
Comparative Study of the Impact of Underlying

Models on Module-Order Model Performances

Prepared for

NASA Independent Veri�cation and Validation Facility

FAU Technical Report TR-CSE-02-08

Taghi M. Khoshgoftaar�

Bojan Cukic
Naeem Seliya

Florida Atlantic University
Boca Raton, Florida, USA

July 2002

�Readers may contact the authors through Taghi M. Khoshgoftaar, Empirical Software Engineer-
ing Laboratory, Deptartment of Computer Science and Engineering, Florida Atlantic University, Boca
Raton, FL 33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email: taghi@cse.fau.edu, URL:
www.cse.fau.edu/esel/.

1

FAU Technical Report TR-CSE-02-08 2

Executive Summary

Ensuring dependability and reliability of mission-critical and high-assurance systems is
greatly impacted by the quality of their software programs. In order to improve software re-
liability and minimize faults being detected during system operations, project management
teams apply quality improvement techniques such as IV&V, software testing and reviews,
and systems re-engineering. However, such techniques can be taxing on the pre-allocated
project resources especially, monetary and human resources.

A cost-e�ective and goal-oriented approach for improving software quality, is to tar-
get software inspection, testing, and other V&V e�orts toward software components that
are likely to be the most problematic, i.e., high-risk modules. Software metrics collected
during the pre-testing or pre-deployment phases, can e�ectively predict the future and/or
operational quality of software modules. Recent literature has focused on calibrating and
applying software quality estimation models that predict the membership of modules into
risk-based classes, i.e., quality classi�cation models. However, such models have limited
usefulness from the business and practical points of view.

Software quality classi�cationmodels suggest that equal quality enhancement e�orts be
directed toward all components that are signaled as fault-prone. Depending on the software
system, the risk-based degree (such as number of faults) among the modules predicted as
fault-prone, can vary considerably. And since, the software quality assurance team has
a limited amount of resources that it can expend toward quality improvement activities,
applying equal V&V to all (predicted) fault-prone modules is ine�cient. A priority-based
application of V&V e�orts toward fault-prone modules provides a more cost-e�ective and
goal-oriented V&V plan. A module-order model (mom) facilitates such a strategy.

The essence of a mom is the provision of a quality-based (such as number of faults)
ranking of software modules as a guideline for dispensing V&V activities. A mom answers
project-management questions as to which, and how many high-risk modules should be
targeted for V&V?. The basic functional component of a mom is its underlying quality
prediction model. Therefore, it is very likely that the performance of a mom may be
dependent on the underlying prediction model. This study investigates the impact of
the underlying model on the performance of a mom. Since there are various techniques
that can be used for obtaining the underlying quality predictions, this study presents
a comprehensive comparative investigation of the relative performances of module-order
models designed using the underlying fault predictions obtained from some commonly-
used quantitative software quality estimation methods.

Our empirical evaluation is based on large-scale case studies of various industrial soft-

ware systems. It is observed that there is no single software fault prediction model that

always results in the best mom. In addition, the choice and selection of a mom may de-

pend on the cuto� range of interest, i.e., how many high-risk modules can be inspected

with the given resources? The average absolute and average relative errors when used to

evaluate the underlying prediction models, did not provide any conclusive insight into the

performance of a mom. Therefore, the best underlying prediction model (in terms of aver-

age absolute and relative errors) did not necessarily yield the best mom for all the cuto�

values of interest. This indicates that these measures may not be appropriate indicators of

the behavior of underlying prediction models when used to calibrate module-order mod-

els. Another important observation made is that the performance of underlying prediction

models as well as module-order models is invariably dependent on the characteristics of

the software system being modeled and its software measurement data.

FAU Technical Report TR-CSE-02-08 3

1 Introduction

The increased reliance on computer systems in the fast moving high-tech modern world,

has expressed the importance and need for engineering reliability control of computer

systems with the highest possible standards. System failures and poor reliability of

computer systems, especially high-assurance and mission-critical systems, can result in

consequences of varying severity. Consequences of system failures may include minimal

to extensive economical loss or tarnishing of an organizations reputation. In some cases,

system failures can even lead to loss of human lives. Therefore, it is crucial to engineer

reliability control of computer systems with the highest standards possible.

The software engineering community has strived to develop methods and tools that

aim at providing better reliability and quality control of software systems. Consequently,

providing engineering avenues for increasing the reliability and dependability of software

systems. Software quality estimation modeling techniques are considered a part of the

reliability and quality control \toolbox". They can be used to calibrate software metrics-

based models for predicting either a quantitative value or a risk-based class membership

as an indicator of the expected quality of software modules.

Timely software quality estimations during the development life cycle can be ob-

tained with the aid of models, such as software quality prediction and software quality

classi�cation models. A software quality prediction model estimates a quantitative qual-

ity factor (or dependent variable) such as the number of faults in a program module using

predictors (or independent variables) collected during the developmental phases of the

software life cycle [21]. In contrast, a software quality classi�cation model, also based

on a set of predictors collected early in the software life cycle, predicts a module's class

FAU Technical Report TR-CSE-02-08 4

membership such as fault-prone (fp) or not fault-prone (nfp) [20].

Timely use of software quality estimation models can provide a useful insight into

the likelihood quality of a software module during its operations. The project managers

can then deploy corrective actions before the module is completed and released, thereby

reducing the occurrence of faults being discovered during system operations. Corrective

actions are usually project speci�c tasks, and can range from extra reviews to formal

veri�cations for program correctness. Some of the more recent software quality estima-

tions techniques include Case-Based Reasoning [5, 16, 18, 31], Fuzzy Logic [37], Neural

Networks [15], Genetic Programming [4, 26], and Decision Trees [9, 22]. Comprehensive

comparative evaluations of commonly used software fault prediction and software quality

classi�cation techniques are presented in [21] and [20], respectively.

Software quality prediction and classi�cation models demonstrate a few shortcom-

ings, especially from the business and practical points of view. We can recall that both of

these software quality estimation modeling approaches can provide a timely detection of

problematic areas, thereby facilitating the allocation of quality enhancement and V&V

(veri�cation and validation) activities only to the software components that are likely

to be of high-risk. However, practically speaking every software project has a �nite and

often limited amount of resources for executing quality improvement activities. This

raises an issue of how does one delegate these available resources such that the end result

is the best possible cost-e�ective outcome. When used by themselves as quality control

techniques, software quality prediction and classi�cation models are not best suited to

address the above raised practical software quality assurance (sqa) issue.

A software quality prediction model may come up with an overall accurate prediction,

but may fall short on providing project managers with indications about the priorities

FAU Technical Report TR-CSE-02-08 5

for allocating quality enhancement activities. In addition, it may provide better quality

predictions for the low-risk modules and poor predictions for the high-risk modules,

defeating the purpose of a cost-e�ective sqa strategy.

A software classi�cation model may accurately identify all the high-risk, i.e., fp,

modules, but assumes that equal software inspections and quality improvements will be

applied to all modules predicted as fp. Hence, a classi�cation model does not consider

the importance of the limited and sometimes even unknown amount of available quality

enhancement resources. For example, a classi�cation model may predict 30% of the

modules as fp while managers may have time and project resources to focus on only 15%

of the fp modules. In such a commonly observed scenario, a classi�cation model does

not indicate which 15% of the fp modules should be the focus for quality improvements.

A preliminary research e�ort investigated a comparative study of ordering and clas-

si�cation of fp software modules [8]. Through case studies of large-scale telecommunica-

tion software systems, we highlighted the shortcomings of software classi�cation models

as compared to a priority-based ordering of modules.

The reasons provided above indicate that a precise quantitative quality prediction

or a reliable quality classi�cation is often not su�cient when dealing with business and

practical issues of a project. Predicting the rank-order of the software modules with

respect to a quality factor may prove more e�cient and more goal-oriented. With a

quality-based ranking starting with modules with the lowest predicted quality, i.e., high-

est expected risk, managers are able to deploy cost-e�ective quality enhancement e�orts

until all available resources are exhausted. Logically speaking, such an approach of re-

source allocation makes practical sense, because addressing the more severe issues should

take priority over the relatively less severe issues.

FAU Technical Report TR-CSE-02-08 6

A module-order model (mom) addresses this need by providing a prioritized rank-

order of software modules based on a quality factor such as expected number of faults [8].

Thus, a mom provides an e�ective priority-based approach of modeling and detecting the

high-risk software modules. The quality factor used for the ranking is obtained using a

prediction from an underlying software quality prediction modeling technique. Module-

order models are
exible, cost-e�ective, and can facilitate the sqa needs of the given

project or organization.

Preliminary research [8] at the Empirical Software Engineering Laboratory (esel),

Florida Atlantic University has investigated the usefulness of module-order models as

practical software reliability control techniques. Since a mom uses predictions from a soft-

ware quality prediction technique as an underlying model, its usefulness and e�ectiveness

may be impacted by the underlying prediction model. As mentioned earlier, such under-

lying prediction techniques may include case-based reasoning [16], neural networks [15],

decision trees [22], count models [23], and multiple linear regression [1]. Commonly used

software quality prediction methods have been used to calibrate, implement, and evaluate

prediction models through various large-scale case studies in our earlier study [21].

In our very recent research e�ort related to mom, we investigated the impact of count

model (pure Poisson and zero-in
ated Poisson regression) predictions on module-order

models [17]. This paper continues our empirical studies related to module-order models

with an investigation of the impact on a mom with respect to its underlying software qual-

ity prediction modeling technique. We present a comprehensive comparative evaluation

of six commonly used software quality prediction techniques, when used as underlying

predictions while designing module-order models. These modeling techniques include,

Multiple Linear Regression (mlr), Case-Based Reasoning (cbr), Arti�cial Neural Net-

FAU Technical Report TR-CSE-02-08 7

works (ann), Classi�cation And Regression Trees (cart, using two di�erent estimation

algorithms) and s-plus regression trees. To our knowledge this is the �rst innovative

study of its kind in which an in-depth comparison of six di�erent underlying prediction

techniques for mom is presented.

Several case studies of full-scale industrial software systems are used to demonstrate

our contributions. Module-order models are built for each of the above mentioned soft-

ware quality prediction techniques. For each of the case studies, the performances of

the six module-order models are compared and evaluated. Empirical results from our

case studies indicated that the prediction accuracy (in terms of the average absolute and

relative errors) of the underlying software quality prediction technique did not provide

any signi�cant insights into the performance and e�ectiveness of the subsequent mom.

However, for presentation purposes, the empirical investigations and results of only one

large-scale case study is presented in this paper. The case study comprises of software

metrics and fault data collected over four historical releases of a large legacy telecommu-

nications system.

It is our opinion that the contributions of this study will be of great bene�t to

software quality assurance and project management teams, especially those with lim-

ited project resources. We have presented a comparative evaluation of some commonly

used software quality prediction techniques, and have investigated the relationship be-

tween their quality prediction accuracies and their performance as module-order models.

A management team that currently uses one of the prediction techniques for quality

control, can evaluate the technique's performance as a module-order model, which prac-

tically speaking, addresses the more realistic issues concerning the almost-always limited

resource availability.

FAU Technical Report TR-CSE-02-08 8

Furthermore, this study points out the e�ectiveness and usefulness of a module-order

model when applied in an industrial environment. This work also demonstrates that there

is no \silver bullet" software quality prediction technique for designing the most cost-

e�ective and goal-oriented module-order model. This is because the performances of a

prediction technique as a module-order model is dependent on the characteristics of the

software metrics data available [34].

The layout of the rest of the paper is as follows. A detailed description of the mom

technique is provided in Section 2. In Section 3, the di�erent software quality prediction

modeling techniques used during the case studies are presented. Section 4 presents our

empirical work performed at the esel laboratory, while Section 5 presents an in-depth

coverage of one of the case studies. Finally, Section 6 will present the conclusions of our

comparative evaluation.

2 Module-Order Modeling

The quality of a software module, in terms of how it performs during operations can

only be measured quite late in its life cycle, and making cost-e�ective corrections once

a module has been deployed is often not feasible. However, during a module's life cycle,

software metrics, such as product, process, inspection, etc., can be collected before the

software testing and operation phases. Consequently, software quality models based

on these software metrics can be used to predict the quality of software modules, for

example, number of likely faults. The predictions of such quality estimation models are

then used to evaluate the best possible (as per the model) deployment of available quality

enhancement resources.

FAU Technical Report TR-CSE-02-08 9

As per Pareto's law applied to software engineering, 20% of the modules are usually

responsible for 80% of the software faults. In our empirical studies related to software

quality estimation models, we have observed that the above law (approximately) holds

true. Therefore, detection of the top fraction of the fp modules can possibly maximize

the bene�t of expending limited resources for software reliability improvement. A suitable

software quality model can make predictions when it is not too late to take compensatory

actions. Such quality predictions can be useful for prioritizing reliability enhancement

e�orts toward those modules o�ering the greatest return on investment.

A module-order model can be de�ned as a software metrics-based quality estimation

model, that is used to predict the prioritized rank-order of modules according to a pre-

determined software quality factor. The choice of the quality factor is dependent on the

project management team, however, it should be a good representation of the actual

quality of the module. A good example would be the number of faults (as de�ned by

the project) expected in a software module during system testing or operations. A mom

predicts the relative quality of each program module, especially those which are the most

faulty. The type of scale used by a mom for yielding this ranking may range from ordinal

to absolute [8]. As we will see later in our study, we rank the software modules according

to the number of faults discovered during software testing. In summary, a mom comprises

of the following three components:

1. An underlying software quality prediction model,

2. A ranking of modules according to the quality factor predicted by the underlying

model, and

3. A procedure for evaluating the accuracy and e�ectiveness of the ranking.

FAU Technical Report TR-CSE-02-08 10

In the context of a mom, a software metrics-based underlying software quality pre-

diction model may be considered as a function of a vector of software measurements,

xi, predicting a quality factor, Fi, for module i, i.e., Fi=f (xi). Generally speaking, any

prediction technique may be selected as an underlying quality prediction model. For

our case studies, we selected six commonly used prediction techniques, which will be

presented in the next section.

When obtaining the quality-based rankings of software modules, the following nota-

tions are used. Let bF (xi) be an estimate of Fi by the underlying prediction model, bf(xi).
Ri is the perfect ranking of the observation i according to Fi, whereas bR(xi) is the same

ranking, but according to bF (xi).
Once the quality-based rankings are determined, the following evaluation method,

previously developed at the esel [8, 17], is used to evaluate the usefulness of the obtained

ranking. Given a model and a validation data set indexed by i,

1. Management will choose to enhance modules in a priority-based order, beginning

with the most fault-prone, i.e., the ones with the highest risk. However, the rank

of the last module enhanced is uncertain at the time of modeling. Based on the

schedule and resources allocated for reliability enhancement activities, determine

a range of cuto� percentages that covers the management's options for the last

module. Choose a set of representative cuto� percentages, c, from that range.

2. For each cuto� percentage value of interest, c, de�ne the number of faults accounted

for by the modules above the percentage c:

G(c) =
X

i:Ri�c
Fi (1)

FAU Technical Report TR-CSE-02-08 11

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50

Modules (%)

F
au

lt
s

Actual

Predicted

Figure 1: Example of Alberg diagram

bG(c) = X
i:bR(xi)�c

Fi (2)

3. Let Gtot be the total number of actual faults in the validation (test) data set.

Calculate the percentage of faults accounted for by each ranking, namely, G(c)/Gtot

and bG(c)/Gtot, and depict the results of the model with an Alberg diagram (see

Figure 1) [29]. Alberg diagrams are a variation of Pareto diagrams when applied

to module-order modeling.

4. Calculate a function (Equation 3) measuring the model performance, �(c), which

indicates how closely the faults accounted for by the model ranking match those of

the perfect ranking. We can then plot a performance graph described as a function

of c, such as in Figure 2.

�(c) =
bG(c)
G(c)

(3)

FAU Technical Report TR-CSE-02-08 12

80%

85%

90%

95%

100%

0 10 20 30 40 50

Modules (%)

M
o

d
el

 P
er

fo
rm

an
ce

Figure 2: Example of Performance diagram

3 Underlying Prediction Techniques

The quality factor used in our case studies is the number of faults expected during soft-

ware testing and/or operations. This section presents a summarized discussion of the

six software fault prediction techniques that were used as underlying prediction models

for module-order modeling. They include decision tree-based prediction algorithms [22]:

cart (both the least squares and least absolute deviation methods) and s-plus regression

trees, case-based reasoning [35], arti�cial neural networks, and multiple linear regression.

A further in-depth coverage of these software quality prediction methods and their com-

parative evaluation is presented in [21], which was performed by our research team at

the esel.

3.1 Decision Trees

Decision trees are part of a set of popular machine-learning techniques related to the

problem of learning from a set of independent instances. More speci�cally, they are the

result of a \divide-and-conquer" approach [36]. Tree-based models comprise of decision

FAU Technical Report TR-CSE-02-08 13

nodes, that perform a test comparing an attribute of an instance or module with a

constant determined (for that node) by the respective decision tree algorithm. The

instance whose quality is unknown, is routed along the decision tree according to the

results of the test at each node until it reaches a leaf.

Once the instance has reached a leaf node, the algorithm may either classify the

instance or predict a quantitative value for the response variable. Figure 3 shows an

example of a decision tree for software fault prediction, using the cart-lad (cart with

the least absolute deviation technique) regression tree algorithm. D1, D2, and D3 are the

independent variables used to perform the test at each decision nodes (diamonds-shaped

nodes 1, 2, and 3). The boxes represent the leaf nodes with the predicted value (0, 1,

3, and 1) as well as the number of instances (of training or �t data set) falling in the

particular leaf node (2132, 641, 88, and 1787). The two following sections will present

two techniques using decision trees for software quality prediction modeling.

3.1.1 CART

Classi�cation and Regression Trees (cart) is a statistical tool for tree structured data

analysis [2]. The cart algorithm partitions the data recursively into binary splits until

it reaches a terminal node. The decision whether a node is terminal or not is based on

certain stopping criteria and the modeling technique used by cart, i.e., least squares

method (cart-ls) and the least absolute deviation method (cart-lad) [33].

� The cart-lsmethod uses the mean value of the dependent variable for a particular

node as its prediction value, and computes the mean squared error to evaluate the

goodness-of-split.

FAU Technical Report TR-CSE-02-08 14

 1 4648

 2 3

D1

D2

 0.00 1.00 3.00

2773 1875

88 1787

<= -0.205 > -0.205

D3

<= -1.102 > -1.102<= -0.145 > -0.145

2132 641

 1.00

Figure 3: Example of a Tree model for fault prediction

� The cart-lad method uses the median value for a particular node as its prediction

value, and computes the mean absolute error to evaluate the goodness-of-split.

The goodness-of-split is the criterion used to control the growth of the trees. In this paper

we will only focus on regression trees and ignore the classi�cation tree features o�ered by

cart. The objective is to minimize the mean square or mean absolute deviation error

value by splitting the nodes. Pureness (measured for example by the deviance) of the

nodes should increase after each split (error values decreases). The algorithm stops when

there is no further e�ective splitting possible in regard to the cart-ls or cart-lad

method.

The cart algorithm then prunes the initial large tree backwards using cross valida-

tion to avoid over�tted trees. cart uses v-fold cross validation to estimate the regression

trees. In a v-fold cross validation estimate, the learning sample L (�t data set) is divided

FAU Technical Report TR-CSE-02-08 15

into v subsets of approximately equal size. (v-1) subsets are used as �t data sets while

the remaining one is used as a test data set. v such trials are performed such that each

subset of the learning sample is used once as a test data set. The average error over these

v trials gives the cross validation error estimate. In our empirical studies we have used

the 10-fold cross validation estimate approach.

Some modeling parameters may be set by the practitioner. These include the maxi-

mum number of terminal nodes, maximum depth or level of regression tree, and minimum

node-size prior splitting. An extensive algorithmic and empirical description of the mod-

eling parameters and regression trees by cart is available in [33]. Prediction results of

the cart algorithms were obtained using the cart tool developed by Salford Systems.

3.1.2 S-PLUS

A solution for advanced data analysis and statistical modeling, s-plus is a tool hosting

a set of data mining functions including regression trees [3]. It combines an intuitive

graphical user interface with an extensive data analysis environment to o�er ease of use

and
exibility. The foundation of the s-plus tool is S, a language designed speci�cally for

data visualization and exploration, statistical modeling and programming with data. S

provides a rich, object-oriented environment designed for interactive data discovery. With

its large library of functions, S o�ers good extensibility. s-plus uses software metrics

(numerical data only) to build regression trees to predict a response variable. Each tree

is a collection of decision rules determined by recursively partitioning the training data

set.

The analyst may specify two modeling parameters to control the growth of the tree

model [3], which are: (minsize), the size threshold that limits the number of observations

FAU Technical Report TR-CSE-02-08 16

in a leaf node, and (mindev), the uniformity threshold that limits the deviance in the leaf

nodes. In addition to these parameters for controlling the tree growth, s-plus includes a

function to prune the trees after their initial construction. However, in order to prevent

over-pruning, the tree pruning maintains the goodness-of-�t of the tree model [3].

Let xij be the j
th predictor's value for module i, xi be the vector of predictors for

module i, and yi be the response variable, i.e., number of faults. The algorithm �rst

assigns all the instances or modules in the �t data set to the root node, and then recur-

sively splits the modules within a node into subsets called child nodes. The algorithms

stops when the stopping criterion is satis�ed [33]. The deviance [3] of instance i is given

by the following,

D(�i; yi) = (yi � �i)
2 (4)

where, �i is estimated by the mean value of y over all training modules that fall in

the same leaf as module i. The overall deviance of node l is de�ned as the sum of the

deviances of the instances falling in the node [3].

D(�l; y) =
X
i2l

(yi � �i)
2 (5)

The algorithm attempts to maximize the change in deviance between the current node

and the sum of the deviances of the prospective child nodes. The selected split is the one

minimizing the sum of the deviances of the two prospective child nodes. The partitioning

stops when the node deviance is less than a given fraction of the root node deviance:

D(�l; y)

D(�root; y)
< mindev (6)

or the number of modules in the current node is less than a threshold:

nl < minsize (7)

FAU Technical Report TR-CSE-02-08 17

where, mindev and minsize are the two parameters described earlier.

The predicted value of the response variable is the mean value of the response variable

of the training data in the leaf the new instance falls into,

ŷi = �L(xi) (8)

where, L(xi) is the leaf the i
th module falls into according to the structure of the tree.

Previous research at the esel has applied s-plus using case studies of large-scale

software systems for determining the optimal values of the parameters, mindev and

minsize. All the prediction results were obtained using the implementation of the s-

plus tool, a proprietary of the Mathsoft corporation.

3.2 Case-Based Reasoning

A case-based reasoning (cbr) software quality model attempts to retrieve a quality pre-

diction of a module, based on the assumption that a module will have a similar value

for its quality factor (ex., number of faults) as those of previously developed modules

(past instances) with similar software attributes [5]. The previously developed instances

or cases are stored in a case library, and have well-known software data from previous

releases or similar projects. These cases contain all the available information about the

described program module, such as, independent variables to evaluate the similarities

between the modules and the dependent variable to make a prediction for future program

modules.

In our case studies of software systems we wanted to determine a timely estimate of

the number of faults in a currently developed program module, such that cost-e�ective

corrective action can be taken relatively early in the software life cycle. cbr models use

FAU Technical Report TR-CSE-02-08 18

similarity functions to determine the most similar items from the case library with respect

to the target (test or current) module. Various similarity functions are available for

computing the distances between the target (with unknown dependent variable) module

and the cases in the library. The closest modules determined by the similarity function

are called nearest neighbors.

A set (most similar) among the nearest neighbors is considered to provide the predic-

tion for the dependent variable using a solution process algorithm. Solution algorithms

compute a prediction of the dependent variable using the dependent variables of the

nearest neighbors from the case library. Some algorithms give the same importance to

all the nearest neighbors while others give more importance to the closest cases. cbr

and the algorithms used by cbr are described in further details in [35].

The cbr prediction results were obtained using the Software Measurement Analysis

and Reliability Toolkit (smart), a software quality estimation modeling tool [10]. It is

a Windows-based program written in Visual C++, and was developed at the esel at

Florida Atlantic University. Current features of smart include software (quantitative)

quality prediction, software quality classi�cation modeling, and module-order modeling:

all using the case-based reasoning technique.

3.3 Arti�cial Neural Networks

Arti�cial neural networks (ann) are systems that try to reproduce some organizational

principles of the human brain. Rosenblatt �rst introduced ann with single layer per-

ceptrons [30]. Two learning rules are available for ann, supervised learning and unsu-

pervised learning networks [24]. Our empirical studies related to this paper used feed-

FAU Technical Report TR-CSE-02-08 19

}{ 1x

2x

1y

2y

hidden layer 1

hidden layer 2

output layer

input
vector

output
vector

Figure 4: A feedforward neural network

forward supervised-learning neural networks, and backpropagation neural networks in

particular [25, 28]. The structure of a feedforward supervised-learning neural network is

illustrated in Figure 4.

Figure 5 shows the structure of a neuron, a collection of which compose a neural

network. The neural network processes as follows: Each processing element computes a

weighted sum of the independent variables xj and basis bk, and uses it as the input to

the activation function. The output of the neuron, ok, is the output of the activation

function. The operation of the neuron can be described as follows:

netk = w1kx1 + w2kx2 + :::+ wmkxm + bk (9)

ok = f(netk) (10)

where, x1; x2; :::; xm are m inputs to the neuron, w1k; w2k; :::; wmk are the weights associ-

ated with the inputs, and f(�) is the activation function of this neuron.

The most popular training algorithm for multilayered neural networks is Backprop-

agation [32]. The initial weights are set randomly. To adjust those weights training is

required. A set of input-output pairs is provided for the training of the neural network.

FAU Technical Report TR-CSE-02-08 20

ko

1

)(knetf

mkw

kw2

kw1

mx

knet.
.
.
.

1x

2x

kb

∑

Figure 5: Anatomy of a neuron

The input is propagated through the network, which calculates the weighted sum of the

input vector and basis. The neural network comes up with the output from the activation

function. The �nal output is then compared to the expected output and the error vector

is propagated backwards to the network in order to adjust the weights and minimize

the error. The training stops once the squared error satis�es a predetermined threshold.

Further details about the described neural networks and backpropagation is available

in [21].

3.4 Multiple Linear Regression

One of the most commonly used technique when estimating a dependent variable is to

express it as a function of known independent variables. This is also known as Multiple

Linear Regression (mlr). The general form of a multiple linear regression model is an

equation where the response (dependent) variable is expressed in terms of predictors

(independent variables):

ŷi = a0 + a1xi1 + : : :+ apxip (11)

FAU Technical Report TR-CSE-02-08 21

yi = a0 + a1xi1 + : : :+ apxip + ei (12)

where fxi1; : : : ; xipg are the values of the independent variables, fa0; : : : ; apg are the

parameters to be estimated, ŷi is the dependent variable to be predicted, yi is the actual

value of the dependent variable, and ei = yi� ŷi is the error in prediction for the ith case.

One important step when building a multiple linear regression model is the selection

of the independent variables. In addition to removing the insigni�cant independent vari-

ables, any existing correlation among the independent variables must also be removed.

Correlation among the variables can be removed by using principal components analy-

sis [1]. The step of the removal of insigni�cant independent variables is known as model

selection, and in our case studies we used a method called stepwise regression [1]. It

tries to select an optimal set of independent variables for the model by either adding or

deleting variables from the regression model at each step of the model building process.

After we select the independent variables, the parameters fa0; : : : ; apg are then es-

timated using the least squares method. The values of the parameters are selected to

minimize
PN

i=1 ei
2, where, N is the number of observations in the �t data set.

4 Empirical Case Studies

4.1 Software Systems Studied

Three di�erent case studies that comprised of software metrics and fault data collected

from large-scale telecommunications systems, were investigated in our empirical research.

However, for presentation purposes, we have presented only the results of one case study

in this paper. As we will see shortly, the three case studies considered in our research,

FAU Technical Report TR-CSE-02-08 22

comprised of di�erent software metrics. For example, only one of the case studies used

execution metrics.

The �rst case study involved software metrics and fault data collected over four

historical system releases of a large legacy telecommunication system, abbreviated as

llts. Each systems release comprised of over 3500 updated software modules. The

system, written in the high level language protel, is an embedded computer application

that included �nite-state machines, and was developed by professional programmers in

a large software organization. Empirical results of the llts case study are presented in

this paper.

The second case study investigated software design metrics and fault data collected

from a single release of a network telecommunication system, abbreviated as nt. Since

data from multiple releases was not available, the �t (1320) and test data (660) sets, were

obtained by performing an impartial random data-splitting technique on the original

software data set.

The third case study involved software design metrics and fault data collected from

a single release of a large network telecommunications system, abbreviated as (lnts).

Similar to the nt case study, an impartial data-split on the original data set with 6972

modules was performed in order to obtain the �t and test data sets.

4.2 Software Metrics

Each of the three case studies mentioned above, involved various software metrics. For

the llts case study, 28 product and execution metrics were collected using the Enhanced

Measurement for Early Risk Assessment of Latent Defects system (emerald) [6], a de-

FAU Technical Report TR-CSE-02-08 23

cision support system used by software designers and managers to assess the risks related

to the software development and to improve software quality. emerald incorporates a

software metrics analyzer developed by Bell Canada [27] to measure the static attributes

of the source code. The nt case study involved 11 software metrics (9 design metrics

and two categorial variables indicating reuse history) [13], whereas the lnts case study

consisted of 9 software design metrics [11].

The software metrics collected are usually measurements of a larger common at-

tribute, and hence depict co-linearity among them. Principle Components Analysis

(pca) [14] is a technique that removes this co-linearity among software metrics. In

addition, it also provides data reduction prior to software quality modeling. For each of

the three case studies investigated, empirical studies were also performed using principle

components or domain metrics derived from their respective software metrics (raw met-

rics). Our studies with software quality prediction models based on principle components

yielded similar results than those obtained by using the raw metrics, and hence, are not

presented in this paper.

4.3 Selected Case Study

Software data for the case study was collected over four releases, from a very large legacy

telecommunications system (abbreviated as llts). The system is an embedded-computer

application that included �nite-state machines, and each release has about 3500 to 4500

updated software modules. The software was written in protel (a Pascal-like high-

level language) using the procedural development paradigm, and was maintained by

professional programmers in a large organization.

FAU Technical Report TR-CSE-02-08 24

A program module was considered as a set of related source-code �les. Fault data

comprised of the faults discovered by customers during system operations, and were col-

lected at the module-level by the problem reporting system (prs). Faults were recorded

only if their detection resulted in modi�cations to the implementation code of the pro-

gram module. Avoiding faults being discovered after deployment was a high priority

for the developers, because visits to client sites involved extensive monetary (and other

resources) consumption.

Data collection for llts involved extracting source code from the con�guration man-

agement system (cms) [12], and measurements were recorded using the emerald soft-

ware metrics analysis tool [6]. Data analysis from the cms identi�ed modules that were

un-modi�ed from the prior release. Fault data collected from the prs were tabulated

into problem reports and the anomalies were resolved. The number of program modules

that had one or more (post-release) faults were too few to facilitate e�ective software

quality modeling. As a result, we considered only the updated modules, i.e., those mod-

ules that were new or had at least one update to its source code since its prior release.

For modeling, we selected updated modules with no missing data in relevant variables.

These updated modules had several million lines of code, and there were a few thousand

of these modules in each system release.

Preliminary data analysis selected software metrics that were appropriate for our

modeling purposes. Metrics were collected over four di�erent releases, labeled as Release

1, Release 2, Release 3, and Release 4. The number of modules in these releases were

3649, 3981, 3541, and 3978, respectively. The software metrics collected included 24

product metrics, 14 process metrics, and 4 execution metrics. The process metrics were

excluded from our modeling e�orts, because this study is concerned with the timely

FAU Technical Report TR-CSE-02-08 25

Table 1: LLTS Software Product Metrics

Symbol Description

Call Graph Metrics

CALUNQ Number of distinct procedure calls to others.

CAL2 Number of second and following calls to others.

CAL2 = CAL� CALUNQ where CAL is the total number of calls.
Control Flow Graph Metrics

CNDNOT Number of arcs that are not conditional arcs.

IFTH Number of non-loop conditional arcs, i.e., if-then constructs.

LOP Number of loop constructs.

CNDSPNSM Total span of branches of conditional arcs. The unit of measure is arcs.

CNDSPNMX Maximum span of branches of conditional arcs.

CTRNSTMX Maximum control structure nesting.

KNT Number of knots. A \knot" in a control
ow graph is where arcs cross

due to a violation of structured programming principles.
NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).

NDSENT Number of entry nodes.

NDSEXT Number of exit nodes.

NDSPND Number of pending nodes, i.e., dead code segments.

LGPATH Base 2 logarithm of the number of independent paths.

Statement Metrics

FILINCUQ Number of distinct include �les.

LOC Number of lines of code.

STMCTL Number of control statements.

STMDEC Number of declarative statements.

STMEXE Number of executable statements.

VARGLBUS Number of global variables used.

VARSPNSM Total span of variables.

VARSPNMX Maximum span of variables.

VARUSDUQ Number of distinct variables used.

VARUSD2 Number of second and following uses of variables.
VARUSD2 = VARUSD�VARUSDUQ where VARUSD is the total num-

ber of variable uses.

FAU Technical Report TR-CSE-02-08 26

Table 2: LLTS Software Execution Metrics

Symbol Description

USAGE Deployment percentage of the module.

RESCPU Execution time (microseconds) of an average transaction on a system

serving consumers.
BUSCPU Execution time (microseconds) of an average transaction on a system

serving businesses.
TANCPU Execution time (microseconds) of an average transaction on a tandem

system.

fault prediction after the implementation (coding) phase and prior to system tests and

operations.

The software product metrics in Table 1 are based on call graph, control
ow graph,

and statement metrics. An example of call graph metrics is the number of distinct

procedure calls (CALUNQ). A module's control
ow graph, consists of nodes and arcs

depicting the
ow of control of the program. Statement metrics are measurements of the

program statements without implying the meaning or logic of the statements. The prs

maintained records on past problems. The proportion of installations that had a module,

USAGE, was approximated by deployment data on a prior release [7]. Execution times

in Table 2 were measured in a laboratory setting with di�erent simulated workloads.

In addition to this original set of 24 product metrics and 4 execution metrics (labeled

as llts-raw), a second data set (called llts-pca) was obtained using the 4 execution

metrics and the domain metrics derived by principle components analysis of the 24 prod-

uct metrics. The 24 product metrics were reduced to 6 domain metrics (PROD1, PROD2,

..., PROD6). However, when evaluating the performances of the module-order models,

experiments using the llts-pca data yielded similar results than those obtained using

the llts-raw data. Therefore, results of the llts-pca data set are not presented in this

FAU Technical Report TR-CSE-02-08 27

paper. Consequently, only the results for the llts-raw data set are presented.

4.4 Prediction Accuracy Metrics

The Average Absolute Error (aae) and Average Relative Error (are) are the commonly

used performance metrics for gauging the predictive capability of quantitative quality

estimation models. Lower values of are and aae performance metrics indicate better

overall prediction accuracy. The de�nitions of aae and are used in the study are:

aae =
1

n

nX
i=1

jyi � ŷij (13)

are =
1

n

nX
i=1

�����
yi � ŷi

yi + 1

����� (14)

where, n is the number of modules in the test or evaluation data set, yi and ŷi represent

the actual and predicted value of the response (dependent) variable, respectively. In the

equation for are, since the actual response variable (number of faults) may be zero, we

add a one to the denominator to make the de�nition always well-de�ned [19].

4.5 Evaluating Module-Order Models

The results of the di�erent module-order models are presented using Alberg and Per-

formance diagrams (see Figure 1 and Figure 2). These diagrams are used for assessing

the relative performances of module-order models calibrated using di�erent underlying

software fault prediction techniques [21].

For the llts case study, we selected a set of cuto� ranges (c) between 5% and 50% for

both Alberg and Performance diagrams. According the software system being modeled,

we de�ned the cuto� values between 0% and 35% as the range of higher interest: labeled

FAU Technical Report TR-CSE-02-08 28

as Range 1. Along the same lines the cuto� values between 35% and 50% was de�ned

as the range of lower interest: labeled as Range 2. We selected these two ranges for

two particular reasons: (1) they represent two di�erent ranges of interest, with Range

1 holding more than 80% of the faults for all four system releases, and (2) the choice of

these ranges will allows an e�cient description of the trends observed in the llts project.

Among the six software fault prediction techniques, we de�ned two groups, such that

Group 1 included prediction models obtained from the case-based reasoning, multiple

linear regression, and arti�cial neural networks techniques [35]. These three techniques

were grouped together because their module-order models depicted similar performances

(as shown later). The second group, i.e., Group 2, comprised of prediction models

obtained from the cart-ls, cart-lad, and s-plus regression tree-based techniques [22].

These were grouped together because they all used decision tree-based models to estimate

the number of software faults.

The two groups were studied separately, and since the module-order models of the

�rst group demonstrated similar results, we compare the best model from Group 1, i.e.,

case-based reasoning, arti�cial neural networks, and multiple linear regression, with the

module-order models of Group 2, i.e., regression trees.

5 Results & Analysis

In our recent study we provided a comprehensive comparative assessment, with statistical

veri�cation, of the six software fault prediction models utilized to calibrate module-order

models [21]. A common model-�tting and model-evaluation approach was adopted for

calibrating the underlying software fault prediction models.

FAU Technical Report TR-CSE-02-08 29

The goal of this empirical study, is to investigate the impact of the predictive ac-

curacy of an underlying software fault prediction model on the corresponding module-

order model. We �rst present (Section 5.1) a relative performance ranking of underlying

prediction models built using the six prediction techniques. Subsequently, we evaluate

(Section 5.2) the performances of their corresponding module-order models.

5.1 Software Fault Prediction Models

The models were built using Release 1 as the �t data set, and were evaluated or validated

using the test data sets, i.e., Releases 2, 3, and 4. The dependent variable was the number

of faults detected in a software module during post unit testing, whereas the independent

variables comprised of software product and execution metrics. For a given prediction

technique, the performance of a calibrated or �tted prediction model was evaluated by

the aae and are performance metrics based on the test data sets.

The results obtained from the six methods are tabulated in Table 3. Since re-

substitution, i.e., using the �t data set also as the test data set, may yield over optimistic

results (quality-of-�t), Release 1 was not used to compare the prediction accuracies of

the di�erent fault estimation models. A detailed description of selected parameters for

the software quality prediction models is out of the scope of this paper. However, further

extensive details can be found in [21].

In order to obtain the performance ranking of the fault prediction models, a statis-

tical signi�cance-based comparative evaluation was performed in [21]. Two-way anova

randomized complete block design models were designed, and multiple-pairwise compar-

isons were performed in order to yield the �nal performance (relative) ranking. The �nal

FAU Technical Report TR-CSE-02-08 30

Table 3: llts-raw: Performance Metrics

Release 2 Release 3 Release 4
Model aae are aae are aae are

cbr 0.879 0.528 0.861 0.499 0.831 0.492
ann 0.946 0.584 1.016 0.620 1.249 0.749
mlr 0.890 0.571 0.960 0.602 0.926 0.584

cart-ls 0.948 0.618 0.942 0.602 1.407 0.838
cart-lad 0.705 0.324 0.803 0.391 0.867 0.419
s-plus 0.909 0.577 0.954 0.602 1.267 0.774

Table 4: llts-raw: Rank Order of Prediction Models

Average Absolute Error

cart-lad < cbr < mlr < ann < cart-ls < s-plus

Average Relative Error

cart-lad < cbr < mlr < ann < cart-ls < s-plus

ranking of the prediction models, with respect to aae and are is presented in Table 4.

The symbol `<' in Table 4 indicates that the prediction modeling technique on the left

hand side gave better accuracy than the technique on the right hand side.

5.2 Results of Module-Order Models

As mentioned earlier, we compared the six module-order models in two groups. Group

1 comprised of models based on case-based reasoning, arti�cial neural networks, and

multiple linear regression, whereas Group 2 consisted of models based on cart-ls,

cart-lad, and s-plus regression trees.

FAU Technical Report TR-CSE-02-08 31

The Alberg diagram gives a synthetic view of the module-order models results as

compared to a perfect ranking. The Performance diagrams are directly extracted from

the respective Alberg diagrams, and presents a relative comparison between the di�erent

module-order models.

The cuto� values for the module-order models ranged from 5% to 50%. For the llts

software system the cuto� values between 5% and 25% were representative of the most

fault-prone modules. Therefore, we used intermediate cuto� values within that range,

with an increment of 1%. The small increment of 1% was used because from a project

management point of view, the practitioner is more interested in detecting and rectifying

the high-risk software modules.

Cuto� values below 5% are not presented, because it was assumed that at least 5% of

the modules will be subjected to quality enhancement and V&V activities. In addition,

model performances below 5% present a high variability since they represent ranking of

modules with the highest number of faults.

5.2.1 Module-Order Models of Group 1

The performance of the di�erent module-order models were assessed using the Alberg

and Performance diagrams for the test data sets, i.e., Releases 2, 3, and 4. However,

only representative diagrams are presented to discuss our observations. For presentation

purposes, the Alberg and Performance diagrams of Release 2 are presented. However,

for Releases 3 and 4, only the Alberg diagrams are presented. This is because the

Performance diagrams can be directly extracted from the respective Alberg diagrams.

Figure 6 and Figure 7 both show that the di�erent fault prediction models of Group

1 yielded very similar module-order models in terms of fault detection rates, and thus,

FAU Technical Report TR-CSE-02-08 32

0

10

20

30

40

50

60

70

80

90

100

5 15 25 35 45

Modules (%)

F
au

lt
s

(%
) Actual

CBR

MLR

ANN

Figure 6: Alberg Diagram for Release 2, Group 1

performances. In addition, from Figure 6 we can observe that 40% of the modules

accounted for 100% of the faults, and that by inspecting 35% of the modules (Range

1) we may detect 95% of the faults with a perfect ranking and about 60% using the

predicted (cbr, ann, or mlr) ranking.

An important observation indicates the fact that although the models of Group

1 had di�erent fault prediction accuracies (see Tables 3 and 4), i.e, cbr performing

better than mlr, and mlr performing better than ann, their module-order models had

very similar performances. mlr although not being the best model for prediction had

a slightly better performance as a module-order model, however the di�erence in model

performance was insigni�cant, i.e., of about only 4%.

Figures 8 and 9 present the Performance diagrams for Releases 3 and 4, respectively.

Though the diagrams are self explanatory, a signi�cant observation is detected. The

performance of the module-order models deteriorates slightly over the di�erent system

releases. However, for each of the respective system releases, we once again observe that

FAU Technical Report TR-CSE-02-08 33

40

50

60

70

80

5 15 25 35 45

Modules (%)

M
o

d
el

 P
er

fo
rm

an
ce

 (
%

)
CBR

MLR

ANN

Figure 7: Performance for Release 2, Group 1

40

50

60

70

80

5 15 25 35 45

Modules (%)

M
o

d
el

 P
er

fo
rm

an
ce

 (
%

)

CBR

MLR

ANN

Figure 8: Performance for Release 3, Group 1

the three module-order models provide almost similar performances. Consequently, we

selected the cbr model as a representative of Group 1 when comparing the methods of

Group 1 with those of Group 2. We present our observations related to this comparison

in the next section.

FAU Technical Report TR-CSE-02-08 34

40

50

60

70

80

5 15 25 35 45

Modules (%)

M
o

d
el

 P
er

fo
rm

an
ce

 (
%

)
CBR

MLR

ANN

Figure 9: Performance for Release 4, Group 1

5.2.2 Module-Order Models of Group 2

This group includes underlying prediction models calibrated using all the currently avail-

able regression tree-based prediction algorithms, namely cart-ls, cart-lad, and s-

plus [22]. The module-order models based on these underlying prediction techniques are

presented in this section and are compared with a representative of the �rst group, i.e.,

Group 1. A similar presentation approach as that shown for Group 1 is followed.

In Figures 10 and 11 we observe some interesting trends for the Release 2 (test)

data set. For the earlier part (5% to 8%) of the cuto� range for modules of higher

interest, i.e., Range 1, most of the module-order models have very similar performance

behaviors. However, cart-lad presented an exception to that observation, and did not

show the same performances as the other models. We also notice that the performances

of cart-ls weakened towards the end of Range 1. For Range 2, both of the cart

models had the best performances as module-order models with cart-ls doing slightly

better than cart-lad. cbr and s-plus had very close behaviors over both ranges of

interests, Range 1 and Range 2.

FAU Technical Report TR-CSE-02-08 35

0

10

20

30

40

50

60

70

80

90

100

5 15 25 35 45

Modules (%)

F
au

lt
s

(%
)

Actual

CART-LS

CART-LAD

SPLUS

CBR

Figure 10: Alberg Diagram for Release, 2 Group 2

25

35

45

55

65

75

85

95

5 15 25 35 45

Modules (%)

M
o

d
el

 P
er

fo
rm

an
ce

 (
%

)

CART-LS

CART-LAD

SPLUS

CBR

Figure 11: Performance for Release 2, Group 2

Figure 12 and Figure 13 present similar trends to the one observed for the Release

2 data set. A slight drop of performances over the releases is also noticed as observed

for the module-order models of Group 1. cart-lad still had a poor performance than

the other methods over Range 1. Both cart models had the best results over Range

2. Finally, cbr and s-plus had similar behaviors over both cuto� ranges of interest.

FAU Technical Report TR-CSE-02-08 36

25

35

45

55

65

75

85

95

5 15 25 35 45

Modules (%)

M
o

d
el

 P
er

fo
rm

an
ce

 (
%

)
CART-LS

CART-LAD

SPLUS

CBR

Figure 12: Performance for Release 3, Group 2

15

25

35

45

55

65

75

85

95

5 15 25 35 45

Modules (%)

M
o

d
el

 P
er

fo
rm

an
ce

 (
%

)

CART-LS

CART-LAD

SPLUS

CBR

Figure 13: Performance for Release 4, Group 2

5.3 Comparative Discussion

Upon a close inspection of the performance of the underlying software fault prediction

models and the performances of their respective module-order models (Alberg and Per-

formance diagrams), we summarize our observation by the following:

FAU Technical Report TR-CSE-02-08 37

� All Group 1 fault prediction models, i.e., cbr, mlr, and ann had very similar

performances with respect to their module-order models.

� The s-plus module-order model performed very similar to that of cbr over both

ranges of interest, thus performing very close to the other methods of Group 1,

i.e., mlr and ann.

� All models except cart-lad had similar performances for the earlier part of Range

1.

� Although cart-lad had the best fault prediction accuracy in terms of the aae

and are values, it failed to yield the best performance as a module-order model

for the cuto� range, Range 1.

� The performance of the cart-ls model dropped as compared to the other models

for the latter part of Range 1.

� cart-ls and cart-lad had the best module-order model performances forRange

2, with cart-ls performing better than cart-lad.

� Although cart-lad had the best prediction accuracy and cart-ls almost the

worst prediction accuracy (Table 3 and Table 4), cart-ls performed better than

cart-lad when used as a module-order model.

� For the case study presented, all module-order models presented a decrease in

performances over the di�erent system releases.

Another extensive empirical study [17], based on a di�erent embedded system and

Poisson count models, yielded relatively better results in terms of performances (on av-

FAU Technical Report TR-CSE-02-08 38

erage about 85%) for the module-order models. However, the Poisson count models cali-

brated for the llts data sets did not provide any signi�cant improvements as compared

to the other methods, and thus, were not included in this study. These results reiterate

the conclusions obtained by Shepperd and Kadoda in [34] stating that there is no best

software quality estimation modeling technique, and that quality prediction results are

highly dependent on the characteristics of the data sets, such as size, distribution, out-

liers, and collinearity. In addition, based on our empirical studies, it is observed that the

performance of a software quality estimation technique is also dependent on the type of

system being modeled, i.e., business application, embedded applications, mission-critical,

etc.

The main lesson learned during the empirical studies of this paper, is that models

with the best fault prediction accuracy may fail to yield good module-order models. The

compliment of the previous sentence, i.e., fault prediction models with very poor accuracy

may yield very e�ective module-order models, was also investigated and demonstrated

elsewhere [8]. In addition, the fact that all prediction models failed to provide high

mom performance values may indicate that selecting prediction models for module-order

modeling based on aae and are may not be the best approach. Performance results

also proved to be dependent on the characteristics of the software data.

6 Conclusions

Over the recent years software metrics-based software quality estimation models have

been used to predict the timely detection of problematic modules of software systems.

Such models have been used to predict a quantitative quality value for software modules,

FAU Technical Report TR-CSE-02-08 39

i.e., number of faults, or for providing a categorical quality classi�cation of modules, such

as fault-prone and not fault-prone. However, though research work has demonstrated the

usefulness of software prediction and classi�cation models for software quality estimation,

they possess some limitations from a practical and project management point of view.

Software classi�cation models require that fault-prone modules be de�ned prior to

modeling via a quality threshold value. This is not practical when one is uncertain of the

resource constraints that limit the amount of reliability-improvement e�ort. For example,

if reliability improvement consists of extra design reviews and correcting mistakes, it is

di�cult to judge ahead of time how much e�ort will be needed to �x the problems.

Furthermore, classi�cation models that identify fault-prone modules, assume that equal

quality enhancement activities will be applied to all the modules predicted as fault-prone.

Software prediction (quantitative) models may provide an overall accurate quality

prediction, but if the quality estimations of the high-risk modules are relatively poor, the

application of the model may not be cost-e�ective. In addition, they do not provide a

clear direction to software project managers as to the priority for dispensing the available

software quality improvement resources.

A simple and innovative approach that addresses the problems identi�ed above, is

predicting the rank-order of modules with respect to a quality factor, such as the number

of faults or amount of debug code churn. Such a ranking of software modules, can

bene�t the software project managers by providing a guideline for dispensing the limited

available resources in a cost-e�ective manner. A module-order model facilitates such a

ranking. It presents a more process- and production-related approach by predicting a

quality-based rank of modules. The quality factor of modules is obtained by an underlying

software quality prediction modeling technique. Consequently, the predicted ranking of a

FAU Technical Report TR-CSE-02-08 40

module-order model is dependent on the quality prediction obtained from the underlying

prediction model.

This paper presented an empirical investigation of the impact, if any, of di�erent

software quality prediction techniques when used as underlying models during module-

order modeling. In our studies of several large-scale software systems, the number of

faults in a software module is used as a quality factor. For illustration purposes, only

one large-scale case study is used to present our observations and results. The case study

presented, comprised of software metrics and fault data collected over four historical

releases of a large legacy telecommunications system.

Software quality prediction models built using case-based reasoning, arti�cial neural

networks, multiple linear regression, cart (both, least squares and least absolute de-

viation algorithms), and s-plus regression trees, are used as underlying software fault

prediction models. Release 1 of the presented case study is used to train or �t the

prediction models, whereas Releases 2, 3, and 4 are used as test and validation data sets.

It is demonstrated that the best underlying models in terms of their fault prediction

accuracy, i.e., aae and are, did not necessarily provide the best module-order model for

all the cuto� values of interest. This suggests that these measures may not be appropriate

indicators of the behavior of underlying prediction models when used to calibrate module-

order models. Thus, the di�erences in prediction accuracies of underlying prediction

models may not necessarily be observed in their corresponding module-order models.

In addition, we observed that for all the cuto� values (or ranges) of interest there

was no \best" module-order model among the set of underlying prediction techniques

considered in our investigation. Furthermore, for a given system, the choice and selection

of the preferred module-order model depends on the cuto� range of interest, i.e., how

FAU Technical Report TR-CSE-02-08 41

many high-risk modules can be inspected and improved as per the project resources?,

and the characteristics of the software measurement data. We have observed that a given

module-order model may perform well within a certain cuto� range, whereas the same

model may not be very useful at another cuto� range. Thus, it was concluded that none

of the module-order models calibrated performed e�ciently throughout all the cuto�

ranges that were considered (5% � c � 50%). However, if one were asked to select a

single underlying prediction model over the others, we feel that for this case study the

cart-ls model generally yielded better module-order models.

It was also observed that the performances of module-order models for the llts case

study, regressed slightly across the subsequent system releases. The overall performances

of the module-order models happened to be lower than for other case studies [8, 17]

we investigated. This leaves room for improvement and may point out certain limits of

\classical" prediction models when used as module-order models. This also reiterates

the empirical fact that results of module-order models (or other software quality estima-

tion technique) are highly dependent on the characteristics of the software measurement

data [34], and the software application domain, i.e., whether it is a business application,

mission-critical system, etc.

Overall, we found that a module-order model provides project managers with a

process- and goal-oriented model, allowing them to e�ectively use their limited resources

for dispensing cost-e�ective software quality enhancement activities. However, the choice

of an underlying software quality prediction model is not a simple task, and we note that

further empirical investigations are needed to address the issue.

Future work may investigate ways to improve the overall performance and robustness

of module-order models across multiple releases. In addition, future work should investi-

FAU Technical Report TR-CSE-02-08 42

gate better performance indicators than aae and are for selecting the best underlying

prediction model from a set of candidates for module-order modeling.

Acknowledgments

We thank Ken McGill and Dr. TimMenzies for their encouragement and suggestions. We

also thank Boonlit Adipat for his assistance with data analysis and modeling. This work

was supported in part by the Cooperative Agreement NCC 2-1141 from NASA Ames

Research Center, Software Technology Division, and the NASA Grant NAG 5-12129 for

the NASA software Independent Veri�cation and Validation Facility at Fairmont, West

Virginia. The �ndings and opinions in this paper belong solely to the authors, and are

not necessarily those of the sponsors.

References

[1] M. L. Berenson, D. M. Levine, and M. Goldstein. Intermediate Statistical Methods
and Applications: A Computer Package Approach. Prentice Hall, Englewood Cli�s,
NJ USA, 1983.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation And
Regression Trees. Wadsworth International Group, Belmont, California, 2nd edition,
1984.

[3] L. A. Clark and D. Pregibon. Tree-based models. In J. M. Chambers and T. J.
Hastie, editors, Statistical Models in S, pages 377{419. Wadsworth International
Group, Paci�c Grove, California, 1992.

[4] M. P. Evett, T. M. Khoshgoftaar, P.-D. Chien, and E. B. Allen. GP-based software
quality prediction. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Proceed-
ings: 3rd Annual Conference on Genetic Programming, pages 60{65, Madison, WI
USA, July 1998. American Association for Arti�cial Intelligence, Morgan Kaufmann.

[5] K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen. Case-based software quality pre-
diction. International Journal of Software Engineering and Knowledge Engineering,
10(2):139{152, 2000.

FAU Technical Report TR-CSE-02-08 43

[6] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand.
Emerald: Software metrics and models on the desktop. IEEE Software, 13(5):56{
60, September 1996.

[7] W. D. Jones, J. P. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen. Application of a
usage pro�le in software quality models. In Proceedings of the Third European Con-
ference on Software Maintenance and Reengineering, pages 148{157, Amsterdam,
Netherlands, March 1999. IEEE Computer Society.

[8] T. M. Khoshgoftaar and E. B. Allen. A comparative study of ordering and classi�-
cation of fault-prone software modules. Empirical Software Engineering, 4:159{186,
1999.

[9] T. M. Khoshgoftaar and E. B. Allen. Modeling software quality with classi�cation
trees. In H. Pham, editor, Recent Advances in Reliability and Quality Engineering,
chapter 15, pages 247{270. World Scienti�c Publishing, Singapore, 2001.

[10] T. M. Khoshgoftaar, E. B. Allen, and J. C. Busboom. Modeling software quality:
The software measurement analysis and reliability toolkit. In Proceedings: Twelfth
International Conference on Tools with Arti�cial Intelligence, pages 54{61, Vancou-
ver, BC Canada, November 2000. IEEE Computer Society.

[11] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud. Applications of
neural networks to software quality modeling of a very large telecommunications
system. IEEE Transactions on Neural Networks, 8(4):902{909, July 1997.

[12] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Data mining for
predictors of software quality. International Journal of Software Engineering and
Knowledge Engineering, 9(5):547{563, 1999.

[13] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality
prediction: A case study in telecommunications. IEEE Software, 13(1):65{71, Jan.
1996.

[14] T. M. Khoshgoftaar, E. B. Allen, and R. Shan. Improving tree-based models of
software quality with principal components analysis. In Proceedings or the Eleventh
International Symposium on Software Reliability Engineering, pages 198{209, San
Jose, California USA, Oct. 2000. IEEE Computer Society.

[15] T. M. Khoshgoftaar, E. B. Allen, and Z. Xu. Predicting testability of program
modules using a neural network. In Proceedings: Symposium on Application-Speci�c
Systems and Software Engineering Technology, pages 57{62, Richardson, Texas USA,
March 2000. IEEE Computer Society.

FAU Technical Report TR-CSE-02-08 44

[16] T. M. Khoshgoftaar, B. Cukic, and N. Seliya. Predicting fault-prone modules in
embedded systems using analogy-based classi�cation models. International Jour-
nal of Software Engineering and Knowledge Engineering, 12(2):1{22, 2002. World
Scienti�c Publishing Company.

[17] T. M. Khoshgoftaar, E. Geleyn, and K. Gao. An empirical study of the impact of
count models predictions on module-order models. In Proceedings: 8th International
Software Metrics Symposium, pages 161{172, Ottawa, Ontario, Canada, June 2002.
IEEE Computer Society.

[18] T. M. Khoshgoftaar, L. Lim, and E. Geleyn. Developing accurate software quality
models using a faster, easier, and cheaper method. In Proceedings: 7th International
Conference on Reliability and Quality in Design, pages 31{35, Washington D.C,
USA, August 2001. International Society of Science and Applied Technologies.

[19] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and G. D. Richardson.
Predictive modeling techniques of software quality from software measures. IEEE
Transactions on Software Engineering, 18(11):979{987, November 1992.

[20] T. M. Khoshgoftaar and N. Seliya. Comparing classi�cation modeling methods for
software quality prediction. Technical Report TR-CSE-01-33 (43 pages), Florida
Atlantic University, Boca Raton, FL USA, September 2001. Prepared for NASA
Independent Veri�cation and Validation Facility, Fairmont, WV USA.

[21] T. M. Khoshgoftaar and N. Seliya. An empirical study of commonly used modeling
techniques for software fault prediction. Technical Report TR-CSE-01-32 (47 pages),
Florida Atlantic University, Boca Raton, FL USA, July 2001. Prepared for NASA
Independent Veri�cation and Validation Facility, Fairmont, WV USA.

[22] T. M. Khoshgoftaar and N. Seliya. Tree-based software quality models for fault
prediction. In Proceedings: 8th International Software Metrics Symposium, pages
203{214, Ottawa, Ontario, Canada, June 2002. IEEE Computer Society.

[23] T. M. Khoshgoftaar, R. M. Szabo, and K. Gao. An application of zero-in
ated
poisson regression for software fault prediction. In Proceedings: 12th International
Symposium on Software Reliability Engineering, pages 66{73, Hong Kong, November
2001. IEEE Computer Society.

[24] C. T. Lin and C. S. G. Lee. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent Systems. Prentice Hall Inc., Upper Saddle River, NJ USA, 1996.

[25] R. P. Lippmann. An introduction to computing with neural networks. Accoustics,
Speech and Signal Processing Magazine, 4(2):4{22, 1987.

FAU Technical Report TR-CSE-02-08 45

[26] Y. Liu and T. M. Khoshgoftaar. Genetic programming model for software quality
prediction. In Proceedings: 6th International High Assurance Systems Engineer-
ing Symposium, pages 127{136, Boca Raton, Florida, USA, October 2001. IEEE
Computer Society.

[27] J. Maryrand and F. Coallier. System acquisition based on software product assess-
ment. In Proceeding of the 18th International Conference on Software Engineering,
pages 210{219, Berlin, Germany, March 1996. IEEE Computer Society.

[28] R. H. Nielsen. Counter propagation network. Applied Optics Journal, 26(23), 1987.

[29] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone
switches. Transactions on Software Engineering, 22(12):886{894, 1996.

[30] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, New York, NY USA, 1962.

[31] F. D. Ross. An empirical study of analogy based software quality classi�cation
models. Master's thesis, Florida Atlantic University, Boca Raton, FL USA, August
2001. Advised by T. M. Khoshgoftaar.

[32] D. E. Rumelhart, G. E. Hinton, and R. Williams. Parallel Distributed Processing,
volume 1. MIT Press, Cambridge, MA, USA, 1962.

[33] N. Seliya. Software fault prediction using tree-based models. Master's thesis, Florida
Atlantic University, Boca Raton, FL USA, August 2001. Advised by T. M. Khosh-
goftaar.

[34] M. Shepperd and G. Kadoda. Comparing software prediction techniques using sim-
ulation. IEEE Transactions on Software Engineering, 27(11):1014{1022, November
2001.

[35] N. Sundaresh. An empirical study of analogy based software fault prediction. Mas-
ter's thesis, Florida Atlantic University, Boca Raton, FL USA, May 2001. Advised
by Taghi M. Khoshgoftaar.

[36] I. H. Whitten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with JAVA Implementations. Morgan Kaufmann, San Francisco, CA
USA, 2000.

[37] Z. Xu, T. M. Khoshgoftaar, and E. B. Allen. Application of fuzzy linear regression
modeling to predict the number of program faults. In H. Pham and M. Lu, editors,
Proceedings of the Sixth ISSAT International Conference on Reliability and Quality
in Design, pages 96{101, Orlando, FL USA, August 2000.

