Survey of Race Condition Detection

First Quarter Deliverable

NAG5-12584

PI: Yann-Hang Lee1
Co-PIs: Karam Chatha1, Gerald Gannod1, and Eric Wong2
1. Department of Computer Science and Engineering, Arizona State University

2. Department of Computer Science, University of Texas at Dallas

1 Summary

This document surveys a number of approaches for detecting and analyzing race conditions. The survey identifies three general categories of race condition detection tools: ahead-of-time, on-the-fly, and post-mortem. The ahead-of-time approaches encompass those techniques that apply the use of static analysis and compile-time heuristics while on-the-fly approaches are dynamic in nature. The post-mortem techniques are a combination of static and dynamic techniques. The following table summarizes the approaches identified in the survey into appropriate categories.

	Approach
	Reference
	Summary
	Advantages
	Disadvantages

	Ahead of Time
	7
	Extends rccjava, adds type annotations; lock guarding
	Large programs, meaningful interface to programmer
	Only supports lock-based synchronization, unsound inference schemes for false alarms

	
	12
	Race condition detection for java via analysis of lock-based synchronization (versus event ordering)
	Efficient
	Manual approach

	
	13
	Type annotations for ensuring data-race free systems
	Flexible, guarantees freedom from data-races
	Manual instrumentation; lack of support for barrier-based synchronization operations

	
	14
	Static typing to prevent data-races and deadlock
	Supports parameterized methods and safe run-time downcasts
	Requires proper type annotations inserted by users; requires specialized compilers

	
	9
	Based on annotating blocks with “atomic” keywords
	Reduces possibilities of unexpected thread interactions
	Cannot guarantee absence of synchronization errors; requires modification of languages

	On-the-fly
	1
	Annotates binary with code that monitors “mutex” violation.
	Operates on binary, demonstrated to work on large programs.
	Able to detect only “mutex” violations, produces false alarms.

	
	10
	Applies static and dynamic optimization techniques to reduce race detection overhead.
	Identifies redundant memory accesses and reports only one access race per memory location.
	Unsuitable for real-time systems due to large overheads, handles limited synchronization operators.

	
	11
	Exploits static analysis and compiler to reduce overhead.
	Collects information about objects rather than variables.
	Detection at object level produces spurious data races, overlooks library method races, large overhead.

	
	15
	Two pass approach to detect non-artifact (independent) race conditions in message passing programs.
	Time overhead is under 3 %. Races reported by the tools are truly non-artifact races.
	Sometimes unable to discern between artifact and non-artifact races, only detects the first race condition, requires re-compilation.

	
	16
	Efficient method to detect critical section access anomalies.
	Single execution can determine the access anomaly if certain conditions are satisfied.
	Cannot detect anomalies when critical section contains non-determinism, supports only “mutex” locks.

	
	17
	Saves abridged access histories of detected races during program execution.
	Lower overhead, provides a generic model for a number of synchronization primitives.
	Cannot locate the undetected races. Experimental results are not provided.

	Post-mortem
	2
	Applies record and re-play strategy for race detection.
	Low overhead, debugging of parallel non-deterministic programs is supported.
	Race detection is limited to recorded traces, does not record system calls, traps and interrupts, detects only one race condition in each record-replay cycle.

	
	3
	Deterministic replay system, implemented by modifying JVM
	Small trace file due to use of trace schedule, replay is deterministic in most cases
	High overhead on multiprocessor systems, requires special JVM

	
	4
	Replay of IPC, IO, interrupts using checkpoint algorithm
	Can reproduce real-time error sequences
	Time slice granularity has impact on observations; applicable to distributed programs but not multithreaded ones

	
	5
	Log-based replay of interrupts
	Deterministic re-execution for non-deterministic programs
	Recompilation of instrumented code necessary

	
	6
	Replay via capture and replay of message delivery
	Repeatable executions
	Only eliminates non-deterministic message delivery

	
	8
	Extracts partial order information about events from traces and reports unordered event pairs as data races.
	Systematic techniques with polynomial time complexity for race detection.
	Requires a number of traces, limited to one synchronization model.

	
	18
	Use coarse trace and trace balancing to help reduce overhead and impact on running program
	Coarse trace can be applied to individual loops rather than entire programs
	Coarse trace generates own overhead

2 Background and Overview

A race condition, which is also mentioned as data race, access anomaly, or just race, is a typical case of nondeterminism in concurrent programs when different processes access a shared memory location and:

· At least one access is write, and

· These accesses are not properly synchronized between each other.

Race conditions are usually considered as programming bugs, since their existence can cause the program to produce unexpected results. However, it is widely recognized as an extremely difficult problem to effectively and efficiently detect race conditions in practice, due to the nondeterministic nature of concurrent programs. For example, a race condition that occurs in one execution of the program is not guaranteed to show up in another execution where the orders of critical events in different processes are changed. It can require up to
[image: image1.wmf]!

N

 execution instances to locate a race condition, where
[image: image2.wmf]N

 is the degree of parallelism [16]. In other words, detecting race conditions is an NP-Complete problem in general cases [19]. Thus, a variety of research has been proposed to partially address the problem using different empirical, or heuristic, approaches, according to particular priority requirements of accuracy, performance and expense. In a traditional manner, past research can be classified as ahead-of-time, on-the-fly, or post-mortem [10].

Ahead-of-time race detection is usually performed statically during compile time, and tries to yield high coverage by considering the space of all possible program executions and identifying race conditions that might occur in any of them. A number of papers [7, 12, 13, 14] present similar static approaches that primarily focus on Java language to benefit from the properties of Object-Oriented languages. Flanagan and Freund present in [12] a static race detection analysis based on a formal type system that is capable of capturing many common synchronization patterns. They have also implemented a race condition checker, called rccjava, and tested it on a variety of Java programs. The type system introduced in [13] allows programmers to specify the protection mechanism for each object as parameters upon the instantiation of the object. A static system sometimes requires to instrument proper annotations into the analyzed program so that a specially designed compiler can retrieve such information and perform analysis. To reduce the annotation burden of programmers, an annotation assistant, called Houdini/rcc [7], was developed to automatically insert annotations into analyzed programs. Boyapati et al., introduce a new static type system, which is a variant of ownership types, to prevent both data race and deadlocks [14]. Ownership types provide a statically enforceable way of specifying object encapsulation so that the lock protecting an object can also protect its encapsulated objects. Flanagan and Qadeer further argue in [9] that the absence of race conditions is neither necessary nor sufficient to ensure the absence of errors due to unexpected thread interactions. They propose that a stronger non-interference property is required, namely the atomicity of code blocks, and present a type system for specifying and verifying such atomicity properties.

Though the ahead-of-time race detection only incurs little overhead at runtime and well-typed programs are guaranteed to be free of race conditions, it is prone to overwhelm programmers with false alarms, since many race conditions detected statically are infeasible races, i.e., they will never occur in real executions. And as an NP-Complete problem, the number of reachable global states may become prohibitively large. What is more, sometimes the static approach may just be too difficult to implement in practice. For example, it is not always possible to gain accessibility to the source code of the analyzed program. However, some ideas of the static analysis can be borrowed and combined with other dynamic approaches. Some examples of such a combination are presented later.

Opposite to the static analysis, on-the-fly and post-mortem methods perform race condition detections dynamically at runtime or in a reproduced execution based on information collected at runtime. These approaches shift the emphasis from exploring all possible execution paths to precisely locating a race condition when it occurs during a particular execution. Many research works [2, 8, 15, 17] in these fields exploit Lamport’s “happen-before” relation [20] to construct partial orders between critical events distributed among parallel processes, resulting in a partial order execution graph (POEG). Thus, the number of events that need to be checked for identifying a potential race condition can be reduced, i.e., only “concurrent” events are examined.

Netzer, et al., address the problem of dynamically locating race conditions in the context of explicitly parallel message-passing programs [15]. In order to avoid overwhelming programmers with too much message race information, they argue that only races guaranteed to be nonartifact should be reported. They also present a two-pass on-the-fly algorithm that requires space independent of the execution’s length. Eraser [1], another dynamic race condition detector, uses binary rewriting techniques to monitor every shared-memory reference and verify that consistent locking behavior is observed. What makes Eraser slightly different from other dynamic strategies is that it goes beyond work based on the “happen before” mechanism with a “Lockset algorithm” which enables itself to detect race conditions that are not apparent from a particular execution. Eraser also monitors shared memory locations directly instead of variables declared in programs so that it can handle different types of programs, as long as the mutex lock synchronization is used. [16] presents an on-the-fly method. For a certain class of programs, a single execution instance is sufficient to determine the existence of an access anomaly for a given input when the proposed method is used.

The most significant problem of on-the-fly methods is the runtime overhead, in terms of time and space. A typical on-the-fly method incurs an overhead in the range of 3x to 30x to the original execution time. Choi, et al., present an approach that combines both static and dynamic optimization techniques, resulting in a runtime overhead in the 13% to 42% range. A key idea of this approach is the weaker-than relation, which is used to identify (and preclude) probably redundant race conditions. Choi and Min also introduce the concept of Race Frontier [17], which can be used to limit the number of entries in the access history of each shared variable and only report the “latest” entries involved in race condition. Praun and Gross try to address the overhead problem with their on-the-fly mechanism that monitors data races at the object level rather than the memory-location level, which means that they achieve efficiency at the cost of preciseness.

In addition to the runtime overhead, the detection intrusion may even cause the program to behave in a manner different from the original execution. An example is the possibility of Heisenbugs [2]. To avoid these problems, researchers have developed a series of post-mortem approaches, which usually combines an efficient record phase and a replay phase when the time-consuming race detection is performed. Wittie proposes a debugger tool that uses the Checkpoint algorithm [4]. In his algorithm, all processes start execution synchronously; after a period of time, the execution halts globally, so the checkpoint is reached and the state of each application is captured. DejaVu [3], a record/replay tool for Java, provides deterministic replay of a program’s execution by introducing logical thread schedule. It records all critical events that include all synchronization events and the shared variable accesses by capturing logical thread schedules intervals, and replays them based on the thread schedule information from a file created at the end of the record mode. Helmbold, McDowell, and Wang introduce a series of practical algorithms with polynomial time for extracting partial order information between events from sequential traces with anonymous synchronization [8].

Record/Replay strategies have their own challenges. The first one is to construct an authentic replay environment. Ronsse and Bosschere [2] suggest that, besides race conditions, the following factors also need to be taken into account.

· Nondeterministic system calls.

· Interrupts, traps, and signals.

· Noninitialized variables and dangling pointers.

[5] gives such an example by presenting how the interrupts can be replayed at the same execution points. Another challenge is that to monitor and record all these nondeterminism behaviors of the program may also cause unacceptable overhead, besides the concern of feasibility. To achieve the efficiency of the record phase, Choi and Stone [18] introduce a trace-reduction strategy called incremental tracing, in which a coarse trace is generated during runtime and expanded in replay to a detailed trace at the expense of longer replay time. To improve the balance between the space and time, they also propose trace balancing, a compile-time heuristic to choose the level of runtime tracing.
In general, there is no optimal (or even approximate) solution for race condition detections. It depends on the particular practical requirements to decide which type of strategy and what heuristic algorithm should be used. But as shown in past research, static and dynamic strategies can be combined to achieve a good balance between accuracy and performance.

3 Surveyed Approaches

3.1 Eraser: A Dynamic Data Race Detector for Multithreaded Programs [1]

Eraser uses binary rewriting techniques to monitor every shared-memory reference and verify that consistent locking behavior is observed. The core of Eraser is the “Lockset Algorithm.” For each shared variable, Eraser maintains a set of candidate locks that have protected it for the computation by monitoring all reads and writes as the program executes. At first, the lockset may contain all possible locks. As the program executes, it will refine the lockset by only holding those locks that consistently protect the variable. If the lockset becomes empty, it indicates that there is no lock to protect the variable and a warning will be given off. To handle the situation when the above general discipline is violated but data races are free, such as initialization, read-shared data, read-write locks, the lockset algorithm is modified and extended. To implement the lockset algorithm, Eraser takes an unmodified program binary as input and adds instrumentation to produce a new binary that is functionally identical, but includes calls to the Eraser. Eraser instruments each load and store in the program, each call to acquire or release a lock, and the stubs that manage thread initialization and finalization. Several programs have been tested by Eraser, such as “AltaVista” web search engine, “Vesta” cache server, “Petal”—a distributed storage system, and some undergraduate coursework.

3.1.1 Advantages

1. It can detect the data races for the multithreaded program dynamically. Compared with the manual testing and debugging, or static checking, it saves time.

2. It can handle different types of programs, as long as mutex locks are used in these programs.

3. It takes advantage of the “Lockset algorithm”, and goes slightly beyond work based on the traditional “happen before” mechanism. So Eraser can detect races that are not apparent from a particular execution.

3.1.2 Disadvantages

1. The most important problem with Eraser is that it can only process mutex synchronization operations, and it fails when other synchronization primitives (i.e., semaphores) are built on top of these lock operations.

2. After Eraser instrument code is inserted, applications typically slow down by a factor of 10 to 30. It can change the order in which the threads are scheduled and can affect the behavior of time-sensitive applications.

3. It produces numerous false alarms due to memory reuse, private locks and benign races. To eliminate these false alarms, some annotation functions have to be inserted to the source code file accurately and specifically, and the program has to be recompiled and rebuilt. Sometimes, it is not practical or impossible.

4. Additional work needs to be done for handling multiple locks and deadlock.

3.2 RecPlay: A Fully Integrated Practical Record/Replay System [2]

3.2.1 Summary

This paper presents a practical solution for the cyclic debugging of nondeterministic parallel programs. RecPlay traces a program execution and stores the information in trace files; then it uses this information to guide a faithful re-execution. It runs race detector as a watchdog during replay without changing the behavior of the execution. RecPlay can only correctly replay programs that are free of data races. Once the data race occurs, the replayed execution stops and the user is notified. After that, there is no guarantee for a correct re-execution. To detect the data race, during record time, it only records the synchronization operations by storing the timestamp increments in each thread. During race detection time (replay time), RecPlay traces the data access operations by collecting memory reference information; then it detects conflicting memory references in concurrent segments by using logical vector clock and clock snooping; finally, it will identify the instructions that caused the data race. The data race detection is based on the happens-before relation. Several programs running on Solaris have been tested by RecPlay.

3.2.2 Advantages

1. It divides the work into two stages: a highly efficient record phase that restricts the impact of monitoring/recording operations on the original programs, and a replay phase that is responsible for the time-consuming data race auto-detection.

2. It can debug parallel nondeterministic programs with the classical debuggers.

3. It is completely independent of any compiler or programming language, and it does not require recompilation or relinking.

3.2.3 Disadvantages

1. It is based on the happens-before relation so that it can only detect data races that appear in a particular execution.

2. It does not record and replay system calls, traps and interrupts, which are necessary to guide a completely faithful program replay.

3. It can only correctly replay programs that are free of data races, i.e., the first detected race error needs to be corrected before other races can be correctly detected.

4. The average overhead for replay is 91% and the automatic race detection slows down the program execution about 36 times.

5. It only runs on Solaris.

3.3 Deterministic Replay of Java Multithreaded Applications [3]

3.3.1 Summary

This paper discusses a record/replay tool for Java, DejaVu, which provides deterministic replay of a program’s execution. It introduces a logical thread schedule, which refers all the physical thread schedules in an equivalence class. So DejaVu is independent of the underlying thread scheduler. It records all critical events that include all synchronization events and the shared variable accesses by capturing logical thread schedules intervals. To identify the schedule intervals, one single global clock and many local clocks (one for each thread) have been used. All critical events are traced by updating the global clock and assigning the global lock value to the local clock. When the thread is scheduled out, the global clock continues to tick and the local clock pauses. At the start of a replay, DejaVu reads the thread schedule information from a file created at the end of the record mode. When a thread is created and starts its execution, it receives an ordered list of its logical thread schedule intervals. When a critical event execution is reached, it will wait until the global clock value becomes the same as the local value (read from record file). After execution, it will update the global clock. To implement the record/replay mechanism, Sun Microsystems’ Java Virtual Machine has been modified, which is called DejaVu. Several programs such as Chaos, MM, SOR, MTD and so on have been tested by using DejaVu. An execution time overhead from 17% to 87% has been observed.

3.3.2 Advantages

1. It is implemented by modifying JVM instead of the operating system, which makes it a portable tool for Java applications across different platforms

2. The trace file size is smaller since it traces the logical thread schedule instead of the physical schedule.

3. The techniques of handling Java synchronization operations can be extended to general multithreaded programming systems with similar synchronization primitives.

4. The replay is deterministic under some conditions (see below).

3.3.3 Disadvantages

1. It only can deterministically replay the non-deterministic execution behavior due to threads and related concurrent constructs such as synchronization primitives.

2. Windows events, input/output, system calls have not been taken care of. Actually, this is a common dilemma existing in record/replay systems: replaying a faithful execution requires recording as many non-deterministic events as possible; but on the other hand, recording all kinds of non-deterministic events is a extremely challenging task (sometimes may be infeasible), and may incur intolerable overhead during the record phase.

3. A higher overhead will be expected if it runs on a multiprocessor system.

4. All synchronization functions have to be modified in specific ways.

3.4 Debugging Distributed C Programs by Real Time Replay [4]

3.4.1 Summary

This paper introduces a debugger tool running on the Unix system, Bugnet, which is designed to debug C programs distributed within a local area network. Bugnet saves interprocess communication messages, I/O events, and interrupts by using the Checkpoint algorithm. All processes start execution synchronously; after a period of time (15 to 30 seconds), the execution halts globally, so the checkpoint is reached. The execution will halt 0.5 seconds, and the state of each application is captured. All captured events will be assigned a timestamp so they will be replayed at the same real time interval. During replay, Bugnet will take the messages or events from the events log history file, and check to see if it matches the checkpoint timestamp. If it matches, it will send that message. So, all IPC or I/O events will be replayed in the original time sequence exactly. The timing accuracy with which Bugnet replays IPC messages has been tested by using a simple four processes model.

3.4.2 Advantages

1. Bugnet can reproduce real time error sequences in distributed Unix programs, even if the components may run on a different machine.

2. The user has a GUI to monitor the interactions and changes within the system.

3.4.3 Disadvantages

1. The replay accuracy depends on the underlying operating system scheduler; the accuracy is about 0.05 seconds if the Unix scheduler uses 0.02 second time slices, and 0.2 second if the scheduler uses 0.1 second time slices.

2. The current version of Bugnet only handles explicit IPC and I/O operations, which means accesses to shared memory are not processed. Thus, it is ineffective in race detection.

3. If the Bugnet runs on heavily loaded networks, some messages could occasionally get lost.

4. It looks useful for distributed programs, not for a single program or multithreaded programs.

5. The total execution time is increased by the pauses during checkpoints, about 2%.

3.5 Support for Software Interrupts in Log-Based Rollback-Recovery [5]

3.5.1 Summary

This paper presents a solution for log-based record replay to make sure that all interrupts are replayed at the same execution points. The solution is based on the software counter to compute the number of instructions between the asynchronous signals during normal operation. For efficiency, not every instruction is counted; instead, only the backward branches, jumps, and subroutine calls are counted. A virtual instruction is used to represent a basic block like that. A user-level thread package is built to track the thread switch so that the same thread scheduling decisions will be reproduced. To instrument a program, the program has to be recompiled so that the compiler is able to set two general purpose registers (or memory address, if registers are not available) to emulate the instruction counter. During replay, a branch counter read from the log file is loaded to the register, and the program will execute these specific branches. After these branches have been executed, a handler is called to set a breakpoint at the program counter read from the log file. The breakpoint will stop the program execution where the event happened during recording. The approaches for implementing instruction counter for both DEC Alpha and Intel Pentium PC have been provided. Evaluations for both of these two platforms have been performed by running some applications.

3.5.2 Advantages

1. Using a single technique, it implemented deterministic reexecution for nondeterministic programs due to interrupts (or software signals) or shared memory accesses in multithreaded applications.

2. Special hardware (hardware instruction counter) is not needed to hold instruction counters.

3.5.3 Disadvantages

1. Programs have to be recompiled by using a modified compiler so that the instrumentation code can be inserted correctly.

2. Additional registers have to be reserved to hold the instruction counter.

3. The overhead is a 6 percent to 18 percent slowdown in application execution.

3.6 Repeatability in Real-Time Distributed Simulation Executions [6]

3.6.1 Summary
This paper introduces an approach for replaying real-time distributed simulation system by recording and playing the message delivery. First, it places the entire system within a distributed virtual machine; then it replaces existing communications and synchronization functions with their repeatable counterparts. Every event in the execution will be assigned a specific time according to the virtual clock. Since every message has a repeatable timestamp, it can be provided in a repeatable order. To advance the virtual time, each major block of code is assigned a specific duration by inserting instrumentation code at the beginning and end of the code block. After the block is executed, the local virtual time (LVT) is advanced so that duration and the instrumentation code is removed. Every message is assigned a value, which is equal to the sum of LVT and virtual latency. During replay, all messages are sent in order. Once the ordered messages are received, they are stripped of their timestamp and passed to the LP until time has been advanced to LVT. A test has been performed in combat interaction simulation, Phalanx, which is set in a battlefield of two opposing forces.

3.6.2 Advantage

It is able to produce repeatable executions for a real-time, receive order simulation application.

3.6.3 Disadvantages

1. It only eliminates one nondeterministic source: message delivery, and it does not take care of other sources: external input, operation system calls, interrupts and so on.

2. There is message delay due to physical latency and waiting for LVT synchronization.

3. It relies on the reliable communications, and the lost messages will cause problem.

4. Program has to be recompiled to insert the instrumentation code.

5. There is overhead during replaying.

3.7 Detecting Race Conditions in Large Programs [7]

3.7.1 Summary

Similar to Eraser, this approach is also based on the lock-based synchronization discipline. This feature reduces the dependences on a particular execution of the analyzed program. However, it has two major shortcomings: first, it is prone to produce many false alarms; second, it may be too restrictive, since a variety of synchronization primitives (idioms) are available in today’s programming languages. This paper describes the improvements to rccjava, a race condition checker that statically identifies potential races in concurrent Java programs. These improvements, which enable rccjava to be used on large and realistic programs, include an annotation inference system and a user interface to help programmers understand warnings generated by the tool. rccjava is an extension of Java’s type checker that identifies race conditions in multi-threaded Java programs, based on the lock-based synchronization discipline. The rccjava checker relies on some additional type annotations providing information about the locking discipline, such as which lock guards a particular field. It checks that these annotations are respected by the program and are sufficient to ensure the absence of race conditions. To achieve practical analysis of large programs, an annotation assistant, called Houdini/rcc, was developed to automatically insert annotations into analyzed programs. And a number of techniques were proposed to reduce false alarms caused by the automatic annotations.

An HTML-formatted user interface that describes the potential races was also developed. The user interface clusters race conditions together according to their probable cause so that related race conditions can be dealt with as a single unit. The Houdini/rcc system has been evaluated on a number of test programs ranging in size from several thousand lines to a half million lines of code.
3.7.2 Advantages

1. The Houdini/rcc system can automatically add annotations into programs being analyzed, which eliminates the requirement for programmers to add annotations manually, and enables rccjava to be a practical and effective tool to detect race conditions in programs containing up to 500,000 lines.
2. It can provide meaningful information about potential races to programmers through simple interface.
3. It can cluster race conditions together according to their probable cause so that related race conditions can be dealt with as a single unit.
3.7.3 Disadvantages

1. It mainly supports lock-based synchronization operations. Additional annotation rules need to be added to deal with other types of synchronization idioms.
2. Some of the techniques used to reduce false alarms generated by the annotation inference system are unsound.

3. There are still a number of situations in which rccjava’s reasoning is overly coarse.
4. The check-and-refute cycle needs to iterate for a number of times before the system can reach a stable state.
5. It needs to access the source code of Java programs.
3.8 Detecting Data Races by Analyzing Sequential Traces [8]

3.8.1 Summary

This paper introduces a series of practical algorithms with polynomial time for extracting partial order information between events from sequential traces with anonymous synchronization. A trace (also called an event history) is a linear list or total ordering of the events performed during an execution of the program. The basic synchronization model in the paper is constructed involving counting semaphores and two operations, namely, P (wait) and V (signal). To describe this model, the paper first introduces a group of definitions on partial order relation between events, and an algorithm based on vector timestamp methods used for determining virtual time of events. Then it illustrates how to extract many of the safe orderings relations, which means it is impossible for two events to happen concurrently under such condition, by manipulating and analyzing time vectors. An algorithm is also presented to distinguish unordered sequential events from concurrent events.

A working trace analyzer has been implemented in IBM Parallel Fortran. The trace analyzer can report various data races in parallel programs by find unordered pairs of events and variable access conflicts.

3.8.2 Advantages

1. This paper systematically and theoretically illustrates a series of race-detecting algorithms based on the happen before relation.

2. It gives deterministic analysis of the time complexities of introduced algorithms.

3.8.3 Disadvantages

1. The introduced algorithms are also based on the happen before relation, which depends on a particular (or a number of) execution of a program to determine to partial order between events.

2. It mainly involves only one synchronization model, the counting semaphore.
3. It has only been implemented in IBM Parallel Fortran.

3.9 Type for Atomicity [9]

3.9.1 Summary

Based on the observation that the absence of race conditions is neither necessary nor sufficient to ensure the absence of errors due to unexpected thread interactions, the authors propose that a stronger non-interference property is required, namely the atomicity of code blocks, and they present a type system for specifying and verifying such atomicity properties. The type system allows statement blocks and functions to be annotated with the keyword atomic. If the program type checks, then the type system guarantees that for any arbitrarily-interleaved program execution, there is a corresponding execution with equivalent behavior in which the instructions of each atomic block executed by a thread are not interleaved with instructions from other threads. This property allows programmers to reason about the behavior of well-typed programs at a higher level of granularity, where each atomic block is executed “in one step, ” thus significantly simplifying both formal and informal reasoning.

The authors formalize the ideas of this paper in terms of CAT, a small, imperative, multithreaded language with high-order functions and which implements the type system. The proof of the correctness of the type system is shown based on the reduction theorem of Cohen and Lamport. The benefits of the type system are illustrated with an application to java.util.Vector library class.

3.9.2 Advantages

1. The paper introduces the concept of atomicity into multithreaded programs, to ensure stronger non-interference property, which cannot be guaranteed by traditional synchronization primitives.

2. It reduces the possibility for multithreaded programs to have errors due to unexpected thread interactions at the level of specification.

3. By reducing atomic code blocks into “single steps,” the work of reasoning about the interactions between threads can be greatly lessened.

3.9.3 Disadvantages

1. This static type system needs to be used together with other race detection tools, and cannot guarantee the absence of synchronization errors such as race conditions by itself.

2. The atomicity of code blocks can also be ensured via careful use of traditional synchronization primitives such as mutex locks.

3. It requires the use of special programming languages, or the modification of current language tools to implement such type system.

3.10 Efficient and Precise Data race Detection for Multithreaded Object-Oriented Programs [10]

3.10.1 Summary

This paper presents a novel approach to dynamic data race detection for multithreaded object-oriented programs, which is both efficient and precise. A key idea in this approach is the weaker-than relation, which is used to identify memory accesses that are provably redundant from the viewpoint of data race detection. Thus, the number of access events needed to be considered and saved can be reduced. Another source of reduction in overhead is that the approach does not report all access pairs that participate in data races, but instead guarantees that at least one access is reported for each distinct memory location involved in a data race. The overall architecture includes four phases: static analyzer, instrumentation, optional runtime optimizer, and runtime detector, respectively.

The proposed approach results in runtime overhead ranging from 13% to 42%, which is well below the runtime overhead of previous approaches with comparable precision. This performance is obtained through a combination of static and dynamic optimization techniques which complement each other in reducing the overhead of our detector. The experimental results, obtained by executing a set of multithreaded Java programs on a prototype implementation of the proposed approach, show almost all the data races reported by the system correspond to actual bugs, and the precise output of the race detector allowed programs to easily find and understand the problematic source code lines in our test programs.

3.10.2 Advantages

1. This approach combines static and dynamic optimization techniques, such as the weaker-than relation, to achieve both better performance and accuracy at the same time.

2. It uses stricter definition of data races than Eraser, and handles Start and Join operations with special techniques, which results in less spurious data race reports.

3. It detects data races on-the-fly, usually the most convenient mode for the user.

3.10.3 Disadvantages

1. It incurs runtime overhead in the 13% to 42% range, which is not ideal for data race detection in a real-time system.

2. According to the experimental results, it is unable to handle some synchronization operations other than monitor-style ones, such as barriers. Hence, it may produce some spurious data race reports.

3.11 Object Race Detection [11]

3.11.1 Summary

This paper presents an on-the-fly mechanism that detects access conflicts, which is defined as an approximation of data races, in execution of multi-threaded Java programs. The introduced checker tracks information at the level of objects rather than at the level of individual variables to reduce overheads for data race detection. More specifically, this viewpoint allows the checker to exploit specific properties of object-oriented programs for optimization by restricting dynamic checks to those objects that are identified by escape analysis as potentially shared.

The checker has been implemented in collaboration with an “ahead-of-time” Java compiler: it uses compile-time analysis to identify data that cannot be involved in a data race (because the data are thread-local) and then uses runtime mechanisms to disambiguate the cases that static information cannot resolve. The combination of static program analysis (escape-analysis) and inline instrumentation during code generation allows the checker to reduce the runtime overhead of detecting access conflicts. This overhead amounts to about 16-129% in time and less than 25% in space for typical benchmark applications.

3.11.2 Advantages

1. Similar to the approach in [10], it employs a phase of static analysis before the dynamic detection to reduce the possible cases of data races.

2. Since it focuses on the lockset mechanism rather than on access ordering, it incurs an overhead in space that is less than 25% of the user programs. Given that a typical on-the-fly race detector requires O(L) in space, where L is the length of user programs.

3. It exploits a compiler to interleave user and runtime checker instructions, which results in efficient implementation of access checks.

3.11.3 Disadvantages

1. In order to reduce the overhead for data race detection, it monitors data races at the object level rather than the memory-location level. Hence, it is prone to produce more spurious data race reports.
2. It still incurs an overhead about 16-129% in time.
3. It overlooks races caused by library methods.
3.12 Type-Based Race Detection for Java [12]

3.12.1 Summary

This paper presents a static analysis system for detecting race conditions in Java programs. The analysis supports the lock-based synchronization discipline by tracking the protecting lock for each shared field in the program and verifying that the appropriate lock is held whenever a shared field is accessed. The reasoning and checks performed by this analysis are expressed as an extension of a race-free Java type system. The extended type system is capable of capturing many common synchronization patterns, which includes classes with internal synchronization, classes that requires client-side synchronization, and thread-local classes. Mechanisms are provided for escaping the type system in places where it proves too restrictive, or where a particular race condition is considered benign.

A race condition checker, called rccjava, has been implemented and tested on a variety of Java programs totaling over 40,000 lines of code. The additional type of information required by rccjava is embedded in Java comments to preserve compatibility with existing Java tools. It relies on programmers to manually insert annotations into source code, which incurs a burden of about 20 additional type annotations per 1000 lines of code. A number of races have been found in the standard Java libraries and other tested programs.

3.12.2 Advantages
1. This paper presents an effective model of static race analysis, which can be incorporated with other techniques such as dynamic race detection.

2. It supports the lock-based synchronization discipline, which is efficient in time and space, and makes itself a better candidate for real-time race detection than using event ordering.

3.12.3 Disadvantages

1. It depends on programmers to manually insert annotations. An automatic type inference system [7] has been developed to solve this problem.

2. It needs to access the source codes of tested programs.
3. The performance data, in terms of time and space, is not illustrated in the paper.

3.13 A Parameterized Type System for Race-Free Java Programs [13]

3.13.1 Summary

This paper proposes a system of type annotations for Java that ensures a well-typed program is free of data races, and allows programmers to write a generic class and instantiate it with different protection mechanisms. In particular, this type system allows programmers to specify the protection mechanism for each object as part of the type of the variables that refer to that object. The type can specify either the mutual exclusion lock that protects the object from unsynchronized concurrent accesses, or certain threads that can safely access the object without synchronization. Such flexibility enables programmers to reduce the number of unnecessary synchronization operations in a program without risking data races. To achieve this flexibility, the authors introduce a way of parameterizing classes that let programmers defer the protection mechanism decision from the time when a class is defined to the times when objects are created. The system also supports default types that reduce the burden of writing the extra type annotations.

The type system has been implemented in a variant (PRFJ) of Concurrent Java, which is a multithreaded subset of Java with formal semantics. In PRFJ, the additional type information, such as the ownership, of an object can be specified as parameters upon instantiation. The ownership relations are used only for compile-time type checking and are not preserved at runtime. Consequently, PRFJ programs have no runtime overhead when compared to regular Concurrent Java programs.

3.13.2 Advantages

1. It is more expressive and flexible than previous such type systems.

2. It provides default types that reduce the burden of writing the extra type annotations.

3. It guarantees that a well-typed Java program using this type system is free of data races.

4. It performs type checking at compiler-time, which results in no runtime overhead when compared to regular Concurrent Java programs.

3.13.3 Disadvantages

1. It depends on the programmer to instrument additional type annotation in source code, and requires a specially designed compiler.

2. It has some limitations in some cases, which includes runtime casts and static variables.

3. It is unable to handle synchronization operations using barriers.

3.14 Ownership types for safe programming: preventing data races and deadlocks [14]

3.14.1 Summary

The paper introduces a new static type system for multithreaded programs to prevent both data race and deadlocks, based on the premise that well-typed programs are guaranteed to be free of these kinds of errors. The proposed type system allows programmers to specify the locking discipline in their programs in the form of type declarations. Then the type checker statically verifies that a program is consistent with its type declarations. The system also allows programmers to partition the locks into a fixed number of equivalence classes, and use recursive tree-based data structures to describe the partial order among the equivalence classes. In addition, the system allows mutations to the data structure that change the partial order at runtime; the type checker statically verifies that the mutations do not introduce cycles in the partial order, and that the changing of the partial order does not lead to deadlocks.
The system uses a variant of ownership type to prevent data races and deadlocks. Ownership types provide a statically enforceable way of specifying object encapsulation. Ownership types are useful for preventing data races and deadlocks because the lock that protects an object can also protect its encapsulated objects.

A JVM-compatible prototype implementation of the type system is also introduced in this paper. The implementation translates well-typed programs in our system into byte codes that can run on regular JVMs. Our implementation handles all the features of the Java language including threads, constructors, arrays, exceptions, static fields, interfaces, run-time downcasts, and dynamic class loading.

3.14.2 Advantages

1. It is efficient at runtime and guarantees that well-typed programs are free of both data races and deadlocks.

2. It supports parameterized methods and safe runtime downcast.

3. It allows changes to the partial order of synchronization types at runtime, without introducing deadlocks.

4. It uses a combination of type inference and well-chosen defaults to significantly reduce the number of annotations needed in practice.

3.14.3 Disadvantages

1. It only supports Java programs.

2. It requires proper type annotations, either inferred by the type system or manually inserted by programmers, in source codes.

3. To support such kinds of type systems, a specially designed compiler or mid-layer translator is needed.

3.15 Debugging race conditions in message-passing programs [15]

3.15.1 Summary

In this paper, the authors address the problem of dynamically locating unwanted non-determinism (race conditions) in executions of explicitly parallel message-passing programs. In order to avoid overwhelming programmers with too much message race information, the authors classify races into two categories, namely nonartifact and possible artifact races that are affected (or caused) by former ones, and argue that only races guaranteed nonartifact should be reported. They also argue that accurate detection using a pure on-the-fly algorithm requires space bounded by the execution’s length, an impractical requirement for long program runs. To address this problem, they present a two-pass on-the-fly algorithm that requires space independent of the execution’s length. The first pass is an approximate on-the-fly algorithm that determines whether any races occurred but does not pinpoint their locations. More specifically, it locates the second message that races toward the racing receive in each process, but does not locate the racing receive. The second pass is run on a re-execution of the program (on the same input) and performs an accurate detection of nonartifact races. The authors argue that space usage does not grow with the execution’s length, and even though the (nondeterministic) re-execution may differ from the original run, nonartifacts are still guaranteed to be detected.

The hybrid 2-pass has been implemented under PVM 3.3.6 on an ethernet-connected network of SparcStation 10’s. Several message-passing programs were compiled with a library that performs the pass 1 race detection and pass 2 race location phases. Experiment data shows that about 50% of possible nonartifact races can only be labeled “Tangled,” because the race checking system is unable to determine whether the races are nonartifact. In most cases the average slowdown was under 3%.

3.15.2 Advantages

1. The time overhead at runtime is under 3% in most testing cases.

2. The space overhead is independent of the execution’s length.

3. The races reported by the race checking system are truly nonartifact races.

3.15.3 Disadvantages

1. The experiment data shows the proposed algorithm may not be as accurate as claimed by the authors, i.e., it may fail to discern between tangles and between first and non-first tangled races.

2. The 2-pass algorithm only locates the “first” nonartifact race in each process during each run. To locate following nonartifact races, the “first” nonartifact race might need to be fixed and the program needs to be re-executed.

3. The program needs to be re-compiled to instrument the race checking algorithm.

3.16 Detecting access anomalies in programs with critical sections [16]

3.16.1 Summary

The paper presents an efficient on-the-fly method for detecting access anomalies in programs that contain critical section coordination. For a large class of programs, a single execution instance is sufficient to determine the existence of an access anomaly for a given input when the proposed method is used, given that there is no other synchronization, such as events, and no nondeterminism propagated by critical sections. The proposed approach extends the class of programs that satisfy the SISE (single input, single execution) property to include programs with critical sections that do not contain internal nondeterminism. The author also presents a complementary static algorithm for determining whether internal nondeterminism potentially interferes with anomaly detection.

The proposed approach is mainly based on the concept of Partial Order Execution Graph (POEG). A POEG captures Lamport’s “happened before” relationship by imposing a partial order on the operations performed in the execution instance E. An extended representation of critical sections, called lock covers, is introduced to capture the mutual exclusion property without the explicit ordering of lock and unlock operations.

3.16.2 Advantages

1. If the tested program satisfy certain constraints, a single execution instance is sufficient to determine the existence of an access anomaly for a given input.
2. It extends the partial order relation by introducing the concept of lock covers, which is similar to the “lockset algorithm’ used in [1].
3.16.3 Disadvantages

1. For programs with internal nondeterminism, our approach may either fail to detect existing anomalies for a given input or may report false anomalies.
2. It cannot handle synchronization primitives other than mutex locks.
3. No experimental data is presented.
3.17 Race Frontier: reproducing data races in parallel-program debugging [17]

3.17.1 Summary

This paper presents a mechanism to debug data races in the execution of parallel programs. The key idea is identifying a set of detected data races (called a Race Frontier) whose execution histories, including undetected race events preceding them, can be reproduced. In general, on-the-fly race detections require keeping the history of all the accesses that have a potential for a data race, incurring potentially unbounded space and time overhead. A solution to this overhead problem is to limit the number of entries in the access history of each shared variable and only report the “latest” entries involved in a data race. However, limiting the entries in the access history introduces a new problem: the detected (reported) data race is not guaranteed to occur when the program is reexecuted. The mechanism introduced in this paper ensures the reproduction of not only the detected data race but also of all the data races that were undetected because of the limited entries kept in the access history. The effect is the same as reproducing complete data race histories from the abridged data race history collected during program execution, allowing well–known methods for debugging sequential programs to be applied during reexecution. This mechanism and the definition of Race Frontier are developed as extensions of POEG [16] and the happen-before relation. The paper shows how to extend the mechanism from the case of two processes and a single shared variable, to handle the general case of an arbitrary number of processes and an arbitrary number of shared variables. It also describes how to extend the mechanism to debugging data races in non-deterministic programs.

3.17.2 Advantages

1. It can reproduce complete data race histories from the abridged data race history collected during program execution, resulting in less overhead in terms of time and space.

2. The idea can be incorporated to build an efficient and effective system for on-the-fly race detections.

3. It provides a generic model to handle a variety of synchronization primitives.

3.17.3 Disadvantages

1. It cannot locate the exact position of an undetected (unreported) data race, which may be the cause of a following detected (reported) data race.

2. No experimental result is reported.

3.18 Balancing runtime and replay costs in a trace-and-replay system [18]

3.18.1 Summary

This paper presents two improvements to a previous trace-and-replay system. The first is a refinement of a previous trace-reduction strategy called incremental tracing, in which a coarse trace is generated during runtime and expanded in replay to a detailed trace at the expense of longer replay time. To improve the balance between the size of the coarse trace and the time required to create the detailed trace of program execution in replay, the authors propose trace balancing, a compile-time heuristic to choose the level of runtime tracing. The goal is to determine a good balance individually for each loop structure in the program. The second improvement is an extension of the replay strategy, resulting in a strategy of incremental construction of the coarse trace (IC2) during replay. This strategy allows the technique of incremental tracing to be applied even to the replay phase, i.e., during replay, the coarse trace that was generated at runtime is expanded incrementally as it is required by the replay. We analyzed several programs from the PERFECT benchmark suite to consider the feasibility and usefulness of compile-time trace balancing. The results showed that the choice of superior trace strategy varies according to the structure of the program, to its iteration counts, and to its pattern of memory access.

3.18.2 Advantages

1. This paper presents a group of mechanisms for reducing time and space overhead incurred by event tracing via abstracting the level of traces.
2. The level of coarse trace can be specified individually for each loop in the program.
3. The technique of incremental tracing can be applied during replay.
3.18.3 Disadvantages

1. The benefit of this strategy depends on the structure and some specific properties of the tested program.
2. Generating coarse traces incurs its own overhead during execution.
References:

[1] Stefan Savage, Michael Burrows, Greg Nelson: Eraser: A Dynamic Data Race Detector for Multithreaded programs, ACM Transactions on Computer Systems, Vol. 15, No.4, November 1997, Pages 391-411.

[2] Michiel Ronse and Koen De Bosschere, RecPlay: A Fully Integrated Practical Record/Replay System, ACM Transactions on Computer Systems, Vol.17, No.2, May 1999, Pages 133-152.

[3] Jong-Deok Choi and Harini Srinivasan, Deterministic Replay of Java Multithread Applications, in Proceedings of the SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT-98), pages 48-9, August 1998.

[4] Larry D. Witte, Debugging distributed C programs by real time replay, Proceedings of the ACM SIGPLAN and SIGOPS workshop on Parallel and distributed debugging, 1988, Madison, Wisconsin, United States, pages 57-67.

[5] J. Hamilton and E.N. Elnozahy, Support for Software Interrupts in Log-Based Rollback-Recovery, IEEE Trans. on Computers, vol. 47, no. 10, Oct. 1998.

[6] Thom McLean, Richard Fujimoto, Repeatability in real-time distributed simulation executions, Proceedings of the fourteenth workshop on Parallel and distributed simulation 2000, Bologna, Italy, Pages 23-32.

[7] Cormac Flanagan, Stephen N. Freud, Detecting race conditions in large programs, Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering, Snowbird, Utah, United States, June 2001, Pages 90–96.

[8] David P. Helmbold, Charles E. McDowell, Jian-Zhong Wang, Detecting data races by analyzing sequential traces, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences 1991, Jan 1991, vol.2, Pages 408 –417.

[9] Cormac Flanagan, Shaz Qadeer, Types for atomicity, Proceedings of the 2003 ACM SIGPLAN international workshop on Types in languages design and implementation, Jan 2003, pages 1-12.

[10] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, ViVek Sarkar, Manu Sridharan, Efficient and Precise Data race Detection for Multithreaded Object-Oriented Programs, Proceeding of the ACM SIGPLAN 2002 Conference on Programming language design and implementation, May 2002, Pages 258 – 269.

[11] Christoph von Praun, Thomas R. Gross, Object race detection, Proceedings of the OOPSLA '01 conference on Object Oriented Programming Systems Languages and Applications October 2001, Pages 70 – 82.

[12] Cormac Flanagan, Stephen N. Freund, Type-based race detection for Java, Proceedings of the ACM SIGPLAN '00 conference on Programming language design and implementation, 2000 , Vancouver, British Columbia, Canada, Pages: 219 – 232.
[13] C. Boyapati and M. Rinard, A parameterized type system for race-free java programs, ACM Conference on Object-Oriented Programming Systems Languages and Applications, 2001, Pages 56 – 69.
[14] Chandrasekhar Boyapati, Robert Lee, Martin Rinard, Ownership types for safe programming: preventing data races and deadlocks, Proceedings of the 17th ACM conference on Object-oriented programming, systems, languages, and applications, November 2002, Pages 211 – 230.
[15] Robert H. B. Netzer, Timothy W. Brennan, Suresh K. Damodaran-Kamal, Debugging race conditions in message-passing programs, Proceedings of the SIGMETRICS symposium on Parallel and distributed tools, January 1996.
[16] Anne Dinning, Edith Schonberg, Detecting access anomalies in programs with critical sections, Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed debugging, December 1991, Pages 85 – 96.

[17] Jong-Deok Choi, Sang Lyul Min, Race Frontier: reproducing data races in parallel-program debugging, Proceedings of the third ACM SIGPLAN symposium on Principles & practice of parallel programming, April 1991, Pages: 145 – 154.

[18] Jong-Deok Choi , Janice M. Stone, Balancing runtime and replay costs in a trace-and-replay system, Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed debugging, December 1991, Pages 26 – 35.

[19] Robert H. B. Netzer , Barton P. Miller, What are race conditions?: Some issues and formalizations, ACM Letters on Programming Languages and Systems (LOPLAS), March 1992, Volume 1, Issue 1, Pages: 74 – 88.

[20] Leslie Lamport, Time, clocks, and the ordering of events in a distributed system, Communications of the ACM, July 1978, Volume 21, Issue 7, Pages: 558 – 565.
 Timing and Race Condition Verification for Real-Time Systems
2

_1109060674.unknown

_1109060832.unknown

