
Towards the Verification and Validation of Online Learning
Adaptive Systems�

Ali Mili
College of Computing Science
New Jersey Inst. of Technology

Newark, NJ 07102
mili@cis.njit.edu

Bojan Cukic, Yan Liu
Lane CSEE Department,
West Virginia University

Morgantown WV 26506-6109
fcukic,yanliug@csee.wvu.edu

Rahma Ben Ayed
School of Engineering
University of Tunis II,

Belvedere 1002 Tunisia
rahma k@yahoo.com

April 1, 2002

Abstract

Online Adaptive Systems in general, and learning neural nets in particular cannot be validated using traditional
verification and validation techniques, because they evolve over time, and past learning data influences their behavior.
In this paper we discuss a framework for reasoning about online adaptive systems, and see how this framework can
be used to perform V&V on such systems.

Keywords

Verification and Validation, Formal Methods, Refinement Calculi, On-Line Learning, Neural Networks, Adaptive
Control.

1 Introduction: Position of the Problem

1.1 On-Line Learning: An Emerging Paradigm

Adaptive Systems are systems whose function evolves over time, as they improve their performance through learning.
The advantage of adaptive systems is that they can, through judicious learning, react to situations that were never
individually identified and analyzed by the designer. If learning and adaptation are allowed to occur after the control
system if deployed, the system is called online adaptive system.

Online adaptive systems are attracting increasing attention in application domains where autonomy is an important
feature, or where it is virtually impossible to analyze ahead of time all the possible combinations of environmental
conditions that may arise. The controlled processes (as well as the control law) are often non-linear and subject to
noise, disturbances, time delays and other unmodeled dynamics. Therefore, it is more advantageous to learn the
system’s behavior, rather than attempt its precise functional description. Examples of autonomous control applications

�This work is funded by grants from NASA Dryden Flight Research Center, through the Institute of Software Research (Fairmont, WV), and
from NASA Goddard Space Flight Center, through NASA IV&V Facility (Fairmont, WV).

1

are long term space missions where communication delays to ground stations are prohibitively long, and we have
to depend on the systems’ local capabilities to deal with unforeseen circumstances [14]. An example of the system
dealing with complex environmental conditions are flight control systems, which deal with a wide range of parameters,
and a wide range of environmental factors. These systems must maintain flight safety and criticality equivalent to
traditional human piloted systems. Other proposed applications include collision avoidance systems, multi-vehicle
cooperative control, intelligent scheduling in manufacturing [10], control systems for automobile steering based on
feature recognition in images [9], etc.

In recent years several experiments evaluated adaptive computational paradigms (neural networks, AI planners) for
providing fault tolerance capabilities in control systems following sensor and/or actuator faults [27, 28]. Experimental
success suggests significant potential for future use. More recently, a family of neural networks, referred to as DCS
(Dynamic Cell Structure) [15], have been used by NASA for on-line learning of aerodynamic derivatives [36] in a
flight control system of an F-15. In the intelligent flight control system, the online neural learning DCS network
provides the aircraft model’s adaptation to the changes that may occur during the flight. The network is trained to the
error in flight, i.e., the difference between the derivative values computed by a regression-based derivative estimator,
and those provided by the preflight approximation algorithm (implemented by another neural network, which does
not change in flight). The topology representing properties of the DCS network proved to be capable of providing
the flight controller with the best available estimates of the aircraft’s stability and control derivatives, while yielding
a dramatically more compact way to store them. These advances were made possible by the fact that a DCS network
eventually acquires (”learns”) the connectivity structure, which represents the relation of topological proximity of
points from the flight envelope.

The critical factor limiting wider use of neural networks and other soft-computing paradigms in process control
applications, is our (in)ability to provide a theoretically sound and practical approach to their verification and valida-
tion. In the rest of the paper, we present a framework for reasoning about on-line learning systems in hope that it may
become a candidate technology for their verification and validation.

1.2 Verifying On-Line Learning Systems

While they hold great technological promise, on-line learning systems pose serious problems in terms of verification
and validation, especially when viewed against the background of the tough verification standards that arise in their
predominant application domains (flight control, mission control). Adaptive systems are inherently difficult to verify/
validate, precisely because they are adaptive. Specifically, consider that methods for software product verification are
generally classified into three families [4]:

� Fault Avoidance methods, which are based on the premise that we can derive systems that are fault-free by
design.

� Fault Removal methods, which concede that fault avoidance is unrealistic in practice, and are based on the
premise that we can remove faults from systems after their design and implementation are complete.

� Fault Tolerance methods, which concede that neither fault avoidance nor fault removal are feasible in practice,
and are based on the premise that we can take measures to ensure that residual faults do not cause failure.

Unfortunately, neither of these three methods is applicable as-is to adaptive systems, for the following reasons:

� Fault Avoidance. Formal design methods [13, 19, 26] are based on the premise that we can determine the
functional properties of a system by the way we design it and implement it. While this holds for traditional
systems, it does not hold for adaptive systems, since their design determines how they learn, but not what they
will learn. In other words, the function computed by an online adaptive system depends not only on how the
system is designed, but also on what data it has learned from.

� Fault Removal: Verification. Formal verification methods [1, 24, 25, 21] are all based on the premise that we
can infer functional properties of a software product from an analysis of its source text. While this holds for
traditional systems, it does not hold for adaptive systems, whose behavior is also determined by their learning
history.

2

� Fault Removal: Testing. All testing techniques [11, 20, 23] are based on the premise that the systems of interest
will duplicate under field usage the behavior that they have exhibited under test. While this is true for traditional
deterministic systems, it is untrue for adaptive systems, since the behavior of these systems evolves over time.
We have observed in [2] that adaptive systems fail to meet this requirement (of maintaining or enhancing their
behavior) even when they converge.

� Fault Tolerance. Fault tolerance techniques [3, 31, 32, 35] are based on the premise that we have clear expecta-
tions about the functions of programs and programs parts, and use these expectations to design error detection
and error recovery capabilities. With adaptive systems, it is not possible to formulate such expectations because
the functions of programs/ program parts are not predetermined.

Because on-line learning systems are most often used in life-critical (e.g. flight control) and mission-critical (e.g.
space) applications, they are subject to strict certification standards, leaving a wide technological gap —which we
attempt to narrow (however slightly) in this paper. First, we survey existing approaches.

1.3 Existing Approaches

Traditional literature typically describes adaptive computational paradigms with respect to their use, as function ap-
proximators or data classification tools. In most cases, their “correctness” is measured in terms of a misclassification
rate on specific data sets, or by their ability to interpolate and/or extrapolate between known function values. This
evaluation paradigm may work well only for applications where the system learns on a ”training set” and remains
unchanged in operational usage. In an attempt to discuss verification and validation of neural networks, LiMin Fu
[16] interprets verification to refer to correctness and interprets validation to refer to accuracy and efficiency. He es-
tablishes correctness by analyzing the process of designing the neural network, rather than the functional properties
of the final product. An intuitively similar, but more elaborate approach has been described by Gerald Peterson [30].
Peterson describes the opportunities for verification and validation of neural networks in terms of the activities in their
development life-cycle, as shown in Figure 1.

Statement of Goals and Constraints

Verify Feasibility of Neural Network Model

Collecting Data

Verifying Data

Design Network Architecture

Train the Network

Verify the Training Process

Evaluate Generalization Capability

Evaluate Constructed Network

Specify Network Characteristics

Independent Network Validation

Figure 1: NN construction life-cycle.

3

If a problem is judged to be solvable by a neural network (feasibility phase), training data is gathered. Verification
of the training data includes the analysis of appropriateness and comprehensiveness. This step is not fully applicable
to on-line learning applications since training data are related to the real-time evolution of the system state, rather than
the design choice. Verification of the training process typically examines the convergence properties of the learning
algorithm in terms of achieving the desired optimal problem solution. Evaluation of interpolation and extrapolation
capabilities of the network and domain specific verification activities set the stage for the overall verification and
validation. The strong emphasis on domain specific knowledge, its formal representation and mathematical analysis
is suggested in [18] too. Authors propose the analysis of the neural network with respect to conditions implying the
existence of the solution (for function approximation) and the reachability of the solution from any possible initial
state. Their third condition can be interpreted as condition for preservation of the learned information.

While meaningful and well organized, Peterson’s approach provides little guidance on the choice of specific rig-
orous V&V techniques. Proposed techniques are mostly based on empirical evaluation through simulation and/or
experimental testing. In an on-going effort, a group of researchers at NASA Ames Research Center are defining life-
cycle V&V methods applicable to systems which have (an) integrated adaptive software component(s) [7]. In some
cases, neural networks are modified to provide support for testing based (or on-line) validation of results. For example,
Leonard et. al. [22] suggest a new architecture called Validity Index. A Validity Index network is a derivative of Radial
Basis Function (RBF) network with the additional ability to calculate confidence intervals for its predictions based on
the probability density of the ”similar” training data observed in the past.

In a recent survey of methods for validating on-line learning neural networks, O. Raz [33] calls this approach
on-line monitoring and novelty detection and attributes to it a significant potential for the future use. The other
promising research direction, according to Raz, is periodic rule extraction from an on-line neural network and partial
(incremental) re-verification of these rules using symbolic model checking. Practical hurdles associated with this
approach include determining the frequency of rule extraction and impracticality of near real-time model checking of
complex systems. LiMin Fu [16] discuss the verification and validation of neural nets, where he interprets verification
to refer to correctness and interprets validation to refer to accuracy and efficiency. He establishes correctness by
analyzing the process of designing the neural net, rather than the functional properties of the final product.

2 Tenets of a Refinement-Based Approach

2.1 Characterizing Our Approach

Our approach to the verification of on-line learning systems can be summarized in the following premises:

� We establish the correctness of the system, not by analyzing the process by which the system has been designed,
but rather by analyzing the functional properties of the final product, and how these functional properties evolve
through learning.

� Qualifying the first premise, we capture the functional properties of the system not by the exact function that the
system defines at any stage in its learning process, but rather by a functional envelope, which captures the range
of possible functions of the system for a given learning history. This concept will be more formally defined in
section 3.1.

� In order to make testing meaningful, we need to ensure that the system evolves in a way that preserves or
enhance its behavior under test. We call this monotonic learning, and we investigate it in some detail in section
4.1. Of course, on-line learning systems are supposed to get better as they acquire more learning data, but our
definition of better is very specific: it means that the functional envelope of the system grows increasingly more
refined with learning data (in the sense of refinement calculi [5, 8, 12, 17, 38].

� In order to support some form of correctness verification, we must recognize that the variability of learning data
and the focus on functional envelope (rather than precise function) weaken considerably the kinds of functional
properties that can be established by correctness verification. Typically, all we can prove are minimal safety
conditions; we refer to this as safe learning (proving that learning preserves safety conditions), and we discuss
it in some detail in section 4.2.

4

In the sequel, we briefly introduce some mathematical background, which we use in the remainder of the paper.

2.2 Specification Structures

The verification and validation of systems, whether adaptive or not, can only be carried out with respect to predefined
functional properties, which we capture in specifications. In this paper, we model specifications by means of binary
relations. A relation R from set X to set Y is a subset of the Cartesian productX �Y . A homogeneous relation on S
is a relation from S to S. We use relations to represent specifications. Among relational constants we cite the identity
relation, denoted by I , and the universal relation, denoted by L. Among operations on relations we cite the product,
which we represent by R Æ R0 or by RR0 (when no ambiguity arises), the complement, which we represent by R, the
inverse, which we represent by bR, and the set theoretic operations of union and intersection.

We wish to introduce an ordering between (relational) specifications to the effect that a specification is greater
than another specification if and only if it captures stronger functional requirements. We refer to this ordering as the
refinement ordering, we denote it by R w R 0, and we define it as

RL \R0L \ (R [R0) = R0:

The following definition and proposition give the reader some intuition for the meaning of the refinement ordering.

Definition 1 A program P on space S is said to be correct with respect to specificationR on S if and only if P w R,

where P is the function defined by program P .

Proposition 1 Specification R refines specification R 0 if and only if any program correct with respect to R is correct
with respect to R0.

In [6], we have derived two propositions pertaining to the lattice properties of the refinement ordering. We present
them here without proof, but with some discussion of their intuitive meaning.

Proposition 2 Two relations R and R0 have a least upper bound (also called the join) with respect to the refinement
ordering if and only if they satisfy the condition (called the consistency condition):

RL \ R0L = (R \ R0)L:

When they do satisfy this condition, their join is denoted by (R t R 0) and is defined by

R tR0 = R \ R0L [R0
\ RL [(R \ R0):

The consistency condition means that R and R 0 can be satisfied (refined) simultaneously. As for the expression of the
join, suffice it to say that (R t R0) represents the specification that captures all the functional features of R (upper
bound of R) and all the functional features of R 0 (upper bound of R 0) and nothing more (least upper bound). A crucial
property of joins, for our purposes, is that an element A refines R t R 0 if and only if it refines simultaneously R and
R0. In other words, the join of R and R 0 represents the sum of all the functional features of R and R 0. This sum can
be derived only if R and R 0 do not contradict each other (re: the consistency condition). We argue in [6] that complex
specifications can be structured in terms of simpler sub-specifications using the join operator.

In addition to discussing least upper bounds (joins), we also discuss greatest lower bounds (meets), which are
introduced in the following proposition.

Proposition 3 Any two relations R and R 0 have a greatest lower bound (also called the meet), which is denoted by
(R uR0) and defined by

R u R0 = RL \ R0L \ (R [R0):

The meet of R and R0 is a specification that is refined by R (lower bound of R), refined by R 0 (lower bound of R0),
and is maximal (greatest lower bound): in other words, it captures all the functional features that are common to R
and R0.

The following lemma, which presents trivial lattice identities, will be generalized later for our purposes.

5

X Fh - Y

H

?

A

A

A

A

A

A

A

A

A

A

A

AU

Rh
X - Y

F R

Figure 2: Abstract Computational Model

Lemma 1 The following identities hold in any lattice:

� (A w B) _ (A w C) logically implies A w (B u C).

� (B w A) ^ (C w A) logically implies (B u C) w A.

The first clause stems readily from the transitivity of the refinement ordering, and the lattice identities B w (B u C),
C w (B u C). The second clause can be proved by observing that the left hand side provides that A is a lower bound
for B and C, hence it is refined by the greatest lower bound.

3 A Computational Model for On-Line Learning Systems

3.1 An Abstract Model

Before we discuss the specifics the verification methods we propose, we first introduce an abstract computational
model for adaptive systems and their evolution through learning. Figure 2 depicts the abstract model we have of
an online adaptive system; this model is purposefully generic, to support a wide range of possible implementations
(RBF, DCS, MLP), and to enable us to focus on relevant computational features (as opposed to being distracted by
implementation specific details). Our model includes the following features:

� Set X represents the set of inputs that may be submitted to the adaptive system.

� Set Y represents the set of outputs that the adaptive system may return as output.

� SetH represents the set of learning data histories that are submitted to the adaptive system for learning; typically,
this set is nothing but the set of sequences of the form (x; y), where x 2 X and y 2 Y . We let � represent the
empty sequence (as an element of H).

� Function F is the function which, to each learning history h in H associates a function F h from X to Y that
captures the behavior of the adaptive system after receiving learning data h. According to this definition, the
initial behavior of the adaptive system before any learning history is received is F �.

� Function R is the function which, to each learning history h in H associates a relation R h from X to Y that
captures the learned behavior of data h, and nothing else. Whereas Fh may include behavior that stems from
its initialization, or stems from extrapolations, or stems from default options, R h remains undefined or under-
defined until learning data intervenes.

6

In order to elucidate the meaning of relation Rh, for history h, we consider the following development scenario for
adaptive systems. An adaptive system is defined by some learning rule, which maps a learning history h into a function
Fh; the learning algorithm is also defined by means of implementation-specific parameters, including randomly chosen
parameters. For the sake of abstraction, we denote the vector of implementation-specific parameters by a variable, say
�, and we let � be the set of possible values for �. To fix our ideas, we can think of � as representing a family of
possible implementations of the learning algorithm, and of � as a specific implementation within the selected family;
also, we denote by F �

h the function that captures the behavior of the adaptive system whose parameters vector is �,
upon receiving learning data h. With this background in mind, we let R h be defined as follows:

Rh = �2�F
�
h :

By virtue of the definition of meet, �2�F
�
h can be interpreted to represent the functional information that is common

to all possible implementations of the learning algorithm, for all possible values of �. While F �
h is dependent on �,

Rh is dependent on �.
As a corollary of this definition, consider the initial values of F �

h and Rh for h = �, i.e. at the beginning of the
learning process. Whereas F �

� represents the (mostly arbitrary) initialization of the function of the adaptive system,
R� represents the information that all instances of F �

� , for all values of � in � have in common. In effect, R � captures
all the functional information that stems from �, and that is specific to the family of learning algorithms being used.

The definition of Rh yields the following proposition, which we present without proof (the proof is a trivial lattice
identity).

Proposition 4 For all � 2 �, we have
8h : F �

h w Rh:

This proposition stems readily from the definition of Rh as the meet of all Fh, for all h: the meet of many terms is
lower than any one term.

3.2 A Concrete Model: The Back-Propagation Learning Algorithm

In this section, we consider the back-propagation learning algorithm, and we analyze it to show that it fits the abstract
computational model that we have presented above. The back-propagation algorithm was first developed by Werbos
in 1974 [37] but attracted little attention initially. It was later independently rediscovered by Parker [29] in 1982 and
by Rumelhart, Hinton and Williams [34] in 1986. The version we present below, taken from [16], is due to [34].

� Weight Initialization. Set all weights and node thresholds to small random numbers. Note that the node
threshold is the negative of the weight from the bias unit (whose activation level is fixed at 1).

� Calculation of Activation.

1. The activation level of an input unit is determined by the instance presented to the network.

2. The activation level Oj of a hidden and output unit is determined by

Oj = �(
X

WjiOi � �j);

where Wji is the weight from an input Oi, �j is the node threshold, and � is the sigmoid function:

�(a) =
1

1 + e�a
:

� Weight Training.

1. Start at the output units and work backward to the hidden layers recursively. Adjust weights by

Wji(t+ 1) =Wji(t) + �Wji;

where Wji(t) is the weight from unit i to unit j at time t and �Wji is the weight adjustment.

7

2. The weight change is computed by
�Wji = �ÆjOi;

where � is a trial-independent learning rate (0 < � < 1) and Æ j is the error gradient at unit j. Convergence
is sometimes faster by adding a momentum term:

Wji(t+ 1) =

Wji(t) + �ÆjOi + �(Wji(t)�Wji(t� 1));

where 0 < � < 1.

3. The error gradient is given by:

– For the output units:
Æj = Oj(1�Oj)(Tj �Oj);

where Tj is the desired (target) output activation and Oj is the actual output activation at output unit
j.

– For the hidden units:
Æj = Oj(1�Oj)

X
k

ÆkWkj ;

where Æk is the error gradient at unit k to which a connection points from hidden unit j.

4. Repeat iterations until convergence in terms of the selected error criterion. An iteration includes presenting
an instance, calculating activations, and modifying weights.

We interpret this algorithm as defining function Fh (see section 3) by induction on the complexity (length) of h. If we
recognize that Fh is not entirely determined by h but is also dependent on the arbitrary initial parameters (and their
subsequent manipulations) then we rewrite this function as F �

h , where � is the vector of weights

� =

0
BBBB@

::

::

Wji

::

::

1
CCCCA :

Also, we recognize that the range of values that weights can take evolves as the algorithm proceeds, hence the term �
in the equations of section 3 should, in fact, be indexed with h; to acknowledge this, we write it as � h. Consequently,
we find:

� ��, the initial set of possible weights, is defined by the Weight Initialization step in the back-propagation algo-
rithm. The initial values of the weights are usually chosen rather small, since large weights cause the activation
functions to saturate early, and cause the network to be stuck in a very flat plateau or a local minimum near
the starting point. Typically, the initial values of weights are chosen as random values uniformly distributed
between �0:5

FanIn
and +0:5

FanIn
, where FanIn of a unit is the number of units which are fed forward into this unit

[16].

� �h:(x;y) is obtained from�h by applying the function detailed in the Weight Training step of the back-propagation
algorithm. Specifically, if we let WT be the function detailed in this step, which has the form

0
@ Wji(t+ 1)

::

Æj

1
A =WT

0
BB@

Wji(t)
::

Æj
Oj

1
CCA ;

8

then �h:(x;y) can be defined as follows:

�h:(x;y) = f

0
@ ::

Wji(t+ 1)
::

1
A j
0
@ Wji(t+ 1)

::

Æj

1
A =WT

0
BB@

Wji(t)
::

Æj
Oj

1
CCA

^

0
@ ::

Wji(t)
::

1
A 2 �hg:

In light of this, we rewrite the characterization of Rh as follows:

Rh = �2�h
F �
h :

In particular, if we take h = �, we find that �� is the set of all admissible initial weights, and R� is the meet of all
possible functions F �

� for all admissible initial weights. Under some weak conditions (which are discussed in the
sequel), we find a simple expression for R�:

R� = f(x; y)j9� : (x; y) 2 F �
� g:

This formula is intuitively appealing: R� is the set of all input output pairs (x; y) such that (x; y) is in F �
� for some

admissible initial weighting �. Note that while F �
� reflects the arbitrary choice of an initial weighting, R� does not; it

only reflects the learning algorithm and the specific network architecture. More generally, we intend R h to reflect the
learning algorithm, the network architecture, and the learning data —but not to reflect any arbitrary choice of random
weights. Note also, on the expression above, that while F �

h is deterministic, R� is (very) non-deterministic; Rh is
obtained from F �

h by abstracting away the arbitrary determinacy of F �
h .

In order to assess the variability of the system function with respect to the choice of initial weights, we have run
an experiment on a simple back-propagation neural network with one hidden layer, and have submitted to it learning
data about the exclusive or function. Also, we have selected the initial weights, and have observed how these affect
the function F �

h for various values of h. Specifically, h is a sequence of epochs, where each epoch is made up of the
four sets of inputs (combinations of two boolean variables) along with their corresponding outputs by the exclusive or
function. The column labeled ”10” in figure 3 represents the learning sequence h made up of ten epochs. By abuse of
notation, we can represent h by the number of epochs in h. We can make the following observations:

� The initial weights have a large impact on the evolution of F �
h .

� This impact lasts well into the future, and does not completely disappear even after several thousand epochs.

For the purposes of our study, this means that Rh remains distinct from F �
h even for a long learning sequence h.

Figure 3 also allows us to visualize the difference between F �
h andRh: For example F �

h maps input (1,1) into 0.95718,
whereas Rh also maps it into, among others,

0:70029; 0:50565; 0:51080:

4 Verification of on-Line Learning Systems

Given that we have derived the functional envelope of a an on-line learning system (as relation R h), we discuss now
how we can infer functional properties of the system. We discuss two methods in turn: Monotonic Learning and Safe
Learning.

9

Initial Weights Input Iteration Times with Output

10 20 50 100 500 2000 Converge
W0 =1.0 7285**

(1,1) 0.95718 0.88763 0.64715 0.57213 0.50373 0.12861 0.04999388
(1,0) 0.88929 0.75727 0.49946 0.48526 0.51578 0.88881 0.95669980
(0,1) 0.88985 0.76131 0.50934 0.48949 0.51579 0.88868 0.95675480
(0,0) 0.74329 0.58170 0.41602 0.45580 0.50102 0.09960 0.03909299

W0=0.5 7560**
(1,1) 0.70029 0.58756 0.53496 0.52377 0.51087 0.14863 0.04999296
(1,0) 0.60074 0.51103 0.48290 0.48596 0.49385 0.87160 0.95670090
(0,1) 0.60987 0.52137 0.48944 0.48869 0.49424 0.87141 0.95675580
(0,0) 0.55051 0.49504 0.48686 0.49964 0.51760 0.11487 0.03909090

W0 =0.0 8926**
(1,1) 0.50565 0.50740 0.50880 0.50976 0.51116 0.50880 0.04999402
(1,0) 0.48353 0.48525 0.48714 0.48836 0.48878 0.49985 0.95669870
(0,1) 0.49364 0.49367 0.49203 0.49037 0.48888 0.50006 0.95675415
(0,0) 0.51421 0.51434 0.51342 0.51227 0.51134 0.51613 0.03909125

W0* 8942**
(1,1) 0.51080 0.51098 0.51101 0.51096 0.51118 0.50909 0.04999226
(1,0) 0.48304 0.48416 0.48627 0.48794 0.48876 0.49888 0.95670134
(0,1) 0.49480 0.49397 0.49197 0.49027 0.48885 0.49911 0.95675653
(0,0) 0.51010 0.51027 0.51051 0.51073 0.51137 0.51662 0.03908928

*: Random values range from –0.3 to +0.3.
**: Iteration times when network comes to convergence.

Figure 3: One Hidden Layer MLP NN for XOR Problem Trained by BP Algorithm with Different Initial Weights

10

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@R

Fh Fh:(x;y)
@

@

@

@

@

@

@

@

@

@

@R

?

Rh:(x;y)

Rh

Figure 4: Monotonic Learning Increases Rh, Not Necessarily Fh.

4.1 Monotonic Learning

The idea of monotonic learning is to ensure that the adaptive system learns in a monotonic fashion, so that whatever
claims we can make about the behavior of the system prior to its deployment are upheld while the system evolves
through learning. Of course, we can hardly expect Fh to be monotonic with respect to h, since there is no way to
discriminate between information of Fh that stems from learning and information that stems from arbitrary choices.
In addition, whenever F �

h is total (which is fairly common), it is in fact maximal in the refinement ordering, hence
cannot be further refined. We can, however, expect Rh to be monotonic, in the following sense.

Definition 2 An adaptive system is said to exhibit monotonic learning if and only for all h in H , and for all (x; y) in
X � Y ,

Rh:(x;y) w Rh

where h:(x; y) is the sequence obtained by concatenating h with (x; y).

Figure 4 illustrates in what sense monotonicity of R does not necessarily imply monotonicity of F . The challenge of
this approach is to analyze what kinds of restrictions we must impose on the learning algorithm in order to ensure the
monotonicity of R, or, alternatively, what kinds of learning algorithms ensure this property. Note that the refinement
ordering is reflexive, hence nothing precludes us from a situation where R h:(x;y) = Rh. One possible way to ensure
monotonicity is to compare Rh:(x;y) against Rh for refinement, and to discard (x; y) whenever the former does not
strictly refine the latter. In practice this will work only if discarding learning data is an exceptional occurrence, rather
than a routine occurrence.

The interest of monotonic learning is that whatever properties can be established by analyzing the adaptive system
at any stage of its learning are sure to be preserved (in the sense of refinement) as the system learns. In particular, all
the properties of R� (before learning starts) are maintained as the system learns. More significantly, any behavior that
is exhibited at the testing phase is sure to be preserved (i.e. duplicated or refined) in field usage.

Traditional certification algorithms observe the behavior of a software product under test, and make probabilistic/
statistical inferences on the operational attributes of the product (reliability, availability, etc). The crucial hypothesis
on which these probabilistic/ statistical arguments are based is that the software product will reproduce under field
usage the behavior that it has exhibited under test. This hypothesis does not hold for adaptive neural nets, because they
evolve their behavior (learn) as they practice their function. Of course, one may argue that they evolve their behavior

11

Oracle Range

Rh Range, under test

Rh Range, in field

�

�

Behaviour
under test

Behaviour
in field

Figure 5: Convergence does Not Ensure Monotonicity

for the better; but better in the sense of a neural net (convergence, stability) is not necessarily better in the sense of
correctness verification (monotonicity with respect to the refinement ordering). Concretely, a neural net may very well
satisfy the test oracle in the testing phase, and fail to satisfy it in the field usage phase, even though it converges. See
Figure 5.

In principle, to apply monotonic learning we need to derive a closed form expression of R h, then we derive the
condition provided in definition 2 and prove it. Because it is rather impractical to derive a closed form of R h, this
approach is unrealistic. As a substitute, we submit sufficient conditions for monotonic learning, starting with the
following proposition.

Proposition 5 If the following condition holds,

8�9�0 : F �
h:(x;y) w F �0

h ;

then the pair (x; y) provides monotonic learning with respect to history h.

Proof. We must prove that under the condition cited above,

Rh:(x;y) w Rh:

To this effect, we proceed by logical implications, starting from our hypothesis.

8�9�0 : F �
h:(x;y) w F �0

h ;

) f Definition of meet, transitivity g

8� : F �
h:(x;y) w

T
�0 2 �F�0

) f Definition g

8� : F �
h:(x;y) w Rh

) f Lattice Identity g

(
T
�F �

h:(x;y)) w Rh

) f Definition g

Rh:(x;y) w Rh.

12

qed

We have found that often, function F �
h is total for all h and all �; this gives weight to the following proposition,

which gives another (weaker, but no less general) sufficient condition of monotonic learning.

Proposition 6 If F �
h is total for any history h and any initial weights �, and the following condition holds,

8�9�0 : F �
h:(x;y) = F �0

h ;

then the pair (x; y) provides monotonic learning with respect to history h.

Proof. We consider the condition
8�9�0 : F �

h:(x;y) w F �0

h :

Because both terms of this inequation are function, this condition is equivalent to

8�9�0 : F �
h:(x;y) � Fh�

0:

Because both functions are total, this conditions can further be simplified as:

8�9�0 : F �
h:(x;y) = F �0

h :

qed

In other words, the learning pair (x; y) produces monotonic learning if and only if appending to learning history
h produces the same outcome as starting with some other initial weight � 0 and applying the learning history h. Pre-
sumably, �0 would have been a better initial weight than �, since we get the same function for one less learning pair.
This condition is not suggesting to choose a better �, but rather is giving a sense to our concept of monotonic learning,
which provides that as we learn more and more (i.e. as h increases in length), the range of possible values for function
F �
h decreases. Note that there is no condition to the effect that every value of F �

h can be attained (by means of changing
�) for history h:(x; y); hence the condition of corollary 5 is ensuring that the range of possible values for F �

h (which
is the range of relation Rh) shrinks as h expands. We will discuss applications of this proposition in section 5.

4.2 Safe Learning

The main idea of safe learning is to ensure that as the adaptive system evolves through learning, it maintains some
minimal safety property S. In other words, in addition to maintaining the identity

8h8�; F �
h w Rh;

which stems from the modeling of the system, we also require that the system maintains the following property

8h; Fh w S

to ensure the safe operation of the adaptive system as it evolves through learning. By virtue of the lattice-like structure
of the refinement ordering, we infer that F must satisfy:

8h8�; F �
h w (Rh t S):

See figure 6. This can be satisfied if and only if Rh and S do indeed have a join, i.e. if and only if they satisfy the
consistency condition. The aggregate of conditions that characterize the safe learning of the adaptive system can be
written as:

8h;RhL \ SL = (Rh \ S)L

8h; Fh w (Rh t S):

These conditions can be maintained by placing restrictions on the learning algorithms that can be deployed, or by
controlling learning data that gets fed into the adaptive system, as per the following inductive argument:

13

Rh S

@

@

@

@

@

@

@

@

@R

�

�

�

�

�

�

�

�

�	

Rh t S

Fh

?

Figure 6: Safe Learning

1. As the basis of induction, these conditions hold for h = �, since R � is the minimal element of the lattice of
refinement.

2. Given that they hold for h, we can ensure that they hold for h:(x; y) by accepting entry (x; y) only if it does not
violate these conditions.

4.3 Inductive Alternatives

Most traditional program verification methods tackle the complexity of the task at hand by doing induction on some
dimension of program structure (control structure, data structure, depth of recursion, etc). Likewise, while the two
methods we present here appear attractive, we have no doubt that they are complex in practice, because they rely on
an explicit formulation of the functional envelope of the system. Hence we are focusing our attention on means to
use induction in such a way that we can apply these methods without having to derive R h. The key to the inductive
approach is the ability to derive inductive relationships between Rh and Rh:(x;y). In the case of the neural net we have
discussed in section 3.2, we know the relation between successive weights (as defined by the Weight Training function,
WT), the relation between a set of weights (�) and the corresponding system function (F �

h) and we know how the
functional envelope Rh is derived from system functions (by taking the meet for all values of �). We must infer from
this the relation between Rh and Rh:(x;y). See figure 7.

5 Illustration: A Simple Back-propagation Network

We consider a simple Multi Layer Perceptron (MLP) with the simplest of architectures: one input layer, one hidden
layer and one output layer, each containing a single neuron; see Figure 8. We want to use this example to discuss the
condition of monotonicity; to this effect, we first write the expression of F �

h . We find,

F �
h = f(x; y)jy = �(w2 � �(w1 � x))g

where

� Function � is defined by �(t) = 1
1+e�t .

14

- -

F u

- -

F u

- -

F u

?

WT

?

WT �

�0; � F�
� 0 Rh

�; h F�
h

Rh

WT (�),
h:(x; y)

F
WT (�)

h:(x;y)
Rh:(x;y)

?

?

Figure 7: Inductive Structure

��
��

��
��

��
��

- - - -

@

@
@R

@

@
@R

w1 w2

x y� �

Figure 8: Architecture of a (Very) Simple Multi Layer Perceptron

15

� The vector

�
w1

w2

�
obtained by backpropagation starting from initial weights �, after the learning sequence h.

In order to articulate how the vector of weights

�
w1

w2

�
is derived from the initial weights (�) and from the learning

history (h), we write �
w1

w2

�
=Wh(�);

where function Wh is defined inductively (on h) by

� W�(�) = �.

� Wh:(x;y)(�) =WT (Wh(�);

�
x

y

�
),

where WT is, in turn, defined by

WT

��
w1

w2

�
;

�
x

y

��
=

�
w1 + �x�(w1x)(1� �(w1x))�(w2�(w1x))(1� �(w2�(w1x)))(y � �(w2�(w1x)))w2

w2 + ��(w1x)�(w2�(w1x))(1 � �(w2�(w1x)))(y � �(w2�(w1x)))

�
:

where � is the learning rate.
By inspection of the formula of F �

h , we infer that F �
h is total (since � is total), hence we use proposition 6, which

provides the following sufficient condition for monotonicity:

8�9�0 : F �
h:(x;y) = F �0

h :

We interpret this condition as:
8�9�0 : (8t : F �

h:(x;y)(t) = F �0

h (t)):

Referring back to the formula of F �
h , we find that a sufficient (perhaps also necessary) condition of monotonicity is:

8�; 9�0 :Wh:(x;y)(�) =Wh(�
0):

In the sequel, we characterize cases under which this condition is satisfied; for each case, we present a brief argument,
then discuss the significance of the case.

� The first learning pair produces monotonicity. If we take h = �, we find:

8�; 9�0 :Wh:(x;y)(�) =Wh(�
0)

, f Because h = � g

8�; 9�0 :Wh:(x;y)(�) = �0

, f By definition of Wh g

8�; 9�0 :WT (Wh(�); (
x

y
)) = �0

, f Because h = � g

8�; 9�0 :WT (�; (
x

y
)) = �0

, fWT is a total function g

true.

Given that monotonicity means in effect that the new learning pair refines (enhances) prior knowledge, there
is no doubt that the first pair always does (by contrast with subsequent pairs, which may conflict with prior
knowledge).

16

� Duplication produces monotonicity. If we let h be a sequence of length 1, and let the new learning pair be a

copy of the first pair, then we satisfy the condition of monotonicity. Formally,

8�; 9�0 :Wh:(x;y)(�) =Wh(�
0)

, f By definition of Wh g

8�; 9�0 :WT (Wh(�); (
x

y
)) =Wh(�

0)

, f Because h = (x; y) = �:(x; y) g

8�; 9�0 :WT (Wh(�); (
x

y
)) =WT (W�(�

0); (
x

y
))

, f By definition of Wh g

8�; 9�0 :WT (Wh(�); (
x

y
)) =WT (�0; (

x

y
))

(f A sufficient condition g

8�; 9�0 : �0 =Wh(�)

, fWh is a total function g

true.

Repeating the same learning data does not create contradiction.

� Convergence produces monotonicity. We interpret convergence to be the situation where the new learning pair
does not cause any change to the vector of weights. Formally,

WT

��
w1

w2

�
;

�
x

y

��
=

�
w1

w2

�
:

Under this hypothesis, the condition of monotonicity

8�9�0 : F �
h:(x;y) = F �0

h

holds vacuously for �0 = �. The idempotence of WT holds in particular when the learning process has con-

verged (for the submitted learning data). Also, the formula of WT for our sample example provides that we

have idempotence whenever the learning pair (x; y) satisfies the conditions:

x = 0, y = �(w2

2
).

6 Conclusion

On-line learning systems in general, and their neural net implementations in particular are gaining increasing accep-
tance in control applications, which are often characterized by complexity and criticality. A significant obstacle to their
acceptance and usefulness/ usability is the lack of adequate verification/ certification methods and techniques, as all
traditional methods and techniques are inapplicable. In this paper we are presenting a tentative computational model
for on-line learning systems and we use this model to sketch verification methods. Among the main contributions of
our work, we cite:

� An abstract computational model that captures the functional properties of an evolving adaptive system by
abstracting away random factors in the function of the system, to focus exclusively on details that are relevant
to the learning algorithm and the learning data.

� The integration of this computational model into a refinement logic, which establishes functional properties of
adaptive systems using refinement-based reasoning.

17

� The introduction of two venues for verifying adaptive systems: one based on monotonic learning (the adaptive
equivalent of testing), and one based on safe learning (the adaptive equivalent of proving).

� The introduction of a (sketchy, so far) framework for inductive reasoning on adaptive systems; this framework
is based on the proposed computational model, and aims to support the adaptive equivalent of the inductive
methods of program proving.

� Some preliminary exploration of monotonic learning, whereby we provide sufficient conditions for monotonic
learning, discuss them, and illustrate them.

While this work is still in its infancy, we feel that it has introduced some meaningful concepts and has opened original
venues for further exploration, by taking a refinement-based approach. We envisage the following extensions to this
work:

� Experiment, be it on small examples, with the derivation of the functional envelope (R h) of the system, and
analyze what the conditions of monotonic learning and safe learning mean in practice. While it is easy to
compute relation Rh extensionally, by listing some of its pairs (as we have done in figure 3), it is not trivial to
derive a closed form expression of it.

� Investigate means to obviate the need to derive an explicit closed form expression for R h, by exploring induc-
tive arguments that allow us to ensure monotonic learning and safe learning without computing the functional
envelope.

� Fine-tune the proposed computational model and investigate its applicability to other forms of on-line learning
systems (other than the back-propagation algorithm).

� Derive tighter sufficient conditions for monotonicity, and further analyze the condition of safe learning.

� Explore inductive proof methods for adaptive systems, along the lines of the framework proposed in this paper.

This research is currently under way.

References

[1] J.R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[2] Ch. Alexander, D. DelGobbo, V. Cortellessa, A. Mili, and M. Napolitano. Modeling the fault tolerant capability of
a flight control system: An exercise in SCR specifications. In Proceedings, Langley Formal Methods Conference,
Hampton, VA, June 2000.

[3] H. Ammar, B. Cukic, C. Fuhrman, and Mili. A comparative analysis of hardware and software fault tolerance:
Impact on software reliability engineering. Annals of Software Engineering, 10, 2000.

[4] A. Avizienis. The n-version approach to fault tolerant software. IEEE Trans. on Software Engineering, 11(12),
December 1985.

[5] R.J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts in Computer
Science. Springer Verlag, 1998.

[6] N. Boudriga, F. Elloumi, and A. Mili. The lattice of specifications: Applications to a specification methodology.
Formal Aspects of Computing, 4:544–571, 1992.

[7] M. A. Boyd, J. Schumann, G. Brat, D. Giannakopoulou, B. Cukic, and A. Mili. Ifcs project: Validation and
verification (v&v) process guide for software and neural nets. Technical report, NASA Ames Research Center,
September 2001.

18

[8] Ch. Brink, W. Kahl, and G. Schmidt. Relational Methods in Computer Science. Springer Verlag, New York, NY
and Heidelberg, Germany, 1997.

[9] M. Caudill. Driving solo. AI Expert, pages 26–30, September 1991.

[10] C. H. Dagli, S. Lammers, and M. Vellanki. Intelligent scheduling in manufacturing using neural networks.
Journal of Neural Network Computing, pages 4–10, 1991.

[11] J. Dean. Timing the testing of cots software products. In First International ICSE Workshop on Testing Dis-
tributed Component Based Systems, Los Angeles, CA, May 1999.

[12] Jules Desharnais, Ali Mili, and Thanh Tung Nguyen. Refinement and demonic semantics. In Brink et al. [8],
chapter 11, pages 166–183.

[13] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[14] D. Bernard et al. Final report on the remote agent experiment. In NMP DS-1 Technology Validation Symposium,
Pasadena, CA, February 2000.

[15] B. Fritzke. Growing self-organizing networks - why. In European Symposium on Artificial Neural Networks,
pages 61–72, Brussels, Belgium, 1996.

[16] LiMin Fu. Neural Networks in Computer Intelligence. McGraw Hill, 1994.

[17] P. Gardiner and C.C. Morgan. Data refinement of predicate transformers. Theoretical Computer Science, 87:143–
162, 1991.

[18] D. Del Gobbo and B. Cukic. Validating on-line neural networks. Technical report, Lane Department of Computer
Science and Electrical Engineering, West Virginia University, December 2001.

[19] D. Gries. The Science of programming. Springer Verlag, 1981.

[20] H. Hecht, M. Hecht, and D. Wallace. Toward more effective testing for high assurance systems. In Proceedings
of the 2nd IEEE High Assurance Systems Engineering Workshop, Washington, D.C., August 1997.

[21] Internet. Program verification system. Technical report, SRI International Computer Science Laboratory, 1997.

[22] J. A. Leonard, M. A. Kramer, and L. H. Ungar. Using radial basis functions to approximate a function and its
error bounds. IEEE Transactions on Neural Networks, 3(4):624–627, July 1991.

[23] M. Lowry, M. Boyd, and D. Kulkarni. Towards a theory for integration of mathematical verification and empirical
testing. In Proceedings, 13th IEEE International Conference on Automated Software Engineering, pages 322–
331, Honolulu, HI, October 1998. IEEE Computer Society.

[24] Z. Manna. A Mathematical Theory of Computation. McGraw Hill, 1974.

[25] H.D. Mills, V.R. Basili, J.D. Gannon, and D.R. Hamlet. Structured Programming: A Mathematical Approach.
Allyn and Bacon, Boston, Ma, 1986.

[26] C.C. Morgan. Programming from Specifications. International Series in Computer Sciences. Prentice Hall,
London, UK, 1998.

[27] M. Napolitano, G. Molinaro, M. Innocenti, and D. Martinelli. A complete hardware package for a fault tolerant
flight control system using on-line learning neural networks. IEEE Control Systems Technology, January 1998.

[28] M. Napolitano, C. D. Neppach, V. Casdorph, S. Naylor, M. Innocenti, and G Silvestri. A neural network-based
scheme for sensor failure detection, identification and accomodation. AIAA Journal of Control and Dynamics,
18(6):1280–1286, 1995.

19

[29] D.B. Parker. Learning logic. Technical Report S81-64, Stanford University, 1982.

[30] G. E. Peterson. A foundation for neural network verification and validation. SPIE Science of Artificial Neural
Networks II, 1966:196–207, 1993.

[31] D. K. Pradhan. Fault Tolerant Computing: Theory and Practice. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[32] B. Randall. System structure for software fault tolerance. IEEE Transactions on Software Engineering, SE-1(2),
1975.

[33] Orna Raz. Validation of online artificial neural networks —an informal classification of related approaches.
Technical report, NASA Ames Research Center, Moffet Field, CA, 2000.

[34] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by error propagation. In
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume I: Foundations. MIT
Press, Cambridge, MA, 1986.

[35] D.P. Siewiorek and R. S. Swarz. The Theory and Practice of Reliable System Design. Digital Press, Bedford,
Mass, 1982.

[36] Being Staff. Intelligent flight control: Advanced concept program. Technical report, The Boeing Company,
1999.

[37] P.J. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Technical
report, Harvard University, 1974.

[38] J. Von Wright. A lattice theoretical basis for program refinement. Technical report, Dept. of Computer Science,
Ȧbo Akademi, Finland, 1990.

20

