
7

A Comparative Study of Formal Methods for State Based Systems

Yann-Hang Lee1, Gerald Gannod1, Karam Chatha1, and Eric Wong2

1Department of Computer Science and Engineering, Arizona State University

2Department of Computer Science, University of Texas at Dallas

Abstract

Design of a system is an important asset to any organization. It represents important aspects of the system and forms the basis of various research and analysis. Correctness of system design is therefore important, more so for certain types of systems like real time systems. Real time systems are often a part of safety critical systems e.g. control systems for planes, trains, factories etc. Errors in such systems are costly and hence ensuring correctness of these systems is very important. Formal methods like model checking and theorem proving help verify the correctness of system design increasing system reliability. These techniques express safety, liveness, temporal, real-time and other properties of the system using logic and verify existence of these properties in system specifications. They are fault avoidance techniques that help reduce errors introduced into the system, particularly at the earlier stage of design. Variety of formal methods are available that are applied with various degrees of rigor. These techniques differ from each other by expressing significantly different properties of a system or the same property in different ways, the logic used, interface provided, tool support etc. A survey of various formal methods and their comparison would therefore provide useful information that can be used for system design verification. The purpose of this project is therefore to survey various formal methods, filter them based on criteria of representing real-time, safety, temporal properties, ease of use, interface, tool support provided, apply the filtered methods to one or more real-time state based example systems (as required) and compare the methods based on the result of application.

Table of Contents
31
Introduction and Motivation

42
Background

42.1
Model Verification

42.1.1
Model Checking

52.1.2
Theorem Proving

52.2
Real-Time Systems

63
Approach

63.1
Phase 1: Search and Tabulate

63.2
Phase 2: Compare and Filter

83.3
Phase 3: Apply

103.4
Phase 4: Compare Applied Methods

103.4.1
Usability Analysis

103.4.2
Comparison Based on Usability Analysis Process

113.4.2.1
First Approach: Allow users to use the tools/prototypes

133.4.2.2
Second Approach: Look into Reviews, Case Studies and Surveys

144
Related Work

165
Conclusions and Future Investigations

176
References

19Appendix A: Screen Snapshots and Verification Output’s of Tool Applications

26Appendix A: Table of Surveyed Formal Methods

A Comparative Study of Formal Methods for State Based Systems
1 Introduction and Motivation

Software reverse engineering is a process of identifying the various components of a system, their interrelationships and representing the same at an abstract level [1]. There are various reverse engineering techniques that help derive both static and dynamic models of the system. Static models are used to provide structural information and dynamic models describe dynamic behavior of the system. The reverse engineered system design is an important asset to projects and organizations. It represents important aspects of the system and forms the basis of various research and analysis. Research done by James Andrew’s [2] presents an approach to software verification, using model checking and log files. Holzmann [3] also presents a software testing approach that tests models against test harnesses. Correctness of the derived system models, in terms of representing the behavior and structure of the system is therefore important.

Real time systems are often a part of safety critical systems. Some examples of real time systems are control systems for planes, trains, factories, everyday electronics as audio/video equipment and mobile phones etc. These systems are concurrent systems with a number of components interacting; reasoning about these systems is therefore very difficult. In real time systems the correctness of the system not only depends on the order of events but also on the time of occurrence of these events. Errors in such systems are costly and hence ensuring correctness of these systems is very important.

Formal methods like model checking and theorem proving help verify the correctness of system design. Formal methods mathematically describe and reason any computer-based system [4]. These techniques express safety, liveness, temporal, real-time and other properties of the system using logic and verify existence of these properties in system specifications. They are fault avoidance techniques that help reduce errors introduced into the system, particularly at the earlier stage of design, thereby building confidence in the derived design and increasing system reliability. Examples of some formal logics are Linear Temporal Logic (LTL), Computational Tree Logic (CTL). Examples of some formal specification languages are Promela and SMV (Symbolic Model Verification language). Some verification tools are available that help perform automatic verification. For instance Linear Temporal Logic (LTL) is a formal logic language that can be used to express temporal properties of a system. Model checking tool SPIN allows automatic verification of existence of properties expressed in LTL against system specifications written in Promela.

Variety of formal methods are available that are applied with various degree’s of rigor. These techniques differ from each other by expressing significantly different properties of a system or the same property in different ways, the logic used, interface provided, tool support etc. Given a particular system for verification, one would want to use a formal method that is best suited for performing required verification of the system. A survey of these formal methods and their comparison would provide useful information that can be utilized for system design verification.

The purpose of this project is therefore to survey and compare various formal methods and tools. Since correctness of real-time systems, among various other systems is noted to be very important the survey will be directed towards formal methods that can express real-time properties. Information regarding a variety of formal methods and tools will be gathered and tabulated. The surveyed formal methods will be filtered based on representation of real-time and other required properties of the system, ease of use, tool support etc. The filtered methods will be applied to one or more state based real-time examples (as required). Lastly the applied formal methods/tools will be compared for better understanding and for realizing their pros and cons.

2 Background

The survey requires basic knowledge about formal methods and real time systems. Formal methods are basically model verification methods. Model Verification can be done in two ways either using model checking approaches or using the theorem proving approaches and each of these approaches make use of logic languages. Logic languages are usually derivations of propositional, predicate and temporal logics [5] [6]. Each of these logic languages have a notation (syntactic domain), a universe of objects (semantic domain) and a set of precise rules. Real time systems as already mentioned in the introduction usually are a part of critical systems and have certain time related properties that needs to be satisfied for their correctness. This section would provide necessary details of model verification and real time systems.

2.1 Model Verification

There are different model verification techniques including reviews, scenario based analysis, model checking, and theorem proving. Reviews and scenario-based analysis help verify the consistency of the model with respect to a single or a set of scenarios. Model checking and theorem proving approaches focus more on verifying the behavioral properties of the system. Verification process followed by theorem proving and model checking would involve creating a specification of the system, identifying properties that the system needs to exhibit, and verifying the existence of these properties in the specification. Model checking techniques use state based specifications, and a state space search for verification. Theorem proving techniques use logic based approaches that include development of domain theories and use of theorem proving for verification.

2.1.1 Model Checking

Model checking approaches are push button, relatively lightweight approaches and are hence preferred to other formal approaches such as theorem proving. Model checking has been used widely to verify the existence of safety, liveness and temporal properties in the system [7] [8]. Use of model checkers involves creation of finite state models that describe the expected behavior of the system, and verification using state space exploration methods. Model checking has had good success in verification and detection of errors in real life systems. [9] gives an interesting account of its success stories.

An example model checker is Spin [10]. It is a widely used tool that supports the design, simulation and verification of hardware and software systems. Spin accepts design specifications written using Promela language and correctness claims specified using Linear Temporal Logic (LTL). Promela, the input language for spin is based on Dijkstra guarded command language as well as CSP. Linear Temporal Logic (LTL) helps specify temporal properties of a system. Properties of the system can be easily expressed using patterns such as precedence and response [11].

2.1.2 Theorem Proving

Verification using model checking approaches is limited to temporal claims and safety assertions. Models being abstract verification of an abstract behavior may not be very interesting. Theorem proving approaches can help verify detailed behavior, by construction of detailed formal specifications through domain theories. They are user intensive, rely on a language and associated set of rules and require knowledge of proof steps and proof strategies. These approaches are error prone when done manually, hence automated tools are available that help automate the process and reduce the errors.

2.2 Real-Time Systems

Some examples of real-time systems [12] are mobile phones, audio/video equipments, control systems of planes, trains etc. Many of the computer controlled systems often called embedded systems also fall under the category of real-time systems. There are two categories of real-time systems, soft real-time systems and hard real-time systems. Washing machines, mobile phones, audio/video equipments are soft real-time systems. In these systems a single failure to meet the specified timing requirement can be accepted at times. Hence for these systems we talk in terms of quality of service instead of correctness. Hard real-time systems are control systems of planes, trains, factories etc. These systems are found mainly as a part of safety critical systems and hence even a single failure to meet timing requirement cannot be tolerated. A large category of communication protocols also fall under this category since a single error can stop communication completely. Correctness of hard real-time systems is therefore very important. In real time systems both order as well as timing of events needs to be considered for correctness. Properties of real-time systems such as race conditions, mutual exclusion are therefore timing related properties. For instance in Fischer’s mutual exclusion protocol the condition of “no two processes ever being in the critical section at the same instant in time” is satisfied iff deltaB > deltaC, where deltaB and deltaC are delay’s in time units.

3 Approach

A 4 Phase approach is followed for the survey and comparison. This approach involves continuous learning throughout the phases. The 4 phases are applied in a pipeline fashion as shown in Figure 1.

[image: image1]
Figure 1. 4 Phase Approach

3.1 Phase 1: Search and Tabulate

Phase 1 is a search for different available formal methods/ tools, gathering of basic information about them and tabulating the same. The search is not restricted to formal methods of real-time systems, but is definitely directed towards it. The list of formal methods and corresponding details that was collected during this phase is tabulated in a Table provided in the Appendix B. Twenty-six formal methods have been listed and details such as brief introduction, verification tools, unique properties, publications indicating its application and tool details have been collected for each. Methods that represented concurrent, synchronous systems were also a part of the search, along with other methods that explicitly stated their use in real-time systems to represent time related properties.

3.2 Phase 2: Compare and Filter

Phase 2 is compare and filter phase were the tabulated logics from Phase 1 are compared with each other and filtered. Filtering criteria’s are decided and publications / information providing comparison of different logics are looked for to aid in the filtering process. A filtered list of 16 formal methods was the result of this phase. The formal methods collected in Table of Appendix B were filtered based on filtering criteria. Since formal methods that would ultimately be applied to real time systems were required, one of the most important criteria was expressing real-time properties. Some of the other filtering criteria’s were representation of safety, deadlock, liveness and other temporal properties, degree of complexity/ease of use, tool support and interface, publications indicating application in real world. These criteria were applied on information previously collected in the Table of Appendix B.

Publications on comparison of tools and methods [13] [14] provided added information that further helped in filtering. [13] paper presents comparison of five different formal methods Concurrency Factory, COSPAN, SPIN, SMV, Murphi and XMC after applying them to detect livelock in i-protocol. [14] paper looks at different techniques and tools that help reduce state space explosion problem. The two tools that are considered with respect to state space reduction are Spin applied with partial order reduction and SMV, both the tools have been suggested to be stable robust and publicly available.

The filtered list of formal methods are given in Table 1, most of these satisfy all the filtering criteria’s except for few as indicated. The table provides certain additional reasons for selecting these methods. Some formal methods were eliminated even though they could express real-time properties E.g. VeriSoft, Temporal Rover: provided verification only through assertion checks; SGM: concentrated more on state space reduction; XMC: tough to apply.

	Filtered Formal Method
	Additional Reasons for Selection

	CTL (Computational Tree Logic) and

SMV (Symbolic Model Verifier)
	Shown to be stable and robust. Also has reduced state space explosion problem. Though is tough to apply to asynchronous systems

	ITL (Interval Temporal Logic)
	Extensively used to specify real-time properties.

	DC (Duration Calculus)
	Applied to real-time safety critical systems.

	RT-Promela (Real Time Promela) and RT-Spin (Real Time Spin)
	Has not been applied extensively, does not show graphical interface support. However since it is an extension of Spin it is easy to apply, stable and robust.

	DT-Promela (Discrete Time Promela) and DT-Spin (Discrete Time Spin)
	Has not been applied extensively. Since it is an extension of Spin it has graphical interface support, is easy to apply, stable and robust.

	Kronos
	Uses timed automata, which helps represent complex real-time systems. Shown to be applied to real-time safety critical systems.

	TRIO
	Though verification tool support is weak, it is used for specifying real-time and critical systems.

	UPPAAL
	Applied for verification of real-time safety critical systems. Has a very good graphical interface and claimed to be one of the leading model checker’s for real time systems.

	Argos
	Graphical language used along with Kronos for real-time analysis.

	Concurrency Factory
	Toolkit applied to real time protocol verification. Provides graphical user interface and is easy to use.

	Lustre
	Similar to Argos and Esterel, has timed extensions that help in static timing analysis for real time systems.

	CIRCAL (CIRcuit CALculus)
	Applied in verification of real-time properties of safety critical systems. However has limited or no tool support.

	ACSR (Algebra of Communicating Shared Resources)
	Main application is for real-time verification.

	GCSR (Graphical Communicating Shared Resources)
	Is a visual specification language whose main application is for real-time verification.

	COSPAN
	Has been applied to perform timing analysis of real time systems, though is tough to apply to asynchronous systems.

	HyTech
	Uses Hybrid automata, provides a graphical user interface and has shown applications in real-time systems

Table 1. Filtered List of Formal Methods

3.3 Phase 3: Apply

Ideally this phase involves application of the filtered methods/tools from Phase 2 to one or more real-time state based example systems. Subsets of formal methods are applied on different examples. A particular time related property of an example is represented using different formal methods as shown in Figure 2. However, among the filtered list of methods/tools of Table 1 only five of them DT-Spin [17], RT-Spin [18], Kronos [19], UPPAAL [20], HyTech [21] were selected for application to an example. One of the main reasons was limited time span (2 months) of the project. There were few other reasons for selecting these specific tools. These tools are model checking tools and hence are easier, faster to learn, understand and apply. Publications and web sites have indicated application of Kronos, UPPAAL, HyTech to safety critical real-time systems. Also, [15] emphasizes usage of timed automata along with verification algorithms to represent and verify complex real-time systems. Kronos, UPPAAL tools use timed automata or extensions of timed automata to specify system design. DT-Spin and RT-Spin though not very extensively used, their specifications are extensions of Promela (familiar language), which would aid in understanding the example system and real-time representations better.

[image: image2]
Figure 2. Express system property using logics

These tools were applied to Fischer’s mutual exclusion protocol. Fischer’s mutual exclusion protocol is a benchmark real-time example that has been applied to various real-time tools, hence would allow this comparison to be extended to other tools in the future. It is a simple protocol with real-time property, hence allows the tools to be compared with respect to their capability of modeling the system and expressing real-time properties. Also, the size of the protocol’s state space increases with increased number of processes in the system, this helps in verifying and comparing the tools based on state space explosion problems.

[image: image3]
Figure 3. Fischer’s Mutual Exclusion Protocol

Fischer’s Mutual exclusion protocol [18] consists of n processes P1…PN. Each process state transition diagram is as shown in Figure 3. Variable x indicates which process is in the critical section, variable y is the clock and variable crit is used to keep track of number of process in the critical section. Process Pi is initially idle, but it may begin executing the protocol at any time provided the value of the variable x is 0. After a delay of up to deltaB time units Pi assigns value i to x, it may now enter the critical section within deltaC time units provided the value of x is still i. On leaving the critical section the value of x is made 0. Auto-increment and auto-decrement of the variable crit is done as shown. We need to verify that no two processes are ever in the critical section at the same instant in time and this is satisfied iff deltaB > deltaC. Each of the applied tools use slight variations of this state diagram based on their individual style of specification.

Applying RT/DT-Spin on the above example was simple, both successful and unsuccessful verifications were done. The problem with these tools is, they are currently available for limited platforms. Verification outputs for RT/DT-Spin are included in Appendix A. HyTech tool was easy to use however it behaved weirdly at times. Log files that capture the verification outputs of HyTech tool are included in Appendix A. Kronos specifies the system using timed automata, which is strong but complex. This tool could not be successfully verified for mutual exclusion protocol due to ambiguity in specification. However the specifications and tool was understood and used successfully with another example (csma-cd protocol), therefore is still considered for comparison. UPPAAL tool application was convenient. Its graphical user interface helps specify the system graphically and provides simulation option that can be easily used and understood by novice users. Screen snapshots of the tool have been included in the Appendix A.

3.4 Phase 4: Compare Applied Methods

Phase 4 is the last phase in which the applied formal methods/tools are compared. Standard procedure is followed to compare these methods in order to better understand and get valuable information about each method. Comparison between the applied tools in this project has been done based on understandability and usability.

3.4.1 Usability Analysis

As of today there has been no standard definition of understandability or usability of any technique. Usability or understandability is defined based on user perspective. However usability analysis techniques have been defined and followed for either improving the application that is being developed or analyzing and comparing applications. It is a process that helps understand user’s most important needs, which can then be used to deploy in the application or used as a basis to compare different applications. Some areas of application of usability analysis have been management sciences, human computer interactions, comparisons of web interfaces and existing tools. There have been case studies that have helped compare and improve existing systems using this technique [22].

Various papers indicate that there basically been two approaches to analyze usability. The first approach allows users to use a prototype of the tool or software and analyses usability based on feedback provided. The paper [23] presents a process that has been followed for analyzing three different web-based learning tools using group of users. Analysis is done based on three different user perspectives: administrative perspective (installation, registration and access control), instructor’s perspective and student’s perspective. Feedback from the students was obtained through questionnaires. There have been certain noted factors that affect usability feedback received from users degree of needs being met, strength, good design, good documentation, speed, compatibility, flexibility. The second approach [24] [25] does analysis based on empirical methods like surveys, case studies, experiments, filed observations and expert reviews. Surveys are retrospective investigative techniques referred to as “research in the large”. Case studies and experiments are introspective methods where the tool is applied on a specific system and are referred to as “research in the typical”. Field observations are very insightful but it provides opinion based on small number of people. Expert reviews are informal investigative techniques, heuristic evaluation and cognitive walkthroughs are some techniques to collect expert reviews.

3.4.2 Comparison Based on Usability Analysis Process

The comparison of tools given here has been done following both the approaches suggested by the papers, though at a smaller scale. This comparison is specific to this example and would be aimed at bringing out the differences between tools and not choosing between them since they use different logic to design the system and each of these logics have their own ways of expressing behavior.

3.4.2.1 First Approach: Allow users to use the tools/prototypes

The first approach of usability analysis does not directly apply here since a small group was used to assess the tools. However, usability analysis can still be followed. Table 2 indicates feedback from a single user on the of usability of tools. Also, factors like speed, memory, compatibility, flexibility haven’t been currently looked into. Degree of needs being met, strength, good design are indicated by details of the specification language provided. Good documentation is indicated by available documentation and application columns.

	Tool
	Administrative

[Installation,

Registration,

Access control]
	Domain
	Specification and Verification language
	Time model
	Ease of Model Specification
	Available-Doc
	Application

	DT-Spin
	Highly platform dependent, easy, easy
	Real time and concurrent systems
	RT-Promela + LTL and assertions
	Discrete time model
	Discrete time Promela uses non-deterministic commands, process blocking concepts that are hard to follow. It also uses integer and boolean variable types and is fairly understandable. Graphical input makes specification, verification and simulation easier.
	Low
	Concurrent and real time systems

E.g. Bounded Retransmission protocol, Fischer’s Mutual Exclusion protocol

	RT-Spin
	Highly platform dependent, easy, easy
	Real time and concurrent systems
	Discrete time extension of Promela + LTL and assertions
	Dense time model
	Similar to discrete time Promela, real time Promela is fairly understandable. RT-Spin does not seem to have a graphical interface for inputting specifications and verifying
	Low
	Real time protocols and systems

E.g. Train Gate Controller, Fischer’s Mutual Exclusion, ATM switch

	KRONOS

	easy, easy, easy
	Safety Critical Systems
	Timed automata + TCTL
	Dense time model
	Timed automata specification is not close to programming language. Hence is tougher to model and understand
	High
	Real-time communication protocols, timed asynchronous circuits and hybrid systems

E.g. Fischer’s mutual exclusion protocol, FDDI, CSMA/CD, Phillips Audio Control protocol

	UPPAAL

	easy, easy, easy
	Safety Critical Systems
	Extended timed automata. Tool takes graphical i/p / timed automata input / hybrid automata i/p + TCTL
	Dense time model
	Extension of timed automata, includes boolean and integer variables and is better to understand. Textual input given is close to programming languages. Graphical input can also be specified. Close to real-time programming language. Hence easier to model as well as understand
	High
	Real time controllers, communication protocols and hybrid systems

E.g. Fischer’s Mutual Exclusion, Phillips Audio Control protocol, Manufacturing Plant, Steam generator

	HyTech

	medium, easy, easy
	Hybrid and Embedded systems
	Hybrid Automata
	Dense time model
	Specification uses analog, discrete, continuous, locations and regions type variables and certain complex concepts. It also uses when while, wait statements. Specifications are fairly understandable. Graphical user interface available which makes specifying input better
	Medium
	Embedded systems that are a part of safety critical systems.

E.g. Corbett’s distributed controller, Audio Control protocol, Steam Boiler Controller, Fischer’s Mutual Exclusion protocol

Table 2. Comparison Table

Timed Models: Discrete time models are complex compared to discrete time models. However dense time models have state space explosion problems due to which they run out of memory faster. RT-Spin and DT-Spin have the same model for the Fischer’s Mutual Exclusion problem but when executed RT-Spin is found to have state space explosion problems as compared to DT-Spin [17]. It was comparatively slower even when executed for Fischer’s mutual exclusion example. Partial Order reduction and other techniques can be used to reduce the state space explosion problem. The discrete time model is sufficient to express qualitative and simple time related properties.

Ease of Specification: The ease of use presented in the table is given in terms of understandability of the modeling language, interface provided if any and expressability of the modeling language. Some of the tools were found better to use than the others however this observation is specific to this example application. DT-Spin works with the XSpin interface and RT-Spin doesn’t seem to be supported with the XSpin interface. The real time and discrete time Promela specifications of RT-Spin and DT-Spin respectively are similar except in the way they handle the time variables. RT-Spin has more understandable time related commands as compared to DT-Spin. Specifications written in Kronos are in timed automata, they are comparatively tough to understand and model. However, concepts presented by timed automata like location invariants, representation of transitions using guards, events, variable changes are strong enough to model complex systems. Also, timed automata has been shown to be used extensively for real time verifications. UPPAAL tool provides a good graphical interface. The graphical interface accepts a state model of the system, which is converted into timed automata, syntax checked, and verified against a given property specification. It also accepts hybrid automata as well as timed automata inputs. The tool provides a good simulation environment. Extensions of UPPAAL supporting extensions of timed automata are available [12] and it has been shown to be applied to large number of real-time verification problems. Hybrid automata of HyTech helps represent certain complex concepts but is yet fairly understandable. The specifications are strong and help specify details like limit of variance value changes of variables in every state. HyTech also has a graphical user interface that has been developed by the UPPAAL group. Parametric analysis is a highlighted useful feature of HyTech, which allows determination of required parametric values for safety. Verifications in are in terms of regions which are a set of states.

Ease of Verification: Verification languages of these tools have been fairly easy to understand and apply. LTL property specifications are represented as boolean formulas on time variables. TCTL property specifications are comparatively complex and stronger. They help express and verify properties of computational trees unlike linear paths verified by LTL.

3.4.2.2 Second Approach: Look into Reviews, Case Studies and Surveys

The second approach to usability analysis used surveys, case studies, experiments, filed observations and expert reviews. Expert reviews and field observation is not really applicable. Some surveys and case studies/experiments that were found are discussed. There have been studies [26] which indicate that among UPPAAL, HyTech and KRONOS, UPPAAL is shown to have performed better in terms of time and memory (state space explosion). This paper has applied UPPAAL to mutual exclusion problem, compared the results to results of Kronos and HyTech applied to the same protocol. [17] indicates that some verifications e.g. Bounded retransmission protocol (BRP) can be completely done in DT-Spin, instead of using UPPAAL and SPIN to do the same and that it uses reasonably less memory. It also suggests that DT-Spin performs better than RT-Spin in terms of state space explosion problems. This claim is made based on the results of application of these tools to mutual exclusion protocol.

There have been a lot of papers indicating case studies and applications for each of the above tools. These papers stress on strong graphical support available for UPPAAL which makes modeling and verification convenient. They also indicate use of Kronos is complex real-time verifications. The application areas are given in Table 2 and links to these case studies can be found at links given in Table of Appendix B.

4 Related Work

There were several web sites found that lists various formal methods, presents introductory details about each of them and guides the user to individual web sites. These web sites however do not present a comparison of the methods listed. Some of the important and related web sites are as follows:

[27] Software Architecture Components + Coordination, is a site that lists few widely used real-time verification tools. It provides a brief introduction and corresponding links to each of these tools. The web site also provides links to research groups working on real-time, people working on real-time, real-time publications and conferences. The web site increased our confidence in selecting the formal methods that were applied to the example.

[4] Formal Methods site of Oxford school presents valuable information about formal methods. Publications, conferences, mailing groups are few of the links found. The web site provides a huge repository of formal methods applicable to various different domains, necessary links to each method (home pages, research group links) and also relates these methods to a certain extent. Links to other web sites that provide information on formal methods are also provided. Hence this web site is a good place to start learning and collecting information about formal methods. This web site provided a kick start to the entire survey and comparison.

Apart from web sites there were a large amount of publications found that did comparison of selected tools. This comparison was based on application to a specific verification problem or was based on a particular property of formal methods. Some of these papers presented and emphasized the importance of certain techniques.

[13] presents comparison of five different formal methods after applying them to detect livelock in i-Protocol. The five tools compared are Concurrency Factory, COSPAN, Spin, SMV, Murphi and XMC. Concurrency factory toolkit was used to detect the livelock in the protocol initially after which the other methods were applied for comparison. The comparison brings out pro’s and con’s of each method. The comparison suggest that Murphi and XMC perform the best however they are tough to apply; COSPAN provides good livelock detection in complex systems but is tough to apply to asynchronous systems; Spin is easy to apply and provides good livelock detection in complex systems, but has state space explosion problems; Concurrency Factory is easy to apply, but CPU time taken is large; SMV has reduced state space explosion problem but is tough to apply to asynchronous systems. Information about these five different methods provided in the paper, was helpful to filter out formal methods in Phase 2 of the project.
[14] compares different techniques and tools that help reduce state space explosion problem. State space explosion is stated to be a hindrance in verifying properties and hence it is important to look at techniques that can help reduce the same. Automatic formal verification techniques can be judged based on the type of state space reduction they use and can be classified based on the system that they can be applied to. The techniques that have been compared are partial order reduction, symbolic model checking and inequality necessary conditions. Partial Order reduction alleviates the effects of representing concurrency with interleaving [tool: Spin+ PO]. Symbolic model checking symbolically expresses system states instead of explicit enumeration [tool: SMV]. Integer programming techniques reduce the verification of a property to a question about the integral solutions of linear systems [tool: INCA]. It finally maps these techniques/formal methods that use these techniques to certain type of programs they work best with. The paper suggests Spin and SMV as being stable and robust and state space explosion as one of the filtering criteria, this information was helpful in the filtering phase of the project.

[16] presents the result of applying two tools Spin and UPPAAL for time related analysis of Bounded Retransmission Protocol. Spin is used for analysis of untimed properties of the protocol and UPPAAL is used for timed analysis. The paper investigates to what extent real time aspects are important to guarantee the protocol’s correctness and brings out the shortcomings of both the tools. Information provided by the paper regarding UPPAAL and SPIN provided insight into each of these tools, which helped in filtering phase, apply phase as well as comparison phase.

The thesis [12] presents extensions of timed automata that can be applied to verify real-time systems. Case studies have been given that show the use of UPPAAL tool for extensive real time analysis. UPPAAL tool has been extended to handle the different extensions of timed automata, which can be used for different kinds of verification and analysis. The thesis presents a way of reducing the resources consumed by UPPAAL due to timed reachability check, which makes it more applicable for safety critical system domains. The information presented in the thesis increased confidence in UPPAAL tool.

[15] is another interesting paper that helped increase confidence in timed automata and TCTL. This information helped in the apply phase of the project which required selecting 5 methods out of 16 to apply on the example. The paper presents TCTL and MITL specification languages that help specify very fine real-time properties and timed automata that can model the behavior of complex real-time systems. Model checking algorithms are developed that models the system in timed automata and helps verify the properties of the systems presented in TCTL/MITL. Timed automata has been applied to model a large number of real-time systems.

5 Conclusions and Future Investigations

The survey and comparison presented in this project is different from previously done comparisons or listings of tools found in web sites. The survey is an exhaustive search of various methods of different domains and provides interesting details about each. These different methods are filtered out based on specific reasons. The reasons presented may be helpful in other research or projects for selecting appropriate set of real-time tools. Comparison presented in the paper has been done based on usability. This comparison brings out usability and understandability aspect of the method/tool. It also considers information presented by a large number of publications indicating application and comparison of tools.

The aim of this comparison is to bring out the pros and cons of each method, increase understanding and provide insight into the methods. The comparison and reasons presented would help select real-time formal methods for specific applications. The comparison does not indicate that one method is superior to another. In fact each of these methods are complementary and not competing. Variations in models and input languages of these formal methods/tools makes evaluation of these tools harder, yet this kind of evaluation helps judge the effectiveness of these methods.

The apply phase can be extended further to apply each of the filtered methods on the Fischer’s Mutual Exclusion example. The Fischer’s Mutual Exclusion protocol being a benchmark example would aid in extension of the application phase. We would therefore be able to compare and learn more of these real-time formal methods in Phase 4. Also currently in Phase 4 there was some difficulty faced in applying Kronos to the mutual exclusion protocol, this should be further looked into. In the future we would look at a full blown comparison of methods/ tools, which would standardize some of these activities, define standard filtering and evaluation criteria, have a good collection of examples, provide a common design model which would be implemented differently.

6 References

[1] “Reverse Engineering and Design Recovery: A Taxonomy” by Elliot J. Chikofsky, Index Technology Corp, and Northeastern University. James H. Cross II, Auburn University.
[2] “Testing using Log File Analysis: Tools, Methods, and Issues” by James H. Andrews, Dept. of Computer Science, University of Western Ontario.
[3] “An Automated Verification Method for Distributed Systems Software Based on Model Extraction” by Gerard J. Holzmann and M. H. Smith.
[4] Oxford Formal Methods , http://www.afm.sbu.ac.uk/
[5] “Discrete Mathematics and Its Applications”, by Kenneth H. Rosen, Third Edition.
[6] “Logic For Applications”, by Anil Nerode and Richard A. Shore.
[7] “An Automated Tool for Analyzing Petri Nets using Spin”, by G. C. Gannod and S. Gupta

[8] “Modeling and Validation of Java multi-threaded applications using Spin”, by C. R. Iosif and R. Sisto

[9] “Formal methods: State of the art and future directions”, by E. M. Clarke, and J. M. Wing

[10] “The Spin Model Checker”, by G. Holzmann

[11] “Patterns in Property Specifications for Finite-State Verification”, by Matthew B. Dwyer, George S. Avrunin and James C. Corbett

[12] “Analyzing Real Time Systems: Theory and Tools ”, by Thomas S Hune

[13] “Fighting Livelock in the i-Protocol: A Comparative Study of Verification Tools”, by Yifei Dong, Xiaoqun Du, Y S Ramakrishna, C R Ramakrishnan, I V Ramakrishnan, Scott A Smolka, Oleg Sokolsky, Eugene W Stark, and David S Warren

[14] “Evaluating Deadlock Detection Methods for Concurrent Software ”, by James C Corbett

[15] “Techniques for Automatic Verification of Real Time Systems ”, by Alur Rajeev

[16] “The Bounded Retransmission Protocol must be on time! ”, by P R D’Argenio, J P Katoen, T C Ruys, and J Tretmans

[17] “Discreet Time Promela and Spin ”, by Dragan Bosnacki, and Dennis Dams

[18] “Extending Promela and Spin for Real Time ”, by Stavros Tripakis, and Costas Courcoubetis

[19] “Kronos: A Verification Tool for Real-Time Systems”, by Sergio Yovine

[20] “UPPAAL – a Tool Suite for Automatic Verification of Real-Time Systems ”, by Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi

[21] “A User Guide to HYTECH ”, by Thomas A Henzinger, Pei-Hsin Ho, Howard Wong-Toi

[22] Catalyst Group Design: Usability and user Interface Designers, http://www.catalystgroupdesign.com/OurServices/services
[23] Evaluating the Usability of We-based Learning Tools, by Margaret Anne Storey and Janet Bavelas, http://www.csr.uvic.ca/~mstorey/mytalks/edtech.htm
[24] “Evaluating Emerging Software Development Technologies: Lessons Learned from Assessing Aspect Oriented Programming”, by Gail C Murphy, Robert J Walker, and Elisa L A Baniassad

[25] “A Cognitive Framework For Describing and Evaluating Software Exploration Tools”, by Margaret Anne Storey

[26] “Model Checking for Real-Time Systems ”, by Kim Larsen, Paul Pettersson, Wang Yi

[27] Software Architecture Components + Coordination, http://www.win.tue.nl/~mousavi/sacc/res.htm

[28] “An Interval Logic for Higher-Level Temporal Reasoning”, by Richard L. Schwartz, P. M. Melliar-Smith and F. H. Vogt

[29] “Class Notes”, CSE 564
Appendix A: Screen Snapshots and Verification Output’s of Tool Applications

DT-Spin: Output from successful verification

	warning: for p.o. reduction to be valid the never claim must be stutter-closed

(never claims generated from LTL formulae are stutter-closed)

(Spin Version 3.2.0 -- 8 April 1998

Discrete time extension Version 1.1.0 -- 11 August 1998)

+ Partial Order Reduction

Full statespace search for:

never-claim
+

assertion violations
+ (if within scope of claim)

cycle checks
- (disabled by -DSAFETY)

invalid endstates
- (disabled by never-claim)

State-vector 44 byte, depth reached 669, errors: 0
 4177 states, stored

 2103 states, matched

 6280 transitions (= stored+matched)

 6779 atomic steps

hash conflicts: 12 (resolved)

(max size 2^18 states)

1.596
memory usage (Mbyte)

unreached in proctype Clocks

line 33, state 5, "-end-"

(1 of 5 states)

unreached in proctype P

line 33, state 46, "-end-"

(1 of 46 states)

unreached in proctype :init:

(0 of 5 states)

DT-Spin: Output from unsuccessful verification

	warning: for p.o. reduction to be valid the never claim must be stutter-closed

(never claims generated from LTL formulae are stutter-closed)

pan: claim violated! (at depth 539)

pan: wrote fischer.trail

(Spin Version 3.2.0 -- 8 April 1998

Discrete time extension Version 1.1.0 -- 11 August 1998)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never-claim
+

assertion violations
+ (if within scope of claim)

cycle checks
- (disabled by -DSAFETY)

invalid endstates
- (disabled by never-claim)

State-vector 44 byte, depth reached 593, errors: 1
 405 states, stored

 90 states, matched

 495 transitions (= stored+matched)

 365 atomic steps

hash conflicts: 1 (resolved)

(max size 2^18 states)

1.493
memory usage (Mbyte)

RT-Spin: Output from successful verification

	error: max search depth too small

(Spin Version 2.9.0 -- 14 July 1996)

Warning: Search not completed

Full statespace search for:

never-claim
+

assertion violations
+ (if within scope of claim)

acceptance cycles
- (not selected)

invalid endstates
- (disabled by never-claim)

State-vector 48 byte, depth reached 9999, errors: 0
 127791 states, stored

 97235 states, matched

 225026 transitions (= stored+matched)

 67144 atomic steps

hash conflicts: 17197 (resolved)

(max size 2^18 states)

6.42501e+06
memory usage (bytes)

Clock Regions Hashed : 20587

Collisions : 20520

RT-Spin: Output from unsuccessful verification

	error: max search depth too small

pan: assertion violated 0 (at depth 9996)

pan: wrote fischer.trail

(Spin Version 2.9.0 -- 14 July 1996)

Warning: Search not completed

Full statespace search for:

never-claim
+

assertion violations
+ (if within scope of claim)

acceptance cycles
- (not selected)

invalid endstates
- (disabled by never-claim)

State-vector 48 byte, depth reached 9999, errors: 1
 4629 states, stored

 998 states, matched

 5627 transitions (= stored+matched)

 2423 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.48114e+06
memory usage (bytes)

Clock Regions Hashed : 2707

Collisions : 2640

KRONOS:

Kronos has been applied to CSMA-CD Protocol, due to ambiguity faced while implementing Fischer’s Mutual Exclusion Protocol. The output of verification has been more of a command output and hence has not been shown here

NOTE

The specification of Fischer’s Mutual Exclusion system design in each of the five different methods has not been included here. For some of the methods the specification is available online and the links have been included in the Reference section. If the specification files are needed explicitly then I can provide them.

UPPAAL: Graphical Specification

[image: image4.png]
UPPAAL: Simulation

[image: image5.png]
UPPAAL: Verification

[image: image6.png]
HyTech: Output from parametric analysis

	Command: /users/howardwo/bin/hytech fish2

===

HyTech: symbolic model checker for embedded systems

Version 1.04 10/15/96

For more info:

 email: hytech@eecs.berkeley.edu

 http://www.eecs.berkeley.edu/~tah/HyTech

Warning: Input has changed from version 1.00(a). Use -i for more info

===

Number of iterations required for reachability: 12

Condition for faulty system

 8b <= 11a & a >= 0

===

Max memory used = 808 kilobytes = 0.79 MB

Time spent = 0.50u + 0.51s = 1.01 sec total

===

HyTech: Output from unsuccessful verification

	Command: /users/howardwo/bin/hytech fish2-e

===

HyTech: symbolic model checker for embedded systems

Version 1.04 10/15/96

For more info:

 email: hytech@eecs.berkeley.edu

 http://www.eecs.berkeley.edu/~tah/HyTech

Warning: Input has changed from version 1.00(a). Use -i for more info

===

Number of iterations required for reachability: 16

Mutual exclusion violated

 ====== Generating trace to specified target region ========

Time: 0.00

Location: loc_1.loc_1

 x + 5 = 0 & y = 0 & k = 0

 VIA: start_2

Time: 0.00

Location: loc_1.loc_2

 x + 5 = 0 & y = 0 & k = 0

 VIA 5.00 time units

Time: 5.00

Location: loc_1.loc_2

 x = 0 & y = 5 & k = 0

 VIA: start_1

Time: 5.00

Location: loc_2.loc_2

 x = 0 & y = 5 & k = 0

 VIA: set_k_2

Time: 5.00

Location: loc_2.loc_3

 x = 0 & y = 0 & k = 2

 VIA 5.45 time units

Time: 10.45

Location: loc_2.loc_3

 11x = 48 & y = 6 & k = 2

 VIA: enter_cs_2

Time: 10.45

Location: loc_2.cs

 11x = 48 & y = 6 & k = 2

 VIA: set_k_1

Time: 10.45

Location: loc_3.cs

 x = 0 & y = 6 & k = 1

 VIA 6.00 time units

Time: 16.45

Location: loc_3.cs

 x = 6 & y = 12 & k = 1

 VIA: enter_cs_1

Time: 16.45

Location: cs.cs

 x = 6 & y = 12 & k = 1

 ============ End of trace generation ============

===

Max memory used = 848 kilobytes = 0.83 MB

Time spent = 0.72u + 0.87s = 1.59 sec total

===

Appendix A: Table of Surveyed Formal Methods

	Formal Logic/Tool
	Brief Explanation
	Verification Tools
	Unique properties
	Publications
	Tool Details

	Computational Tree Logic (CTL)

Classification:

Concurrent systems (real time properties)
	CTL is a propositional branching-time temporal logic, that helps specify properties of finite state concurrent systems.
	SMV (Symbolic Model Verifier). SMV is a tool for checking finite state systems against specifications in the temporal logic CTL.

This tool is provided by two groups, one by CMU and the other by Cadence Berkeley Labs.
	SMV has reduced state space explosion problems. CTL provides detailed verification of designs.
	Model Checking @ CMU

http://www-2.cs.cmu.edu/~modelcheck/index.html
provides SMV Manual, Publications related to Explicit state model checking, SMV, Real-time extensions of model checking, Model checking for security. Other related tools like Word-level SMV. Livingstone Project, Formal Verification of Diagnosability uses SMV
	SMV@CMU

Platform: Linux, Sparc/Solaris, the recent version is ported to NT.

Availability: Freely available including source

Supported techniques of interest: Model Checking

Developed by: CMU

Level of usage for real time verification: high

SMV@Cadence Berkeley Labs

Platform: Linux, Alpha, Sparc/Solaris, Windows NT and 95.

Availability: Freely available binaries only.

Supported techniques of interest: Model Checking

Developed by: Berkeley Labs

Level of usage for real time verification: high

	Interval Temporal Logic (ITL)

Classification:

Concurrent hardware and software systems.
	Provides propositional and first order reasoning about periods of time. Unlike other temporal logics it can handle both sequential and parallel composition and provides powerful extensible specifications and proof techniques to verify safety, liveness and projected time. Tempura provides an executable framework for developing and experimenting with ITL specifications and has been shown to be used extensively to specify properties of real time systems.
	ITL Proof Checker, Automatic Verification of ITL and (Ana) tempura are some of the verification tools available.

(Ana) tempura is built upon C-Tempura and helps in the runtime verification of systems using ITL or its executable subset Tempura. The runtime verification done uses assertion points to check if the system satisfies certain safety, time or security related properties expressed in ITL.

PVS which is developed using Lisp, helps write formal specifications and check using formal proofs. PVS can be used as ITL proof checker.

Automatic proof checker has been developed for ITL by Shinji Kono.
	(Ana)Tempura tool provides a graphical interface and requires Tcl/tk version 8.0 or higher. ITL has been used for checking properties of real time systems.
	Publications related to ITL can be viewed at http://www.cse.dmu.ac.uk/~cau/itlhomepage/node11.html which is the Bibliography section of the ITL Web Site.
	(Ana) Tempura

Platform: SunOs 4.1.3, Solaris 2.5.1 (and higher), Linux.

Essential installations: Tcl/Tk 8.0
Availability: Freely available including source

Supported techniques of interest: Assertion checking.

Interface: graphical interface

Developed by: Roger Hale, maintained by Antonio Cau and Ben Moszkowski
Level of usage for real time: not sure

ITL Proof Checker based on PVS

Platform: SUN 4 (SPARC) workstations using Solaris 2 or higher and PC systems

running Redhat Linux.

Availability: Freely available binaries only, under license.

Supported techniques of interest: Model Checking and Proof Checking.

Essential installations: GNU Emacs 19.34 version or higher or XEmacs

Desired installations: Tcl 7.3/3.6 version or greater, LateX version 2.09 or 2e.

Developed by: SRI International.

Level of usage for real time verification: high

	Duration Calculus

Classification:

Real-time safety critical systems
	Is an interval logic for real time system. It is used for specification and design of safety critical real-time systems and is an extension of ITL but with continuous time. State changes over time are represented by functions from time(real) to Boolean values (0 and 1). DC has been used to design and analyze embedded systems. Its main areas of application have been real time systems where it has been used to capture timing constraints at an appropriate level of abstraction and analyzed.
	DCVALID, PC/DC, Isabelle/DC are some of the tools that support DC.

DCVALID is a tool to check the validity of Duration Calculus. It can be used as a tool to visualize DC specification and to check its consistency. It can also be used in conjunction with other tools to model check DC properties of a system.

PC/DC is a proof checker for DC based on PVS.

Isabelle/DC is a proof assistant for DC based on Isabelle and SVC (Stanford Validity Checker)
	Main area of application has been real time systems. DC is also been modified so as it can be used to capture different aspects of real time systems.
	DC Web Site http://www.iist.unu.edu/newrh/II/2/2/page.html has publications that indicate usage of DC for embedded systems and for specifying and verifying requirements of real time systems. The site http://www.iist.unu.edu/dc/ also provides further publications and information on DC. One paper published by Paritosh Pandya, talks about model checking quantitative timing properties of synchronous systems.
	DCVALID

Platform: Linux elf, Sun Solaris

Availability: Freely available binaries only.

Supported techniques of interest: DC validity checking, Model checking when used in conjunction with certain other tools.

Developed by: Paritosh Pandya, Tata Institute, India.

Level of usage for real time verification: medium

PC/DC

Platform: PC/DC2.2 with Redhat Linux 5.0, PC/DC2.1 with Redhat Linux 4.1 and SunOS 4.1.

Availability: Freely available binaries only.

Essential Installations: PVS2.1/2.2

Supported techniques of interest: Proof Checking.

Developed by: Jens Ulrik Skakkebæk and maintained by Søren Heilmann.

Level of usage for real time verification: not sure

	Real-time Promela

Classification:

Interactive concurrent systems characterized as real-time systems.
	Promela is a language for specification of interactive concurrent systems. Real time Promela is an extension of the Promela, where the syntax and semantics of the language is changed to include clock and time information. Real time promela was developed to help write specifications for real time systems, where quantitative time value is required. Verification can be done using LTL property specifications represented as boolean formulas.
	RT-Spin (Real-time Spin) is a tool that extends the verification tool Spin with quantitative dense time features. It verifies correctness systems that have been specified using real time Promela. Verification of safety properties (like deadlock detection, assertions) can be done using the tool. Liveness property checking is slightly problematic. However quantitative time related properties can be verified.
	Helps in verification of safety, quantitative dense real-time properties.

Does not seem to provide XSpin graphical interface.
	The Web Site http://www-verimag.imag.fr/~tripakis/rtspin.html has information of certain publications, FAQ’s etc. It has been used to verify the round trip delay of an ATM switch and verification of real time mutual exclusion protocol.
	RT-Spin

Platform: Sun 4 & 5

Availability: Freely available including source

Supported techniques of interest: Simulation and Model Checking

Developed by: Stavros Tripakis and Costas Courcoubetis.

Level of usage for real time verification: low

	DT Promela

Classification:

Concurrent and real time systems.
	DT Promela is another extension of Promela. It helps model concurrent systems whose functionality depends crucially on timing parameters. Promela is extended to include discrete time and related operations. Verification can be done using LTL property specifications represented as boolean formulas.
	DT-Spin is a tool that is an extension of Spin. DT-Spin supports all verifications previously done by Spin and additional verification of timing properties.
	Helps in verification of discrete real time properties and also provides the XSpin graphical interface.
	Very few publications are available but the web site http://www.win.tue.nl/~dragan/DTSpin.html lists some publications and case studies. It has been applied to mutual exclusion, bounded retransmission protocols.
	DT-Spin

Platform: Sun OS 5.5 and Linux, some extensions are available for Windows 95/ Windows NT PC’s

Availability: Freely available including source

Supported techniques of interest: Simulation and Model Checking
Developed by: Dragan Bosnacki and Dennis Dams, Eindhoven University.

Level of usage for real time verification: low

	Kronos

Classification:

Safety critical complex real time systems.
	Kronos is a tool used to verify safety and liveness properties of complex real time systems. It uses timed automata to model components of real time system. Timed automata are automata extended with finite set of real valued clocks, used to express timing constraints. Kronos uses real time temporal logic TCTL to specify correctness requirements of the system and model checking to check for the existence of the properties in the system.
	Kronos
	Kronos has already been used to assist designers of real time systems to verify whether their designs are correct. Kronos has been used for applications like real time communication protocols, hybrid systems etc. Kronos provides a specification framework that integrates both logical and behavioral approaches to verification. Logical approach where correctness specifications are specified as formulas of TCTL and behavioral approach uses timed automata to specify correctness.
	The Web page for Kronos

http://www-verimag.imag.fr/TEMPORISE/kronos/
has publications and Manual indicating the usage of the Kronos tool.

There are Conference and Journal publications indicating the usage of Kronos to verify real time system properties. It has been widely used for real time system verifications.
	Kronos

Platform: Solaris 5.7, Linux, Windows latest release 2.5i

Essential installations: Cygwin for Windows version.

Availability: Freely available

Supported techniques of interest: Model Checking

Developed by: VERIMAG

Level of usage for real time verification: high

	TRIO

Classification:

Critical real time systems.
	TRIO is a formal language and a method for the specification, analysis and verification of critical, real time systems. The TRIO language is based on a metric extension of first-order temporal logic and exploits typical object-oriented features to support the managing of large, complex, and maintainable specifications. Variety of validation activities like specification testing, simulation and property proof. Prototype tools that support the editing of TRIO specifications, their formal analysis, and the derivation of test cases there from are available.
	Prototype tools such as TRIO semantic tools for Windows/Sun/Linux, Trio Graphic Editor are available.
	TRIO has been used for specification of real-time systems also for time-critical system specifications.
	Publications are listed on the TRIO Web Page

http://www.elet.polimi.it/res/TRIO/
These publications include papers that show use of Trio specifications for specifying real time and time critical systems.
	Trio semantic tools

Platform: Linux, Sparc/Solaris, the recent version is ported to NT.

Availability: Freely available including source

Supported techniques of interest: Model Checking

Developed by: CMU

Level of usage for real time verification: not sure

	Meije

Classification:

Concurrent reactive systems.
	Meije is a project that looks into concurrency, synchronization and reactivity. It is a project that aims at modeling concurrent communication systems, implementation of related languages, and verification systems. Meije project looks into Concurrency Theories – algebraic models and higher order processes, Esterel – a synchronous reactive programming language for software or hardware controllers, Verification tools – for synchronous and asynchronous concurrent systems, based on finite state model analysis, Reactive programming – reactive C language, reactive scripts and reactive objects.
	FC2 Tools package with graphical editor Autograph, Xeve – verification tool environment for the synchronous reactive language Esterel are some of the verification tools available.
	The class of models studied is that of process calculi, simple algebraic formalisms specially dedicated to the representation of concurrency issues. Synchronous reactive formalisms (such as the Esterel and RC languages) form a second key class of models. This type of formalisms aims at real-time programming with logical preemptive events.
	Publications, Books, Tutorials and manuals all related to Meije project can be located from the Web Site

http://www-sop.inria.fr/meije/

	

	Murphi

Classification:

Concurrent systems
	Murphi is a descriptive language that is based on a collection of guarded commands, used to represent concurrent systems. The data structures and guarded commands are written in a language that is familiar to programmers. Murphi also has a formal verifier based on explicit state enumeration. The verifier tool does finite state verification of concurrent systems. Murphi tool can be used to verify existence of deadlocks, detect errors, perform invariant checking and also verify other liveness properties.
	Murphi Verifier Tool
	Murphi has several special ways for reducing the number of reachable states while guaranteeing that protocol errors will still be detected. The algorithmic techniques in Murphi aim at exploring a given state space in the most efficient manner, allowing verification of larger protocols.

Murphi tool has been used for analysis of SSL protocol and other security protocols.
	Publications are listed at the Murphi Web Site

http://sprout.stanford.edu/dill/murphi.html
The web site includes publications on Overview of Murphi, State Reduction and Verification techniques used by Murphi, Application of Murphi in verification of protocols.
	Murphi Verifier Tool

Platform: Linux, Sparc/Solaris, SGI Indy, HP-UX, using Cygwin on Windows

Availability: Freely available including source, license is required.

Supported techniques of interest: Model Checking

Developed by: Sanford University maintained by Ulrich Stern and Norris Ip.
Level of usage for real time verification: not sure

	SGM (State Graph Manipulator)

Classification:

Real time systems
	SGM is a tool for real time system specification and verification. SGM was developed mainly as an experimental platform for applying different state-space reduction techniques to various verification problems. SGM can be used to reduce state-space representations (called state-graphs) by applying different sequences of manipulators and also for model checking (verification). The model-checking (verification) is still under development.
 The concurrent system is modeled using timed automata and specifications are given in terms of Timed Computational Tree Logic (TCTL)
	SGM
	SGM can be used by both non-experts as well as verification experts, represents state spaces as compact high level state graphs, is user friendly and allows state graph manipulations in different modes batch mode, interactive mode and graphical user mode.
	SGM Publications can be found at the SGM Web Site

http://www.cs.ccu.edu.tw/~pahsiung/sgm/ Publications describe automatic verification using SGM and also application to real time systems
	

	UPPAAL

Classification:

Real time systems in safety critical domains.
	UPPAAL is an integrated tool environment for modeling, simulating and verifying real time systems. Its applications are in the areas of real-time controllers and communication protocols. UPAAL uses timed automata, that is finite state machine with clock to model the system. This system can be simulated, certain invariants and reachability properties can be checked using automatic model checking.
	UPPAAL
	It provides a graphical interface for simulation and model checking. It can verify reachability properties. It has also been used to verify other properties along with SPIN. It has also been used for verification of real-time systems.
	Publications indicating UPAAL used for verification of real-time systems are listed in the UPAAL Tutorial document.

Presentations and other publications on UPAAL are given in the UPAAL tool Web Site

http://www.docs.uu.se/docs/rtmv/uppaal

	UPPAAL

Platform: Linux, Solaris, Windows 95/98/NT

Availability: Freely available, requires license agreement.

Supported techniques of interest: Simulation and Model Checking

Interface: Graphical interface and verification engine.

Developed by: Department of Computer Science (DOCS) at Uppsala University, Sweden, and Basic Research in Computer Science (BRICS) at Aalborg University, Denmark, lead by Wang Yi and Kim G. Larsen, respectively.
Level of usage for real time verification: high

	VeriSoft

Classification:

Concurrent/reactive/real time systems.
	A model checking tool for systematic software testing of concurrent/reactive/real-time systems. It helps verify the existence of properties like deadlocks, divergences, livelocks, assertion violations in the system. It checks the existence of properties against the system (programming language). On detection of error it stops state space violation and replays the scenario in a graphical interactive simulator.
	VeriSoft
	VeriSoft is optimized for analyzing multi process applications. VeriSoft uses state space exploration techniques, but unlike other model checkers VeriSoft can be used to check programming languages C/C++ and not modeling languages for the existence of properties. Model of a system may be a simplified form of the system, hence by checking the programming languages VeriSoft assures check of the developed system.
	VeriSoft Web Site:

http://www1.bell-labs.com/project/verisoft/papers.html
presents slides, tool manual and related papers
	VeriSoft

Platform: Sparc/Solaris, Linux

Availability: Freely available binaries only.

Supported techniques of interest: Model Checking, Simulate error situations in the VeriSoft simulator.

Essential installations: Tcl/tk 7.6/4.2 or higher, Expect 5.24 or later, gdb

Interface: Interactive graphical simulator.

Developed by: Dr. Patrice Godefroid at Bell Labs, Lucent technologies.

Level of usage for real time verification: not sure

	TLA (Temporal logic of actions)

Classification:

Concurrent and reactive systems.
	TLA is a logic for specifying and reasoning about concurrent and reactive systems. It forms the basis for TLA+ which is a complete specification language that helps specify most of the descriptions of real time design.
	TLC is a model checker for specifications written in TLA+.
	Has been used to verify and detect errors in Cache coherence protocols.
	The list of papers published for TLA are available on http://research.microsoft.com/users/lamport/tla/papers.html These publications indicate use of TLA to specify concurrent systems, model checking with TLA and also TLA+ verification of cache-coherence protocols.
	TLC

Platform: Windows 95/98,2000, Unix.

Availability: Freely available, license to be signed.

Supported techniques of interest: Model Checker and Simulator.

Developed by: Leslie Lamport and Yuan Yu,
Microsoft Research.
Level of usage for real time verification: not sure

	Alloy :

Specification language

developed by Daniel Jackson at MIT

Classification:

Not sure
	Alloy is a structural modeling language based on first order logic, used to express complex structural constraints and behavior
	Alloy Analyzer – is a tool, a constraint solver that provides fully automatic simulation and checking of models written in Alloy
	Alloy is declarative specification, unlike the other specification languages that are program like and are used for expressing temporal properties. Alloy addresses the complexity that arises from relational state structure.
	Publications found in Daniel Jackson’s Web Page and The Alloy Analyzer Web Page

http://sdg.lcs.mit.edu/~dnj/
Has been applied to analysis of network protocols, security systems, file synchronizers etc. Does not indicate usage in real time systems
	

	Argos

Classification:

Reactive systems.
	Argos is a graphical synchronous language for the description of reactive systems and Argonaute environment is associated with it. Similar to State charts Argos is an automata-based language. The high level constructs of the language deal with states and transitions directly. Programming environment Argonaute provides a compiler and a lot of connection to verification tools. The compiler output format can be verified using Kronos and Aldebaran.
	Kronos and Aldebaran tools can be used to verify the output of the compiler.
	Is a graphical language
	Publications are given at

http://www-verimag.imag.fr/SYNCHRONE/argonaute-english.html#publications
It has been used to verify quantitative real-time properties of synchronous programs and also for static timing analysis of real time.

The Web Site : http://www-verimag.imag.fr/SYNCHRONE/papers.html also has publications on Argos.

	

	CDAP toolkit

Classification:

Not sure
	The CDAP toolkit offers a wide range of functionalities, from interactive simulation to the most recent formal verification techniques.

The toolkit offers several input languages like process algebra with values, finite state machines and networks of communicating finite state machines; tools for computing bisimulations e.g. Aldebaran, two different model-checkers for various temporal logic and mu-calculus e.g. Evaluator, xtl; several verification algorithms e.g. exhaustive verification, on-the-fly verification.
	Evaluator, Xtl, Aldebaran.

	LOTOS specifications
	Publications can be found at the CDAP web site

http://www.inrialpes.fr/vasy/cadp/#Introduction
Aldebaran publications indicate use of the tool in verifying bisimulations, publications on Evaluator and Xtl indicate verification using model checking.

	

	The Concurrency Factory toolset

Classification:

Concurrent systems
	The Concurrency Factory is a graphical verification toolset for concurrent systems. It is an integrated toolset for specification, simulation, verification and implementation of concurrent systems like communication protocols and process control systems. Process algebra is used for the underlying formal model of computation and practical support is provided for process algebra.

Concurrency Factory can be viewed as the next-generation CWB (a toolkit for analysis of finite state concurrent systems specified as CCS expressions).
	The Concurrency Factory toolset
	Some features supported by the toolset are:

1) A graphical user interface, which allows non-experts to design concurrent systems using GCCS, a graphical version of the process algebra CCS.

2) A textual user interface for VPL, a simple language for concurrent processes that communicate values from a finite data domain.

3) A set of simulators for both VPL and GCCS.

4) A suite of analysis routines that includes a local model checker for the modal mu-calculus, a powerful temporal logic and other tools for computing bisimulations. More information on model checkers that have been used in case studies has to be determined through publications.

5) A set of code generators. Java and Ada'95 code can be automatically generated for the concurrent systems designed by the users.
	Publications are all listed at the site

http://www.cs.sunysb.edu/~concurr/paperlist.html
Publications shows the toolset being used for detection and correction of livelock in i-Protocol, verification of Rether a software based real time Ethernet protocol and other concurrent systems.
	Concurrency Factory

Platform: not sure

Availability: not sure

Supported techniques of interest: Model Checking

Developed at: SUNY at Stony Brook and NCSU.

Level of usage for real time verification: medium

	Concurrency Workbench

{ 2 versions Edinburgh CWB

 CWB-NC (North Carolina) }

Classification:

Concurrent systems
	CWB is an automated toolset for describing, exploring and automatically verifying concurrent systems. CWB helps define behaviors either in an extended version of CCS or in SCCS and perform various analyses on these behaviors, such as analyzing the state space of a given process; checking semantic equivalences and preorders; model-checking to understand why a process does or does not satisfy a formula. It helps define propositions in a powerful modal logic and check whether a given process satisfies a specification formulated in this logic. The tool also helps interactively simulate the behavior of an agent, therefore guiding it through its state space in a controlled fashion.
	CWB toolset
	CWB-NC includes a LOTOS interface
	Publications that help further understand CWB can be found at

http://www.dcs.ed.ac.uk/home/cps/
http://www.dcs.ed.ac.uk/home/pxs/

	

	Temporal Rover

Classification:

Real time and Reactive systems.
	Temporal Rover is a specification based verification tool. It automates verification of real time and relative temporal properties of the design. The tool allows formal specifications to be written inside source files (e.g. C, C++, ADA, Verilog, VB etc.) within specially marked comments. Formal specification is written using a combination of Temporal Logic and a language of our choice. Temporal Rover can then convert these specifications to executable code, to be executed when the program is tested. The tool can thus be used to specify and verify protocols and reactive systems.
	Temporal Rover, other related tools are DB Rover which is based on Temporal Rover and Temporal Simulator which is a graphical simulator of temporal rules.
	The tool mainly checks temporal properties and real time constrains using assertions specified within the source code.
	The Temporal Rover Web Site indicates the tool being used for example systems:

Temporal Rover is used for A Traffic Light Controller. In this example the assertions are specified using special comments in the source program. The source program is written either in C, Verilog or Java. On filtering this source file using the tool, a changed source file is generated where the assertions are implemented in the source language. This file can now be executed and the actual execution of the program can be compared with the specification assertions.

Temporal Rover is shown to be used in hardware, embedded software, eCommerce, to verify real time constraints and for other reactive systems.
	

	Lustre

Classification:

Reactive systems.
	Lustre is a synchronous declarative language for programming reactive systems. A description in this language is set of equations that must be always verified by the program variables. The language is similar to Esterel, Argos and Signal. The system can be defined using the language, compiled using the Lutre-V4 compiler. Lustre can be considered as a temporal logic to express safety properties which can then be verified.
	LESAR is a model checker that helps verify safety properties expressed using Lustre language. The model checker considers finite model of the program which is similar to automaton produced by the compiler. However LESAR verifies properties based on control of the program.
	It is used in validation of reactive systems along with PVS for proving control systems. Paper publication indicates that static timing analysis for real-time systems can be done by timed extension of synchronous languages.

	Publications are available from the Lustre Web Site

http://www-verimag.imag.fr/SYNCHRONE/lustre-english.html
The publications includes tutorial on Lustre, other publications indicating Lustre used for Verification of safety and temporal properties.

	

	CIRCAL (CIRcuit CALculus)

Classification:

Concurrent safety critical systems
	Circal is a process algebra that can be used for description and rigorous verification of concurrent systems. Circal can be used for investigating the modeling and verification of time dependent behavior as found in communication protocols. XCircal (eXtended Circal) is an extension of Circal that enhances descriptive features of the language

	Does not seem to have tool support is limited. More on tools for CIRCAL needs to searched.
	Used mainly for concurrent systems and verification of their real-time properties.
	Publications regarding Circal can be found at web site: http://www.acrc.unisa.edu.au/~circal/circal_publications.html

The publications indicate the use of Circal to model and verify time-dependent and real time protocols. Publications indicate the usage of Circal system as a useful tool in the verification of safety critical systems.
	

	CCS (Calculus of Communicating Systems)

Classification:

Concurrent systems
	CCS is an algebra for specifying and reasoning about concurrent systems. As any other algebra CCS provides a set of terms, operators and axioms that can be used to write and manipulate algebraic expressions.
	The toolset CWB (Concurrency Workbench) can be used to specify and design a concurrent system in CCS, simulate it and analyze it for the existence of deadlock, safety and liveness properties.
	Used for concurrent systems, help verify safety, liveness properties.
	No specific web site lists the publications of CCS. Some publications can be obtained from the references of CWB and the book called “Communications and Concurrency” by Robin Milner can be read for further information.
	

	ACSR (Algebra of Communicating Shared Resources)

Classification:

Real time systems.

	ACSR is a timed process algebra for specification of resource bound real time systems. VERSA toolset helps verify ACSR specifications.
	VERSA (Verification Execution and Rewrite System for ACSR) is a toolset that helps in analysis of real time systems that have been specified using ACSR. The tool supports verification in three different ways .Application of rewriting rules to ACSR specifications to deduce system properties, construction of state machine automatic exploration and analysis of the state space to verify safety properties and to test equivalence of alternative process formulations and interactive execution of the process specification to explore specific system behaviors and sample the execution traces of the system.
	Used mainly for real-time system verification.
	Publications can be found at the VERSA Web Site http://www.cis.upenn.edu/~lee/duncan/versa.html and also at the formal specification for real time systems site:

http://www.cis.upenn.edu/~rtg/fmd.html
These publications indicate the use of ACSR specifications along with VERSA to verify bound real time systems.
	VERSA

Platform: Sun4

Availability: Freely available

Supported techniques of interest: Model Checking

Developed at: University of Pennsylvania.

Level of usage for real time verification: high

	GCSR (Graphical Communicating Shared Resources)

Classification:

Real time systems.
	GCSR is a visual specification language. It is used for specification, refinement and analysis of real time systems. GCSR allows integration of both functional and resource requirements of the system. GCSR provides a top-down specification approach. Specifications can be given at an abstract level which can then be detailed as required. The PARAGON toolset is an environment for top-down design and analysis of real time system.
	PARAGON (Process-Algebraic Analysis of Real-time Applications with Graphics- Oriented Notation) toolset. A visual design environment is provided for distributed real-time systems. The toolset consists of a graphical editor for GCSR specifications, a visual simulator for GCSR (yet under construction), XVERSA: a graphical user interface to VERSA and translators between ACSR and GCSR.
	Used mainly for real-time system verification.
	Publications can be located at PARAGON Web Site: http://www.cis.upenn.edu/~lee/paragon.html. The publications indicate the use of GCSR and PARAGON for verification of real time systems.
	PARAGON

Platform: not sure

Availability: not yet publicly available

Supported techniques of interest: Simulation and Model Checking

Developed at: University of Pennsylvania

Level of usage for real time verification: high

	COSPAN

developed at Bell labs

Classification:

Real time systems.
	COSPAN is a tool which is used to verify time related properties of real time systems. It models the system as a collection of coordinating process using the S/R (selection resolution) model. The property to be verified is then represented as another process T whose acceptance conditions classify the executions of the model M into good or bad sets, and all the good executions are then removed from the language.
	COSPAN
	Is tough to apply to asynchronous systems.
	Publications can be found at site

http://www.cis.upenn.edu/~alur/pub.html These publications provide a brief description of the tool and languages used. They also provide application of the tool for real-time verification.

	

	HyTech

Classification:

Safety critical Embedded systems.
	It is a tool used for automated analysis of embedded systems. It uses hybrid automata to specify and analyze systems. Hybrid automata uses discrete, continuous, parameter type variables. Components of the system are represented using linear hybrid automata and communicate with each other using synchronization and shared variables.
	HyTech
	A graphical user interface is currently available for Sun OS platform. In important concept of HyTech is that it allows parametric analysis, which helps determine the values of certain parametric variables that is required for safety.

Timing constraints are limited to closed intervals.
	Has shown to be applied to real-time system analysis. Applied to Audio Control protocol, Fischer’s Mutual exclusion protocol, Steam Boiler example. Publications and Case Studies are listed at http://www-cad.eecs.berkeley.edu/~tah/HyTech/

	HyTech

Platform: Sun OS 5.8, Solaris 2.3.x, Digital Unix, DEC Ultrix, HP-UX.

Availability: Freely available with/without source code.

Supported techniques of interest: Model Checking

Developed at: Tom Henzinger, professor at Berkeley.

Level of usage for real time verification: high

xi = 0

crit--

yi > deltaC

x==i ; crit++

x = i

yi < deltaB

yi := 0

yi := 0

x = 0

Q2

CS

Q3

Q1

Idle

Q0

Expressed using

Has

Logic D

Logic C

Logic B

Logic A

Property-x

Real Time State Based System

Phase 4

Compare Applied

Methods

Phase 3

Apply

Phase 2

Compare & Filter

Phase 1

Search & Tabulate

PAGE

7

