source request

analysis request

browse source request

html marked up source

analysis data

analysis data

html marked up source

Store

install source libraries request

Terminator

Process

Flow

Legend:

Library Maintainer

Software Analyst

4.

WWW Browser

2.

Netscape Enterprise Server

3.

SIAT C++ Engine(s)

1.

SIAT C++ Analyzer

C/C++ Source Code Metadata (html, xref, …)

Static SIAT C++ Files (html, java, javascript, css, gif)

C/C++ Source Code

browse source request

analysis data

html marked up source

installation status

_1023368260

_1023368559

_1036222815.doc

Processor

Primary Network

Legend:

…

Any network supporting TCP/IP (e.g. Ethernet LAN or Internet)

Data and control are HTTP over TCP/IP

Software Analyst’s Host Machine

Software Analyst’s Host Machine

Software Analyst’s Host Machine

SIAT C++ Host Machine

_1023368260

_1023368559

_1036223081.doc

analysis data

html marked up source

Store

Terminator

Process

Flow

Legend:

4.1.

WWW Browser

analysis request

browse source request

analysis request

browse source request

analysis data

html marked up source

Software Analyst

_1023368260

_1023368559

