GFY2002 End-of-Year Report

Titan Systems Corporation

Software Interface

Analysis Tool

GFY2002 End-of-Year Report

Contract Number: NAS2-96024

CM Number: NAS2-96024-02-173

This project was funded in part by a Center Software Initiative for the NASA Software Independent Verification and Validation Facility

[image: image1.png]

Change Information Page

	Change Log

	Document Number
	Status / Issue
	Publication Date

	NAS2-96024-02-173
	Initial
	November 20, 2002

	
	
	

	
	
	

Table of Contents

11.
Introduction

1.1.
Purpose
1
1.2.
Scope
1
1.3.
Definitions, acronyms, and abbreviations
1
1.4.
References
2
1.5.
Overview
2
2.
SIAT C/C++ FY2002 CSIP Accomplishments
3
2.1.
Problem Statement
3
2.2.
Hypotheses/Objective
3
2.3.
Scope and Delimitations
4
2.4.
Background
4
2.5.
Uniqueness of the Research
8
2.6.
Potential Contribution
8
2.7.
Direct Application
10
2.8.
Potential for Technology Transfer
11
2.9.
Methods and Procedures
12
2.10.
Success Criteria
14
2.11.
Deliverables/Schedule
15

1. Introduction

1.1. Purpose

The purpose of this GFY2002 End-of-Year Report is to report the accomplishments of the SIAT C/C++ FY2002 Center Software Initiative Proposal (CSIP) for the NASA Software IV&V Facility.

This document is intended to be read by persons reviewing the work accomplished under the SIAT C/C++ FY2002 CSIP.

1.2. Scope

The scope of this GFY2002 End-of-Year Report is the work accomplished on SIAT C/C++ during GFY2002.

1.3. Definitions, acronyms, and abbreviations

COTS – Commercial Off The Shelf

CSCI – Computer Software Configuration Item. In this document, the words CSCI and Library are used interchangeably.

CSIP – Center Software Initiative Proposal

CSS – Cascading Style Sheet

GIF – Graphical Interchange Format

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

IEEE – The Institute of Electrical and Electronics Engineers

IP – Internet Protocol

Library - A particular set of C/C++ source files that are prepared by a library maintainer for use by SIAT C++. Multiple versions of one Library may be available for use by SIAT C++ at the same time. In this document, the words CSCI and Library are used interchangeably.

NES – Netscape Enterprise Server

Version (of a Library) – Versions of a library indicate the same library, but with potentially different source files or different versions of the source files in the library.

SIAT – Software Interface Analysis Tool (SIAT by itself usually refers to the SIAT tool that analyzes Ada source code)

SIAT C++ - Software Interface Analysis Tool for C++

TCP – Transmission Control Protocol

URL – Uniform Resource Locator

WWW – World Wide Web

1.4. References

FY2002 CENTER SOFTWARE INITIATIVE PROPOSAL for the NASA SOFTWARE IV&V FACILITY. Initiative Title: Software Interface Analysis Tool (SIAT) C/C++.

1.5. Overview

This document reports the work accomplished under the SIAT C/C++ FY2002 CSIP.

The rest of this document is organized as follows:

· Section 2 discusses the subsections of the SIAT C/C++ FY2002 CSIP and the accomplishments for each subsection.

2. SIAT C/C++ FY2002 CSIP Accomplishments

This section is written as follows. Each major section of the original SIAT C/C++ FY2002 CSIP that describes items to be accomplished is first restated. The restatement of each of these sections is followed by a description of the accomplishments that support the fulfillment of the items in the section.

2.1. Problem Statement

2.1.1. Original CSIP Text

As software systems get larger and more complex, we must improve existing techniques and practices for defining and reviewing interface related specifications and code. The ability to perform more comprehensive V&V will depend on the level of automated support available.

2.1.2. Accomplishments

SIAT C++ Version 2.0 and Version 2.1 have been developed and deployed. SIAT C++ provides automated support for code analysis.

2.2. Hypotheses/Objective

2.2.1. Original CSIP Text

The main objective is to complete the implementation of support for the C++ language to match the existing Software Interface Analysis Tool (SIAT) capabilities that already exist for the Ada language. This tool provides a collaborative analysis tool for NASA enterprise adoption with no client side licensing costs (e.g. no per seat cost like charged by most COTS vendors).

2.2.2. Accomplishments

SIAT C++ supports the C++ language, as well as the C language. It provides a collaborative analysis tool for NASA enterprise adoption and has no client side licensing costs. The client is merely the Netscape Navigator or Internet Explorer web browser.

2.3. Scope and Delimitations

2.3.1. Original CSIP Text

The scope is to provide C++ code navigation and browsing tools to facilitate static analysis of source code in tracing dataflow, data use, and data dependencies associated with external interface data items between Computer Software Configuration Items (CSCIs). The foundation for this tooling initiative is the correlation between certain programming language constructs and the implementation of external interfaces. Based on this correlation, information can be extracted through static analysis of source code, guided by operator queries, to efficiently analyze data content, utilization, and dataflow for software interfaces.

The limitations of this tool are as follows. This tool requires source code that can be compiled in order to perform the analysis. This tool analyzes Ada and, upon completion of the work in this proposal, C/C++ source code.

2.3.2. Accomplishments

SIAT C++ provides a code navigation and browsing tool. As a result of work performed this fiscal year, SIAT C++ provides data flow graphs, data usage information, and data dependency information. SIAT C++ also provides the ability to find all instances of particular programming constructs, such as classes. The SIAT C++ tool can analyze C or C++ source code. It does not require that all header files be found in order to process the code; however, this can lead to loss of information about some symbols in the code. The source code that is present should be syntactically and semantically valid.

2.4. Background

2.4.1. Original CSIP Text

Many of the large software systems being built today are highly distributed, with complex interactions between the software components. Interfaces between software components are particularly hard to verify for correctness, and are therefore a major source of software hazard. Interface errors have been implicated in the majority of software failures, especially those in large, safety-critical applications
.

Project managers questioned indicated that regardless of phase found, costs associated with finding and fixing interface errors were rated very high. Observations recorded reflect the fact that short of requirements, external interface problems tend to cost more to fix than other types of problems because they impact a broader range of development products.

Our long-term objective is to build the necessary infrastructure for performing V&V and systems assurance on the new generation of complex, distributed systems. The initial proof of concept pilot for SIAT was demonstrated via a small research activity against sample Ada code from the International Space Station (ISS) project. Subsequently, a version of SIAT was developed under NASA center initiative funds into a product for use on all projects being implemented in the Ada language. Some of the functionality in the Ada version of SIAT is currently being implemented for the C++ language under NASA center initiative funds. This initiative proposes to complete the implementation of the SIAT tool for the C++ language to expand the usefulness of this technology.

The tool developed for Ada supports operator queries that can be used to trace dataflow, data use and data dependencies. The tool’s architecture supports web-based code analysis activities, and it uses a standard web browser as a front end. It has been implemented with a Dynamic HTML user interface and supports the display of HTML formatted Ada source code. In addition, a Java graph-rendering package has been incorporated to support graphical display of the various dependency graphs, such as the call graph.

The following diagram shows the web-based, client-server physical/process architecture for SIAT, and its relationship with other V&V tools. Basically, external interface data from SIAT, external interface data from the proposed Interface Management System (IMS), external interface related Project Issue Tracking System (PITS) issues, and external interface related Risk Management System (RMS) risks form an external interface knowledge base. This external interface knowledge base promotes leveraging data to incorporate added tool capabilities that improve productivity and quality of engineering or analysis activities. For instance, the Interface Management System acts as a web enabled Interface Control Document (ICD) and is envisioned to maintain external interface ID to external interface implementation information. Just as is the case with the SIAT Ada product, this data is used to build a source code analysis list of code related to external interfaces for expeditious review by code analysis engineers.

[image: image2.png]
Work was initiated on C++ language capabilities for SIAT under existing project activities based upon a process improvement initiative realizing the importance of having such capabilities as a systems assurance provider. The Edison Design Group C++ Front End has been selected as the core tool for statically parsing C/C++ code. Please see Attachment A, Evaluation and Selection of C++ Cross Reference / Semantic Analyzer Back End, which describes the reasoning for the selection of the Edison Design Group C++ Front End. Requirements and design for SIAT C++ have been completed and delivered. In addition, implementation for the C/C++ languages of a subset of the features SIAT provides for the Ada language is currently ongoing.

2.4.2. Accomplishments

SIAT C++ provides an infrastructure tool for use in performing V&V and systems assurance code analysis. SIAT C++ continues the legacy of SIAT Ada static code analysis tool, providing comparable features for the C and C++ languages. During this past fiscal year, implementation of all SIAT Ada functionality into SIAT C++ was completed. Additionally functionality to provide analyst notes for collaborative analysis and to provide multiple sort orders for the initial list of global symbols in the library was also implemented.

The new SIAT C++ tool does support web-based code analysis activities, using standard web browsers such as Netscape Navigator Version 4.5 or higher and Internet Explorer Version 5 or higher as the client user interface. SIAT C++ provides a Dynamic HTML user interface that supports the display of HTML formatted C and C++ source code. In addition, a Java graph package has been incorporated to provide display of various graphs, such as call graphs. During this past fiscal year, an additional Java graph package was also integrated so that three-dimensional graphs, as well as two-dimensional graphs, can be generated.

Currently, SIAT C++ does not leverage data sharing with other external interface tools. However, an interface is in place to share data with an online Interface Management System tool. In addition, enhancement requests have been suggested to allow the linking of SIAT C++ data with issue tracking system data in order to track issues found during SIAT C++ code analysis.

During this past fiscal year, the Edison Design Group C/C++ Front End was upgraded from version 2.27 (released in 1994) to version 2.45 (released in 2000), thus providing more complete support for the standard C and C++ programming languages. The Edison Design Group C/C++ Front End has been used as the core tool in SIAT C++ for statically parsing C/C++ code. This code has been modified to produce the data required for SIAT C++, including symbol cross-reference information, token information for highlighting, caller/callee relationships, etc.

Finally, an updated requirements specification as well as a number of other software lifecycle documents have been completed and delivered. For more information on deliverables, please see the section titled “Deliverables/Schedule”.

2.5. Uniqueness of the Research

2.5.1. Original CSIP Text

This effort will develop and integrate code analysis capabilities that are not known to exist in any single COTS product. While a market survey indicates that many static code analysis tools exist, COTS vendors have not provided tools that address the unique problems inherent with analyzing external interfaces. Also, as far as can be ascertained, the web-based code analysis capabilities are at the forefront of code and interface analysis technologies. The niche which SIAT C++ fills is to provide a single static code analysis tool for C/C++ code which provides a web interface, HTML representation of the source code, cross reference information, and strong data flow identification/discovery capabilities, including data flow across external CSCI interfaces.

2.5.2. Accomplishments

SIAT C++ implements a web-based code analysis capability. It is a static code analysis tool for C/C++ code that provides a web interface, HTML representation of the source code, and cross reference information. Data flow functionality has been implemented, as has data flow functionality across external CSCI interfaces.

2.6. Potential Contribution

2.6.1. Original CSIP Text

While the capabilities of the Ada language version of SIAT are pushing the state-of-the-art and extend existing code navigation and browsing facilities in conjunction with interface code identification, they only support the Ada language. Support for a subset of the SIAT features for the C++ language is currently being developed. Complete support for the C++ language would be a substantial enhancement to the tool while drastically expanding the customer base for these capabilities. Complete support of C++ would provide comparable features to the Ada implementation of the SIAT tool, using C++ terminology where appropriate. The user interface would be similar where possible.

Capabilities currently being developed in the SIAT C++ version are:

· Ability to navigate between references and definitions in an HTML listing of the code source.

· Generation of text and graphical representations of call trees, file dependencies, and class hierarchies based on operator queries.

Capabilities included in the updated SIAT C++ version would be:

· Ability to search for keywords and language constructs related to external interfaces.

· Generation of external interface data item cross-reference, utilization, and dependency reports based upon operator initiated queries.

· Interactive selection of cross-reference information for a single external interface data item from a query result set.

· Navigation to cross reference information for an external interface data item selected from a query result set.

· Identification and navigation of dependencies associated with a selected external interface data item.

The SIAT C++ tool could improve support for code, interface, impact, and sustaining engineering analysis activities agency wide. The tool focuses on V&V and system assurance needs in order to reduce program risk relating to cost, schedule, integration, safety, etc.

2.6.2. Accomplishments

SIAT C++ now supports the C and C++ languages. The architecture from SIAT Ada was reused, although much of the code was not. The user interface has the same basic functionality, but has been enhanced in numerous ways.

SIAT C++ provides the ability to search for many different construct types. SIAT C++ provides the ability to navigate between references, declarations, and definitions in an HTML listing of the code source. As of this fiscal year, full data flow functionality and the ability to trace data flow across external CSCI interfaces have been implemented, including cross-reference, usage, and dependency information for external interfaces. SIAT C++ provides the ability to produce text and graphical representations of call trees, file dependencies, class hierarchies, and data flow.

2.7. Direct Application

2.7.1. Original CSIP Text

Interface faults have been identified as the largest single cause of software error on programs such as Galileo and Voyager. These programs are not nearly as distributed, complex, or as large as many systems being developed today and include far fewer interface data items. CSCI external interface definition, management, and data integration has been a very difficult task for the ISS program due to the large volume of data on the data buses, multiple geographically distributed developer organizations, and the staged evolution of the avionics architecture. Due to cost, it is impractical to apply existing analysis techniques to the magnitude of interfaces on the ISS program. Automation and productivity multipliers are sorely needed on such programs. The SIAT C++ product will be available for use on NASA programs being implemented in C++ to obtain similar benefits to that of SIAT Ada on the ISS IV&V activity. Problems with the ability to specify and manage software interfaces, together with the inherent difficulty in verifying external interfaces during the code and unit test phase often results in complications during system integration and test. When problems proliferate to this point, cost, schedule, and mission are jeopardized.

The objective of this proposal is to expand the scope and usefulness of SIAT technology to further increase the quality, productivity, and value-added aspects of on-going V&V and systems assurance activities during development, test, and maintenance and operations phases. This objective can be met by providing the same client and server-side capabilities for C++ as was provided for Ada, and by integrating enhancements to the Ada user interfaces with the C++ version as it is implemented.

Programs applying SIAT C++ will benefit from these analyses in the following ways:

· Analysts will be able to statically verify correct implementation of the interface by performing analysis of external interface data items in the source CSCI application and the destination CSCI application.

· While performing code analysis of a particular software function, analysts will have an ability to efficiently determine the external dependencies upon which the function and data items within the function relies. This ability to rapidly access contextual information for a software function or data item is integral to verifying the correctness of software.

· Analysts will be able to determine the far-reaching impacts of changes to specific areas of code through identification of external software functions and data items that depend on the software under change.

· Analysts will be able to quickly navigate across and within CSCIs to determine the cause and impact of software problems.

Continued work and investment into SIAT C++ benefits current programs such as the International Space Station (ISS) Portable Computer System (PCS), the Earth Observation System Data and Information System (EOSDIS), the Checkout Launch Control System (CLCS), some Advanced Air Transportation Technologies (AATT) projects, and various X programs.

2.7.2. Accomplishments

SIAT C++ provides a code understanding capability to allow analysts to more rapidly understand the code. Functionality to show data flow and trace data flow across external CSCI interfaces has been implemented. SIAT C++ has been implemented using the same client-server model as SIAT Ada, with the client being implemented as Dynamic HTML rendered by the analyst’s web browser. SIAT C++ can benefit V&V and system assurance programs where the developer is using C or C++ as the programming language. SIAT C++ can be used to statically verify the correct implementation of code. SIAT C++ provides the ability to rapidly access contextual information for a software function or data item. SIAT C++ provides the ability to quickly navigate within CSCIs to determine the cause and impact of software problems. Based on work completed during this fiscal year for external interfaces, SIAT C++ also provides the ability to quickly navigate across CSCIs as well. The fourth operational version release of SIAT C++ occurred in September 2002. SIAT C++ is now being used or has been used on the AATT, ISS, X38, Shuttle CAU, CLCS, GALEX, SWIFT, MESSENGER, and Deep Impact IV&V projects.

2.8. Potential for Technology Transfer

2.8.1. Original CSIP Text

In addition to current programs, continued work and investment into SIAT C++ and/or Ada can benefit numerous current NASA and government software system C++ and/or Ada development initiatives, and future government software development initiatives in C++ and/or Ada. In addition, the products of and lessons learned from the SIAT effort will accelerate the ability to extend distributed system data flow analysis tools to other languages and systems reducing development risk and improving reliability of future software products. All current software programs face unique software and system engineering challenges and there is little or no tolerance in most development and integration schedules for re-work due to latent software interface problems. Software interface definition and implementation has proven to be a major challenge, if not the largest challenge for systems being developed today. Failure to correctly implement software interfaces and identify problems early will result in costly impacts on schedules and resources as these problems persist into later life-cycle development phase activities. Most of the software interfaces will be tested very late in the development life cycle. The tools resulting from the proposed development efforts will enable development organizations, V&V and other system assurance personnel to collaborate on CSCI to CSCI interface identification, definition, specification, and change impact analysis more efficiently and with increased quality.

2.8.2. Accomplishments

The development to date of SIAT C++ has provided a static code analysis tool for the C and C++ programming languages. Functionality to show data flow and trace data flow across external CSCI interfaces has been implemented. This tool already enables V&V and system assurance personnel to better understand code specification and impact analysis more efficiently and with increased quality; and in the future will facilitate CSCI to CSCI interface identification and definition.

2.9. Methods and Procedures

2.9.1. Original CSIP Text

The development of the Software Interface Analysis Tool initiative is scheduled as a two-year effort. This proposal addresses the second year of the effort. Several milestone reviews have been identified to obtain consensus on the requirements, user interface, and design to insure that products are developed that maximize the probability of adoption. Prototyping will be performed as a means to elicit feedback in refining requirements. An incremental software development approach is being advocated.

Products produced under this software initiative would be owned in full by NASA and could be freely distributed to other NASA centers and NASA programs, with the exception of any Commercial Off-The-Shelf (COTS) product licensing requirements for COTS needed for their execution. Procurement associated with COTS products necessary for SIAT execution would be required.

In planning and costing the SIAT C++ development effort, a list of high level engineering activities were identified with accompanying labor effort estimates. The SIAT C++ high-level activities would be expanded into detailed activities and monitored in Microsoft Project. The high level activities currently envisioned include:

1. Detailed design and implementation of C++ compiler engine modifications required to support capabilities similar to that of the SIAT Ada product

2. C++ HTML generator selection or design/development

3. Web-interface definition, review, and implementation

4. SIAT Software Design Document preparation

5. SIAT Software Test Plan generation

6. Component integration and test

7. Software delivery preparation activities

8. Software delivery documentation activities

2.9.2. Accomplishments

This year has been the second year of the SIAT C++ development effort. During this year, the requirements were updated and then the updated requirements were implemented in the SIAT C++ code. Updates were generated based on user feedback to a survey performed early in the fiscal year. Other sources such as email/newsgroup postings, informal user feedback, and feedback provided at the Version 2.1 demonstration have also been used to gather new requirements that have been implemented or recorded as possible future enhancements.

During this year, the following activities have been completed:

1. A new version of the C++ compiler engine was integrated into SIAT C++ so that SIAT C++ could support analysis of code written according to the version of the C++ programming language standardized in ISO/IEC 14882:1998.

2. The SIAT C++ Software Requirements Specification was updated and released in order to define the current requirements baseline for SIAT C++.

3. C++ compiler engine modifications required to emit metadata needed to support new types of SIAT C++ analysis have been made.

4. Scripts that generate HTML marked up versions of the source code that can be viewed with a web browser have been modified to use the new and modified metadata mentioned in the previous item.

5. The SIAT C++ cross-reference engine was modified to support the new types of SIAT C++ analysis.

6. The web interface has been refined, expanded to meet new requirements, and implemented. It is similar in functionality, but not presentation, to the SIAT Ada interface.

7. The SIAT C++ Version 2.0 Software Test Descriptions were generated and delivered.

8. Component integration and test was completed. In addition formal qualification testing of the developed code against the allocated requirements was completed for SIAT C++ Versions 2.0 and 2.1

9. The SIAT C++ Version 2.0 Execution Software/Libraries and SIAT C++ Version 2.1 Execution Software/Libraries have both been prepared and delivered.

10. The SIAT C++ Version 2.0 User’s Guide, SIAT C++ Version 2.1 User’s Guide, SIAT C++ Version 2.1 Installation Guide, SIAT C++ Version 2.1 Version Description Document, and SIAT C++ Version 2.1 Demonstration documentation have all been prepared and delivered.

2.10. Success Criteria

2.10.1. Original CSIP Text

Progress of this task will be tracked by monitoring the deliverable milestones of this task. Success of the total effort will be monitored by collecting utilization metrics for the final tool, such as number of projects used on, number of users, etc.; and by soliciting tool feedback from users via questionnaires.

2.10.2. Accomplishments

To date, 21 deliverables have been delivered on time (including 12 from GFY 2001). An additional delivery of the current SIAT C++ Execution Software/Libraries is currently being prepared and is on schedule to be delivered on time. This report is the final deliverable for this CSIP. Please refer to the “Deliverables/Schedule” section for more details. Currently code for nine projects has been analyzed and is available for analysts to use under SIAT C++. This has all occurred within the first 18 months of availability of SIAT C++. The project is in a fairly mature state, although numerous further enhancement requests have been made. Thus it is expected that the user base will continue to expand as more projects undergo IV&V analysis.

2.11. Deliverables/Schedule

2.11.1. Original CSIP Text

	Task
	Deliverable
	Due Date (FY)
	Quarter

	
	SIAT C++ Software Requirement Specification (Update)
	2002
	1

	
	SIAT C++ Version 2.0 Software Test Descriptions
	2002
	2

	
	SIAT C++ Version 2.0 Execution Software/Libraries
	2002
	3

	
	SIAT C++ Version 2.0 Users Guide
	2002
	3

	
	SIAT C++ Version 2.1 Execution Software/Libraries
	2002
	4

	
	SIAT C++ Version 2.1 Users Guide
	2002
	4

	
	SIAT C++ Version 2.1 Version Description Document
	2002
	4

	
	SIAT C++ Version 2.1 Installation Guide
	2002
	4

	
	SIAT C++ Version 2.1 Demonstration
	2002
	4

	
	End-of-Initiative Report (inclusive of test results)
	2002
	4

2.11.2. Accomplishments

During the course of GFY2002, it was agreed that the work and funding for SIAT C++ should be spread over an additional two months (through November 2002) and that the name of the final report be changed to more accurately describe the desired content. This led to the adjustment of the due date of the GFY2002 End-of-Year Report and the addition of another release of the Execution Software / Libraries. These changes were reflected in a modification to the SIAT C++ task order under the Omnibus contract (NAS2-96024).

	Deliverable
	Due Date
	Delivery Date
	TSC CM Number

	SIAT C++ Software Requirement Specification (Update)
	11/16/2001
	11/15/2001
	NAS2-96024-01-224

	SIAT C++ Version 2.0 Software Test Descriptions
	3/29/2002
	3/20/2002
	NAS2-96024-02-028

	SIAT C++ Version 2.0 Execution Software / Libraries
	6/21/2002
	6/19/2002
	NAS2-96024-02-083

	SIAT C++ Version 2.0 User’s Guide
	6/14/2002
	6/12/2002
	NAS2-96024-02-081

	SIAT C++ Version 2.1 Execution Software / Libraries
	9/20/2002
	9/19/2002
	NAS2-96024-02-135

	SIAT C++ Version 2.1 User’s Guide
	9/13/2002
	9/13/2002
	NAS2-96024-02-131

	SIAT C++ Version 2.1 Version Description Document
	9/20/2002
	9/19/2002
	NAS2-96024-02-136

	SIAT C++ Version 2.1 Installation Guide
	9/13/2002
	9/12/2002
	NAS2-96024-02-132

	SIAT C++ Version 2.1 Demonstration
	9/25/2002
	9/24/2002 (Presented 9/25/2002)
	NAS2-96024-02-134

	SIAT C++ Version 2.2 Execution Software / Libraries
	11/27/2002
	11/20/2002
	NAS2-96024-02-174

	GFY2002 End-of-Year Report
	11/27/2002
	See date of this report
	NAS2-96024-02-173

� EMBED Word.Picture.8 ���

� Leveson, N. “Safeware: System Safety and Computers” Addison Wesley, 1995, p. 143.

[image: image3.jpg]

PAGE
7

_1021884448.doc
[image: image1.png]

