FY2002 UNIVERSITY SOFTWARE INITIATIVE PROPOSAL
FOR THE
NASA SOFTWARE IV&V FACILITY
Initiative Title: Sensitivity of Software Reliability to Operational Profile Errors: Architecture-Based Approach 

Initiative ID: Project 10000559, Task 24g, Award 1000625GR
March 2002 deliverable:

Report on

 SUBJECT  \* MERGEFORMAT Architecture-Based Methodology for Studying Sensitivity of Software Reliability to Operational Profile Errors

Katerina Goseva – Popstojanova, 

Sunil Kumar Kamavaram 

LANE Department of Computer Science and Electrical Engineering
West Virginia University

Report Summary

In this report we address the methodologies for uncertainty analysis of software reliability. First, we present an architecture-based software reliability model and describe different approaches that can be used to estimate model parameters. Thus, we present procedures that can be used to map the operational profile to the transition probabilities among components and techniques that can be used to estimate components reliabilities. The use of the model is illustrated on a case study based on the software developed for the European Space Agency. Next, we propose several architecture-based methodologies for uncertainty analysis based on this model and discuss the choice of the appropriate methodology depending on data requirements, ability to obtain data, accuracy of the solutions, and the scalability with respect to the number of components. The next task in our project will be to verify and validate the proposed methodologies on the case studies.
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1. Introduction 

Software reliability is defined as the probability that software product will work without failure in a specified environment for a specified exposure period. The exposure period can be execution time or software runs. The environment usually is characterized by a set of input states along with their probabilities of occurrence. This probability distribution over the input space that represents the frequencies of occurrence of possible input states in the operation of software application is known as operational profile. Thus, the predictive quality of software reliability models is affected by the ability to estimate the correct operational profile. However, building an operational profile is not an easy task, especially for a new product. Therefore, it is of critical importance to study the sensitivity of the software reliability to the errors in the operational profile, particularly when reliability estimates with high accuracy are required.

A detailed procedure for developing the operational profiles is reported in [Musa93]. It has proven to be successful experience for the applications such as real-time telecommunication systems where the use of the software is predictable because it is related to identifiable events due to human activity. In general, the estimation of a trustworthy operational profile is difficult because it requires anticipating the field usage of the software and a priori knowledge about the application and system environments. A typical example would be a flight control system of a spacecraft in which very critical software components are activated by physical events whose frequencies during the field usage are totally unknown. Further, in process control applications various software components are activated by complex sequences of events whose frequencies can hardly be estimated a priori. In other cases, a single operational profile is not sufficient to describe the use of the product by different users. Because the effort required to derive an operational profile for each group of users is usually extremely high, the usual solution is to adopt an approximate operational profile that represents a rough average of the operational profiles of the different users. In addition to the above difficulties, problems could arise due to the changes of the operational profile during the development and field usage of the software.  Thus, software systems evolve because functions are added or modified. As a consequence, the way in which the software is used also evolves, and the operational profile changes.  This, of course, will invalidate any existing estimates of the operational profile. 

These reasons can easily lead to erroneous estimates of the operational profile which will directly affect the reliability estimate. Studying the variations of the reliability estimate due to the inaccuracy in the operational profile is especially important for NASA domain software which is designed to deal with events whose frequencies are difficult or impossible to predict accurately. The objective to this project is to develop an architecture-based methodology for computing the sensitivity of software reliability to the operational profile errors. The methodology is based on stochastic models such as Markov chains and addresses the parameter uncertainty problem. The developed methodology will be verified and validated on the empirical case studies. 

2. Related work and uniqueness of the proposed research

Sensitivity of the software reliability estimation to errors in the operational profile has been investigated in the context of reliability growth models. In [Musa94] the analytical approach is taken. The author suggests that multiple errors in the operational profile tend to have countervailing rather than cumulative effect on the failure intensity of software.  From this observation, it is concluded that the failure intensity is very robust with respect to the operational profile errors. On the contrary, using the simulation approach in [Chen94] and the experimental approach in [Chen95] it was concluded that the inaccuracies in operational profile result in significant errors in reliability estimates. To contribute to this debate, the experimental results based on the case study were presented in [Pasquini96]. These results show that the effect of the errors in the estimate of the operational profile on the software reliability depends on the accuracy with which the software system is tested. The sensitivity to errors in the operational profile estimate decreases appreciable after the execution of 103 – 104 test cases. The reason is that testing reaches a high coverage after the execution of this many test cases and changes in the distribution of new random test cases do not affect the test ability of exposing new faults. 

For this project we are developing a methodology for analyzing the sensitivity of the software reliability to operational profile errors that is unique in two major ways. Unlike the above studies that take the black-box approach and treat the software as monolithic whole, we take into account the information about the software architecture [Goseva2001a]. To estimate the system reliability using architecture-based model we need estimates of component reliabilities, the structure of component interactions, and relative frequencies of these interactions determined by transition probabilities. Architecture-based approach has been used in the past for evaluation of the software reliability and for conducting sensitivity studies focused on components reliabilities, assuming fixed values for the transition probabilities among components.  However, any inaccuracy in the operational profile directly will affect the transition probabilities among components. Our goal is to explore this relation, which has not been considered in the previous studies on the architecture-based software reliability. Building on our earlier work [Goseva2001b], we address the parameter uncertainty problem and propose an architecture-based methodology to study the sensitivity of the software reliability to the erroneous estimates of the operational profile. The proposed methodology can be used to certify the software system given its structure and the inaccuracy in estimation of both component reliabilities and transition probabilities. This is an important aspect of our work, because with the growing emphasis on reuse developers can not afford to stay away from reliability certification. 

3. Overview of proposed methodology

The proposed research work benefits from our recent contributions on architecture-based software reliability [Goseva2001a], [Goseva2001b]. Architectural approach considers the utilization and the reliability of the components, thus allowing insight into the dynamic behavior of software executions. Therefore, our methodology is particularly suitable for large complex component-based applications. The sensitivity studies of the software reliability to the operational profile errors are of essential importance for the NASA domain software which, on one side requires reliability estimates with high accuracy, while on the other side deals with events whose frequencies are difficult to predict. For such applications, plugging a point estimate of the unknown parameter into the model to compute the software reliability is not appropriate because there is a lot of uncertainty around the parameters. The proposed methodology can be used to assess the effects of the uncertainty in parameters on software reliability estimations, thus leading to more realistic reliability predictions.

The focus areas of our research are the following:

· Develop the analytical architecture-based software reliability model 
· First, we describe the software architecture using the control flow graph. If control can flow between two components it can be described by non-zero transition probabilities. The estimates of transition probabilities are clearly affected by the operational profile. We are developing procedures for mapping the operational profile to the transition probabilities among components. 

· Then, we describe the failure behavior. Failures can happen during the execution period of any component or during the transfer of control between two components. Failure behavior of the components and of the interfaces between components can be specified in terms of their reliabilities or failure rates.

· Combining software architecture with failure behavior leads to the estimate of software reliability that accounts for components utilization and their reliabilities.  
· Develop an architecture-based methodology for uncertainty analysis of software reliability due to the operational profile errors. The reliability computed from the model based on the use of point estimates of input parameters is not trustable because transition probabilities among components, that is, components utilization will be affected by the errors in the estimation of the operational profile. Therefore, uncertainty analysis is necessary in order to study how parameters uncertainty propagate into overall system reliability. While the operational profile can be derived in the early phases of software life cycle (for example from UML specifications), components reliabilities can be estimated using failure data obtained by unit and integration testing. Therefore, the developed methodology will be applicable mainly during the integration testing and operational usage of the software product.  
· Apply the developed methodology on case studies. First, we will verify and validate the developed methodology for uncertainty analysis using the empirical data from the case study of the software developed for the European Space Agency [Goseva2001b]. Currently, we are making efforts to obtain data from NASA projects that can be used as case studies for experimental verification and validation of our methodology.

4. Architecture-based software reliability model

4.1 Software architecture

Software behavior with respect to the manner in which different components interact is defined through the software architecture. Interaction occurs only by transfer of execution control. In the case of sequential software, at each instant, control lies in one and only one of the components.  We use state based approach to build the architecture-based software reliability model [Goseva2001a], [Goseva2001b]. This approach uses the control flow graph to represent software architecture. The states represent active components and the arcs represent the transfer of control. Based in the assumption that the transfer of control between components has a Markov property, the architecture is modeled with a discrete time Markov chain (DTMC) with a transition probability matrix 
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. The Markov chain has a two-phase construction. The structural phase involves the establishment of the static software architecture. The static software architecture can be build using different abstraction levels as defined by the specification, or obtained using parser-based or lexically based tools. The dynamic statistical phase involves the estimation of the relative frequencies of components interactions, that is, transition probabilities which are clearly dependent on the operational profile. During the early phases of software development, dynamic software behavior can be captured using UML use cases and sequence diagrams. During the integration phase profiles or test coverage tools can be used to obtain data necessary to describe dynamic behavior.  Next, we briefly describe three different approaches that we use to build a DTMC that represents dynamic software architecture.

4.1.1 Uninformed approach


Uniformed approach is applied when we don’t have detailed information or any real time data for the system under development. In this case, we use the entropy as a measure of uncertainty.  So, we apply maximum entropy approach and assign uniform distribution to all the transitions that are exit arcs for each state [Ash66]. 

4.1.2 Intended approach

Intended approach is used in early phases of software development when a high level information about the software architecture is known. Since, UML is rapidly becoming a standard for software development, in intended approach we are looking into the UML annotations [UML] in order to obtain transition probabilities. Use case diagrams provide graphic description of how external entities interact with the system. Sequence diagrams depict how group of components interact in a use case. Each sequence diagram shows a number of components and the how many times the messages are exchanged between them. The general expression to estimate the transition probability from component i to component j is given by 
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is the number of times messages are transmitted from component i to component j and 
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is the total number of massages from component i to all other components that are present in the sequence diagram. 

4.1.3 Informed approach

The informed approach is based on the field data for the software. Thus, component traces obtained using profilers [gprof] and test coverage tools [ATAC] are used to obtain a set of paths from the starting state to the terminating state and establish the frequency count of the transition arcs. These relative frequencies can be used to estimate the transition probabilities in the Markov chain, as illustrated in Section 4.4.

4.2 Component failure behavior

In the next step, the failure behavior, i.e., reliability of each component is defined and associated with the software architecture.  We assume that components fail independently and the reliability of the component i is the probability 
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 that the component performs its function correctly. Assessing the reliability of software components clearly depends on the factors such as whether or not component code is available, how well the component has been tested, and whether it is a reused or a new component. Several techniques for estimating component's reliability have been proposed. Software reliability growth models can be applied to each software component exploiting component's failure data obtained during testing [Kanoun87], [Gokhale98], [Everett99]. However, due to the scarcity of failure data it is not always possible to use software reliability growth models. Another possibility is to estimate component's reliability from explicit consideration of non-failed executions, possibly together with failures [Nelson73], [Miller92]. [Poore93]. In this context, testing is not an activity for discovering faults, but an independent validation activity. The problem that arises with these models is the large number of executions necessary to establish a reasonable statistical confidence in the reliability estimate. Finally, one can use fault injection technique to estimate component's reliability [Krishnamurthy97], [Goseva2001b]. However, fault-based techniques are only as powerful as the range of fault classes that they simulate.

4.3 Combining software architecture with failure behavior 

We use the composite method to combine software architecture with failure behavior. Two absorbing states C and F are added to the DTMC, representing the correct output and failure respectively. The transition probability matrix P is modified to 
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[image: image9.wmf]ij

i

p

R

, which represents the probability that the component i produces the correct result and the control is transferred to component j. From the exit state n, a directed edge to state C is created with transition probability 
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 to represent the correct execution. The failure of a component i is considered by creating a directed edge to failure state F with transition probability 
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represents the probability of reaching state n from 1 through k transitions. From initial state 1 to final state n, the number of transitions k may vary from 0 to infinity. It can be shown that 
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4.4 Case study from the European Space Agency

We illustrate the architecture-based software reliability approach on the case study from the European Space Agency [Goseva2001b]. This application provides language-oriented user interface which allows the user to describe the configuration of an array of antennas. Its purpose is to prepare a data file in accordance with a predefined format and characteristics from a user, given the array antenna configuration described using an appropriate Array Definition Language. The program was developed in C language and consists of almost 10,000 lines of code. It is divided into three subsystems: the Parser subsystem, the Computational subsystem , and the Formatting subsystem. The choice of this program as a case study was based on the following:

· The program is real and of typical size for this kind of application.

· The programming language is widely used.

· The program has been extensively used after the last fault removal without failures. This gold version is used as an oracle in the experiment.

· A set of test cases is generated randomly accordingly to the known operational profile determined by interviewing the users of the program.

· Component reliabilities are estimated using fault injection. Faults reinserted in the code during the experiment are the real faults discovered during integration testing and operational use of the program
.

DTMC that represents software architecture is shown in Figure 1. Components 1, 2, and 3 correspond to the Parser, Computational, and Formatting subsystems respectively. State E represents the completion of execution. The choice for the decomposition was made in order to reach a tradeoff between number of components, their size, and the ability to collect data needed for use in the model. 
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Figure 1. Software architecture for the case study

In the experiment, two faulty versions of the program were constructed. Faulty version A consists of fault-free component 3 and faulty components 1 and 2, while faulty version B consists of fault-free components 1 and 3 and faulty component 2.
Each faulty version of the program and the oracle were executed on the same test cases generated randomly on the basis of the operational profile. Component traces obtained during testing were used for estimating transition probabilities
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When the outputs of the faulty version and the oracle disagreed it was necessary to determine the component that has failed. Identification of the fault responsible for the failure was only aimed at determining which component has failed. Faults have not been removed and the number of failures includes recurrences due to the same fault. Component reliabilities are estimated as 
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 is the number of failures and 
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 is the number of executions of component i in N randomly generated test cases accordingly to the operational profile. 

DTMC presented in Figure 2 is a composite state based model of this application. The expression for system reliability obtained using the model is given by 
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Figure 2. Architecture-based software reliability model for the case study

As it can be seen from Table 1, the architecture-based software reliability model gives reasonable accurate estimations compared to the actual reliability for each of the faulty versions. 

	Faulty version
	Actual reliability
	Estimated reliability
	Error

	A
	0.7393
	0.7601
	2.81%

	B
	0.8782
	0.8782
	0%


Table 1. Comparison of the results

In Figure 3 we illustrate how system reliability R varies as a function of R1 and p12, assuming a fixed value of R2=0.8346. Note that the system reliability is not affected by p23 since it is assumed that R3=1. The ranges chosen for p12 and R1 are [0.5,0.8] and [0.8,1], respectively. The system reliability R then ranges from 0.6941 to 0.9173.


Figure 3. R as a function of p12 and R1
It is obvious from Figure 3 that the variations of transition probabilities and component reliabilities significantly affect the system reliability. Previous studies on architecture-based software reliability considered the sensitivity of the software reliability to the variations of components reliabilities. However, they assumed fixed values for the transitional probabilities. This approach is obviously not appropriate because the values of the transition probabilities are uncertain due to inaccurate estimations of the operational profile. The goal of this project is to develop methodologies for assessing the effects of the uncertainty in parameter estimation on software reliability, thus providing sound theoretical basis for software reliability certification.

5. Methodologies for uncertainty analysis

In the reliability model presented above, transition probabilities and component reliabilities are unknown parameters. These parameters are required to have input values so that the software reliability can be computed from the model. In general, there are three ways to obtain the values of the parameters. First, parameters can be estimated using the field data obtained during integration testing or operational usage of the software. Second, the parameter values can be estimated using historical data for a product with similar functionality. Finally, if the product is under development and there is no historical data of similar products, reasonable guesses could be made based on the specification and design documentation.

It is obvious that there is a lot of uncertainty around these parameters. Plugging point estimates of the unknown parameters into the model to compute the system reliability is not appropriate because we have no idea how accurate the result would be. In order to answer the question how parameters uncertainties propagate into overall system reliability, uncertainty analysis is necessary. For this project we consider several different methods for uncertainty analysis. In this section we provide a brief overview for each method including the discussion on the accuracy of the solution and the scalability of the method with respect to the number of components. 

5.1 Uncertainty analysis based on sensitivity studies

Sensitivity studies are used to judge which parameters of the model are mostly affecting the overall reliability of the software system. In our approach we are using architectural-based model to determine the reliability of the system. Sensitivity studies based on partial derivates of the reliability expression of the overall system with respect to each component reliability are presented in the literature [Cheung80], [Siegrist88]. They assume fixed known values for the transition probabilities and derive the sensitivity 
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. It is obvious form the case study presented in the previous section that we also need to study the sensitivity of the system reliability R with respect to the transition probabilities 
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5.2 Uncertainty analysis based on confidence intervals

Another possibility is instead of point estimate to use confidence intervals for parameters. Various analytical methods can be used to propagate the interval from the parameter to the system reliability [Liang2001].  Also, it is possible to use simulation in order to obtain the interval estimate of the system reliability. 
5.3 Uncertainty analysis based on probability distribution functions

Alternatively, unknown parameters may be considered as random variables and probability distribution functions of these random variables can be used to characterize the uncertainty. Then, the uncertainty of the system reliability can be estimated either by analytical exact methods or by approximate methods. 

5.3.1 Analytical method

In this method we are looking into the concepts of Bayesian analysis. For parameter estimation, posterior distribution is obtained from prior distribution and observations. There are a lot of choices for the prior distribution, including Beta and uniform distributions. Analytical method is computationally inexpensive compared to approximate methods; it allows us to evaluate system reliability for various different parameter values. However, deriving analytical solutions could be too cumbersome, or even intractable for realistic systems. Also, it could be difficult to consider dependencies. Since the exact analytical approach may not be practical (or possible) in many instances, approximate methods for performing uncertainty analysis are of great interest.

5.3.2 Approximate methods

Currently, we are considering three approximate methods: histograms method, method of moments, and Monte Carlo simulation. Obtaining the expression for system reliability as described in Section 4 is the first step common to all methods. The choice of the method will depend on the following criteria:
· data requirements and ability to collect data 

· accuracy of the approximate solutions

· scalability with respect to the number of components, that is, number of parameters. 
5.3.2.1 Histogram method

Histogram method involves systematic combination of probability distributions of the system parameters [Jackson81], [Ahmed82]. It involves the following steps:
1. Obtain the expression for the system reliability as described in Section 4.

2. Assign distribution functions (either discrete or continuous) to transition probabilities and component reliabilities.

3. If the continuous distribution function is chosen approximate it by a discrete representation in the form of a histogram. 

4. Combine two parameters of the expression at a time to yield the histogram corresponding to the intermediate combination.

5. Successive combinations yield the histogram representation of the system reliability.

6. Calculate the values of mean and variance using the histogram.

7. Select an empirical distribution function for the system reliability with the help of mean and variance values.

Histogram approach is accurate when the parameters are described with discrete distribution function since there won't be any approximation as in the case of continuous probability distribution function. Errors introduced by the approximation of a continuous distribution functions may be arbitrary reduced by increasing the number of intervals into which the distribution is discretized. If a fine discretization is used, the results of the histogram approach may be equivalent to those generated by a Monte Carlo simulation approach. However, increasing the number of intervals drastically increases the number of intermediate evaluations and corresponding CPU time requirements. The application of the histogram method is also constrained by the number of parameter distributions to be combined. 

5.3.2.2 Method of moments

Another method for uncertainty propagation is the generation of the moments of system reliability from the moments of the component reliabilities and transition probabilities [Jackson81], [Ahmed82]. Parameters moments may be determined from historical or test data, or from assumed distributions. Once the parameter moments have been calculated, the system moments are obtained by combining parameter moments in a Taylor series expansion of the function that relates system reliability to the parameters. The method is limited to those cases where the Taylor series expansion about the mean exists, and further results in a tractable number of partial derivative terms. 

Method of moments involves the following steps:
1. Obtain the expression for the system reliability as described in Section 4.

2. Determine the moments of the component reliabilities and transition probabilities. 

3. Expand the expression for system reliability using Taylor series.

4. Evaluate Taylor series coefficients.

5. Estimate the mean and variance of the system reliability using the parameter moments and Taylor series coefficients.

8. Select an empirical distribution function for system reliability based on the computed moments.

The method of moments has several advantages. First, it does not require the distribution functions of the parameters to be specified. Second, it applies to dependent as well as independent parameters, though the expressions for dependent variables are more difficult to implement due to their complexity. Finally, generation of random numbers is not required and there is no sampling error. 

For these reasons, the second-order moments approach is an attractive alternative to the Monte Carlo or histogram approach. However, since the second-order moment method is an approximation to the true distribution function, a finite error is associated with the use of only up to second order terms in the Taylor series expansion. The accuracy of the system reliability estimation may be increased by including higher order terms in the Taylor series expansion. Implementation of a third order approximation would be a formidable task. Also, due to the computational cost for evaluating the Taylor series coefficients and system moments the use of the method is limited to small and medium size systems. 

5.3.2.3 Monte Carlo simulation

Monte Carlo Simulation is an approximate, though powerful method for estimating reliability of the system when the parameters of the model can be represented by well defined probability distributions  [Jackson81], [Ahmed82].  Unfortunately, this is not always possible because the statistical properties of the parameters are not very well known at all. 

Monte Carlo simulation is based on the following steps:

1. Obtain the expression for the system reliability as described in Section 4.

2. Assign probability distributions to the transition probabilities and components reliabilities.

3. Sample the distributions using a random uniform generator in the interval [0, 1].

4. Compute the reliability of the system using the sampled values.

5. Repeat steps 3&4 until the desired number of values of system reliability has been generated.

6. Calculate the mean and variance as well as the percentiles of the simulated distributions of the system reliability.

Compared to the histogram method and method of moments, Monte Carlo method is less sensitive to the number of components in the system. Also, its accuracy may be increased simply by increasing the number of simulations, that is, the sample size. However, sampling errors may be involved in case of long tail distributions. Also, the computational cost increases with the sample size. Monte Carlo method is a method of choice if a determination of the precise accuracy of an uncertainty analysis for fairly large system is required. 

6. Conclusion and future work 

In this report we have presented an architecture-based software reliability model and the approaches that can be used to estimate the modeling parameters. The architecture-based software reliability is particularly suitable to study how the uncertainty of the transition probabilities due to inaccurate estimations of the operational profile propagates to the software reliability estimations since it allows insight into the dynamic behavior of software executions. Further, we have proposed several methodologies that can be used to assess the effects of the parameters uncertainty on the software reliability estimation. These methodologies can be used for reliability certification of component-based software systems and make quantitative claims about the quality of the software subjected to different operational usages.

The main focus of the next task in our project will be to verify and validate the proposed theoretical methodologies on case studies. First, we will apply these methodologies on the European Space Agency software used in this report as an illustration of the architecture-based software reliability model. Currently, we are making efforts to obtain data from NASA projects that could be used as additional case studies. The empirical studies will help us to develop sound guidelines for choosing the most appropriate methodology depending on data requirements, ability to collect data, accuracy of the solution, and scalability with respect to the number of components.
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