
Critical Aspects of IV&V Amenable to Visualization and Visualization Tool Evaluation
Report No. 8521.04.21.05.020520
Prepared for:

National Aeronautics and Space Administration (NASA) Software Independent Verification and Validation (IV&V) Facility

100 University Drive

Fairmont, WV 26554

Prepared by:

D.N. American, Inc.

Suite 3220, 1000 Technology Drive

Fairmont, WV 26554

May 20, 2002

TABLE OF CONTENTS

11
Introduction

12
Requirements Analysis

12.1
Initial Discussions

22.2
Activities List

62.3
Artifacts

162.4
Decision

183
Visualization Technology Review

203.1
Individual Tool Review

203.1.1
eBizinsights Product Suite

213.1.2
aiSee

233.1.3
Inxight product suite

253.1.4
SHriMP

263.1.5
CodeTEST

283.1.6
xSUDs

293.1.7
OpenDX (Open Data Explorer)

303.1.8
Java / Java 3D

313.1.9
VTK

333.1.10
OpenGL (Open Graphics Language)

343.1.11
Qt

353.2
Choice for Use in This Project

374
Summary

395
References

406
Acronyms

TABLES

3Table 1. IV&V Activities by Phase

5Table 2. IV&V Activities Grouped by Commonality

7Table 3. IV&V Tasks, Input and Output Documents

18Table 4. Visualization Tools not completely Evaluated

38Table 5. Decision Matrix

1 Introduction

This report documents the work performed during a requirements analysis and a visualization tool evaluation for the “Software Visualization Techniques for IV&V” CI (Center Initiative). Section 2 reviews the information gathered during the requirements analysis and discusses the decision for proceeding with a visualization design. Section 3 documents the results of the visualization tool evaluation and concludes with the decision on a tool.
2 Requirements Analysis
The purpose of this analysis was to identify one or more critical aspects (activity, procedure, set of data, etc.) of IV&V which was amenable to visualization. To be amenable to visualization a critical aspect has to meet the following criteria:

· Improving the quality, reducing the time or reducing the cost of the aspect must be of value to IV&V personnel;

· The aspect must contain data or structured information (e.g., requirements) that can be extracted from the aspect and put into a database;
· The data or structured information from the aspect must usually be available on most or enough projects to make the visualization worthwhile; and
· A visualization of the data or structured information must improve the performance on the aspect.
2.1 Initial Discussions

Initial discussions with the Technical Point of Contact (TPOC) were held to establish a background knowledge of some of the key aspects the TPOC felt were aspects to investigate for IV&V visualization. The first aspects identified were:

· Document trees for projects;
· Requirements traceability; and
· Code analysis, which includes looking into:

· Control graphs,

· Fault trees/FMEA (Failure Mode and Effects Analysis),

· Modeling the code in some “generic fashion” such as XML.
Document Trees. One of the first problems encountered on a project is the need to know all the available documentation and the relationships between them. IV&V personnel build a document tree now, but a visualization may help to show very large document trees and the relationships between the documents. Sometimes browsing ftp directory trees supplies a hierarchy for the documentation. However, there is a need to go deeper into the tree to understand the document content and relationships between documents.

Requirements Traceability. At a minimum this involves having a matrix which shows all test cases against all requirements. The problem with this is that it results in a very large matrix with lots of wasted white space. A visualization could be useful to start with a “compressed matrix” where each cell represents a “groups of test cases” compared to “higher level requirements”. One could then expand on each cell to see details.

Besides checking if a requirement is covered by a test there is also a need to understand the relationship between the requirement and the section of the test script testing the requirement, e.g., is the test logically correct for this requirement? If there is a reference to another test suite as exercising the requirement can you then trace to this other suite and is the suite appropriate?

Besides verifying that the requirement is met by the test, IV&V needs to validate that the software requirement is valid, i.e., does it trace to and logically derive from mission requirements? Also, do the requirements flow down (can be traced to) design and code implementation? It is possible that visualizations could more effectively represent and manage all this requirement tracing information.
Code Analysis. We discussed three areas related to code analysis: Control Flow graphs, Fault Trees and Generic Code Models. Control Flow graphs are used for determining information such as where are the bounds on conditional statements, how do I compare Path A, vs. Path B vs. Path C? On large projects viewing this comparison is problematic as you can not bring up and read all paths at the same time. You may bring up one path and inspect it and then close that and bring up another path (this may indicate it is partially a short term memory problem in that you can’t remember details of the previous path you inspected – some method to aid memory could help).

Fault Trees are currently generated by drawing with a package such as Visio. This tree shows paths of what occurs in a failure mode and the final effect. They are derived from requirements and/or design documentation.

Generic Code Models. Currently the TPOC has and uses an IBM provided decompiler that decompiles Java code into XML so that structure of the code can be investigated. However, little coding is done in Java. C and C++ decompilers are needed, but these are proprietary and not currently purchased by the Facility. Besides XML there may be other ways to “generically” model code such as algebraic query languages.
2.2 Activities List
While the initial discussions yielded some possible aspects for visualization, there was not a wide range of aspects covering all of IV&V. The TPOC agreed to provide such a listing and generated the phase-dependent list shown in Table 1.
Table 1. IV&V Activities by Phase

	Phase
	Activity

	Requirements Analysis
	Verify documentation meets intended purpose, has appropriate detail and all necessary elements

	
	Validate ability of requirements to meet system needs

	
	Verify traceability to and from parent requirements

	
	Analyze data/adaptation requirement

	
	Analyze testability, qualification requirements

	
	Analyze data flow, control flow, moding and sequencing

	
	Assess development metrics

	
	Analyze development risks/mitigation plans

	
	Analyze timing and sizing requirements

	
	Review developer timing/sizing, loading engineering analysis

	
	Perform engineering analysis of key algorithms

	
	Review/use developer prototypes or dynamic models

	
	Develop alternative static representations (diagrams, tables)

	
	

	Design Analysis
	Verify documentation meets intended purpose, has appropriate detail and all necessary elements

	
	Validate ability of design to meet system needs

	
	Verify traceability to and from requirements

	
	Analyze database design

	
	Analyze design testability, qualification requirements

	
	Analyze design data flow, control flow, moding, sequencing

	
	Analyze control logic, error/exception handling design

	
	Assess design development metrics

	
	Analyze development risks/mitigation plans

	
	Review developer timing/sizing, loading engineering analysis

	
	Perform design analysis of select critical algorithms

	
	Review /use developer prototypes or dynamic models

	
	Develop alternative static representations (diagrams, tables)

	
	

	Code Analysis
	Verify documentation meets intended purpose, has appropriate detail and all necessary elements

	
	Verify Traceability to and from design

	
	Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)

	
	Verify supportability and maintainability

	
	Assess code static metrics

	
	Verify CSU & CSC level logical structure and control flow

	
	Verify internal data structures and data flow/usage

	
	Verify error and exception handling

	
	Verify code & external I/O data consistency

	
	Review code compilation results & syntax checking

	
	Verify correct adaptation data & ability to reconfigure

	
	Verify correct operating system & run time libraries

Table 1 (continued). IV&V Activities by Phase

	Phase
	Activity

	Software Test Analysis
	Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions

	
	Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs

	
	Verify test cases traceability and coverage of software requirements, operational needs, and capabilities

	
	Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives

	
	Analyze correct dispositioning of software test anomalies

	
	Validate software test results compliance with test acceptance criteria

	
	Verify trace and successful completion of all software test case objectives

	
	Verify ability of software test environment plans and designs to meet software testing objectives

	
	Verify regression tests are sufficient to determine that the software is not adversely affected by changes

	
	Analyze STD procedures for test setup, execution, and data collection

	
	Monitor execution of software testing

	
	

	System Test Analysis
	Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs

	
	Verify test case traceability and coverage of system requirements, operational needs, and capabilities

	
	Analyze correct dispositioning of software test anomalies

	
	Validate ST results compliance with test acceptance criteria

	
	Verify trace and successful completion of all ST case objectives

	
	Verify regression tests are sufficient to determine that the software is not adversely affected by changes

On inspecting this list the D.N. American team discovered that there were commonalities across the phases in types of activities performed (see Table 2). Such a grouping could be useful in three ways:

1. Since the first list showed a large amount of activities (55) any logical grouping would help analyst to better handle this list;

2. Determine if there are similar activities that are performed quite often - these may use a lot of time/resources and so from the IV&V resource perspective are good candidates for visualization; and
3. The commonality may identify a high level "information dimension" which could be quantified (or decomposed to quantifiable dimensions) to be used as the data for input into a visualization (e.g., Test Anomalies, Control/Logic Flow).
The letters under the Phase heading in Table 2 stand for the following: R = Requirements, D = Design, C = Code, SWT = Software Testing, SYT = System Testing.
Table 2. IV&V Activities Grouped by Commonality

	Commonality
	Activity
	Phase

	
	
	R
	D
	C
	SWT
	SYT

	Documentation
	Verify documentation meets intended purpose, has appropriate detail and all necessary elements
	X
	X
	X
	
	

	
	Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs
	
	
	
	X
	

	
	Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions
	
	
	
	X
	

	
	Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs
	
	
	
	
	X

	
	Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives
	
	
	
	X
	

	System Needs
	Validate ability of requirements/design to meet system needs
	X
	X
	
	
	

	Traceability

	Verify traceability to and from parent requirements/requirements
	X
	X
	
	
	

	
	Verify Traceability to and from design
	
	
	X
	
	

	
	Verify test case traceability and coverage of system requirements, operational needs, and capabilities
	
	
	
	X
	X

	
	Verify trace and successful completion of all software/system test case objectives
	
	
	
	X
	X

	Data
	Analyze data/adaptation requirement
	X
	
	
	
	

	
	Analyze database design
	
	X
	
	
	

	
	Verify internal data structures and data flow/usage
	
	
	X
	
	

	Testability,
Qualifications
	Analyze requirements/design testability, qualification requirements
	X
	X
	
	
	

	Control/Logic Flow
	Analyze data flow, control flow, modeling and sequencing
	X
	X
	
	
	

	
	Analyze control logic, error/exception handling design
	
	X
	
	
	

	
	Verify CSU & CSC level logical structure and control flow
	
	
	X
	
	

	
	Verify error and exception handling
	
	
	X
	
	

	Metrics
	Assess development/design metrics
	X
	X
	
	
	

	Risk Management
	Analyze development risks and mitigation plans
	X
	X
	
	
	

	Timing & Sizing
	Analyze timing and sizing requirements
	X
	
	
	
	

	
	Review developer timing/sizing, loading engineering analysis
	X
	X
	
	
	

Table 2 (cont). IV&V Activities Grouped by Commonality

	Commonality
	Activity
	Phase

	
	
	R
	D
	C
	SWT
	SYT

	Algorithms
	Perform engineering analysis of key algorithms
	X
	
	
	
	

	
	Perform design analysis of select critical algorithms
	
	X
	
	
	

	Prototypes,
Dynamic Models
	Review/use developer prototypes or dynamic models
	X
	X
	
	
	

	Static Models
	Develop alternative static representations (diagrams, tables)
	X
	X
	
	
	

	Test Anomalies
	Analyze correct dispositioning of software test anomalies
	
	
	
	X
	X

	Test Acceptance
Criteria
	Validate software/system test results compliance with test acceptance criteria
	
	
	
	X
	X

	Regression Tests
	Verify regression tests are sufficient to determine that the software is not adversely affected by changes
	
	
	
	X
	X

	No Commonality was found for these
	Verify ability of software test environment plans and designs to meet software testing objectives
	
	
	
	X
	

	
	Analyze STD procedures for test setup, execution, and data collection
	
	
	
	X
	

	
	Monitor execution of software testing
	
	
	
	X
	

	
	Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)
	
	
	X
	
	

	
	Verify supportability and maintainability
	
	
	X
	
	

	
	Assess code static metrics
	
	
	X
	
	

	
	Verify code & external I/O data consistency
	
	
	X
	
	

	
	Review code compilation results & syntax checking
	
	
	X
	
	

	
	Verify correct adaptation data & ability to reconfigure
	
	
	X
	
	

	
	Verify correct operating system & run time libraries
	
	
	X
	
	

Considering the activities in this fashion it becomes apparent that three Commonalities show substantial IV&V work effort across all or most phases. These are: Documentation, Traceability, and Control/Logic Flow, which closely confirms the aspects identified in the initial discussions. From the viewpoint of IV&V work effort these three areas would thus seem to be critical aspects and candidates for visualization.
2.3 Artifacts
Following the analysis of the IV&V activities another meeting was held with the NASA TPOC. While he believed this analysis was of interest he also put forth the idea of making a matrix of the IV&V activities vs. artifacts to understand which artifacts are used often and could be candidates for visualization. This matrix was produced and presented to the team in Table 3.

Table 3. IV&V Tasks, Input and Output Documents
	IV&V Activity
	IV&V Task(s)
	Input(s)
	Output(s)

	Management of IV&V Activity
	Develop Software Independent Verification & Validation Plan (SIVVP)
	· SIVVP (previous update)

· Contract

· Concept Documentation

· Development Plans & Schedules
	· SIVVP & Updates

	
	Baseline Change Assessment

Evaluate proposed software changes (e.g., anomaly corrections and requirement changes) for effects on previously completed IV&V tasks.

 Verify and validate that the change is consistent with system requirements and does not adversely affect requirements directly or indirectly. An adverse affect is a change that could create new system hazards and risks or impact previously resolved hazards and risks.
	· SIVVP

· Proposed Changes

· Hazard Analysis Report

· Identified risks
	· Updated SIVVP

· Baseline Change Assessment Report

· Anomaly Report(s)

	
	Management Review of IV&V

Review and summarize IV&V effort to define changes to IV&V tasks or to redirect IV&V effort.

 Verify all IV&V tasks comply with task requirements defined in SIVVP.

Verify that all task results have a basis of evidence supporting the results.

Assess all IV&V results and provide recommendations for program acceptance and certification as input to the IV&V Final Report. The IV&V Review may use any review methodology such as provided in IEEE Std 1028-1988
	· SIVVP & Updates

· Development Plans & Schedules

· IV&V Task Results (e.g., technical accomplishment, IV&V reports, resource utilization, IV&V metrics, Plans, and identified risks)
	· Updated SIVVP

· IV&V Summary Report

· Recommendation to the IV&V Final Report

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	Management & Technical Review Support

Support project management reviews and technical reviews by assessing the review materials, attending the reviews,

and providing task reports and anomaly reports. The review support may use any review methodology such as provided in IEEE Std 1028-1988.
	· IV&V Task Results

· Materials for Review
	· Review Results

· Anomaly Report(s)

	
	Interface with Organizational & Supporting Processes

Coordinate the IV&V effort with organizational (e.g., management) and supporting processes (e.g., QA). Identify the IV&V data to be exchanged with these processes. Document the data exchange requirements in the SIVVP
	· SIVVP

· Data identified in the SIVVP from organizational & supporting processes
	· Updated SIVVP

	Requirements IV&V
	Traceability Analysis

Trace the software requirements (SRS & IRS) to system requirements (e.g., Concept Documentation). Analyze identified relationships for correctness, consistency, completeness, and accuracy. The task criteria are as follows:

· Correctness – validate that the relationships between each s/w requirement and its system requirement are correct

· Consistency – Verify that the relationships between the s/w and system requirements are specified to a consistent level of detail

· Completeness – Verify that every software requirement is traceable to system requirements with sufficient detail to show compliance with system requirements. Verify that all system requirements related to s/w are traceable to s/w rqmts.
	· Concept Documentation (e.g., System Requirements)

· SRS

· IRS
	· Traceability Analysis Report

· Anomaly Report(s)

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	· Accuracy – Validate that the system performance and operating characteristics are accurately specified by the traced s/w requirements

	
	

	
	Software Requirements Analysis

Evaluate the requirements (e.g., functional, capability, interface, qualification, safety, security, human factors, data definitions, user documentation, etc) of the SRS and IRS for correctness, consistency, completeness, accuracy, readability, and testability. The task criteria are:
· Correctness –

· Verify and validate that the s/w requirements satisfy the system requirements allocated to software within the assumptions and constraints of the system

· Verify that the s/w requirements comply with standards, references, regulations, policies, physical laws, and business rules

· Validate the sequences of states and state changes using logic and data flows coupled with domain expertise, prototyping results, engineering principles, or other basis

· Validate that the flow of data and control satisfy functionality and performance requirements

· Validate data usage and format

· Consistency –

· Verify that all items and concepts are documented consistently

· Verify that the function interactions and assumptions are consistent and satisfy system requirements and acquisition needs
	· Concept Documentation

· SRS

· IRS
	· Software Requirements Analysis Report

· Anomaly Report(s)

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	· Verify that there is internal consistency between the software requirements and external consistency with system requirements

· Completeness – Verify that the following elements are in the SRS or IRS, within the assumptions and constraints of the system:

· Functionality (e.g., algorithm, state/mode definitions, I/O validation, exception handling, reporting, and logging)

· Process definition & scheduling

· Hardware, software, and user interface descriptions

· Performance criteria (e.g., timing, sizing, speed, capacity, accuracy, precision, safety, and security)

· S/W control (e.g., initialization, state monitoring, transaction)

· Verify that the SRS and IRS satisfy configuration management procedures

· Accuracy

· Validate that the logic, computational, and interface precision (e.g., truncation and rounding) satisfy the requirements in the system environment

· Validate that the modeled physical phenomena conform to system accuracy requirements and physical laws

· Readability

· Verify that the documentation is legible, understandable, and unambiguous to the intended audience

Verify that the documentation defines all acronyms, mnemonics, abbreviations, terms, and symbols
	
	

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	· Testability

· Verify that there are objective acceptance criteria for validating the requirements of the SRS and IRS

	
	

	
	Interface Analysis

Verify and validate that the requirements for software interfaces with hardware, user, operator, and other systems are correct, consistent, complete, accurate, and testable. The task criteria are as follows:

· Correctness

· Validate the external & internal system and s/w interface requirements

· Consistency

· Verify that the interface descriptions are consistent between the SRS and IRS

· Completeness

· Verify that each interface is described and includes data format and performance criteria (e.g., timing, bandwidth, accuracy, safety, and security)

· Accuracy

· Verify that each interface provides information with the required accuracy

· Testability

· Verify that there are objective acceptance criteria for validating the interface requirements
	· Concept Documentation

· SRS

· IRS
	· Interface Analysis Report

· Anomaly Report(s)

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	System Test Plan Analysis

The System Test Plan shall address the following:

· Compliance with all system requirements (e.g., functional, performance, security, operation, & maintenance) as complete software end items in the system environment

· Performance at boundaries (e.g., data, interfaces) and under stress conditions

· Conforms to project defined document format and content

Validate that the System Test Plan satisfies the following criteria:

· Test coverage of system requirements

· Appropriateness of test methods and standards used

· Conformance to expected results

· Feasibility of system qualification testing

· Capability to be operated and maintained

· Adequate coverage of system hazards and faults
	· Concept Documentation (system requirements)

· SRS

· IRS

· System Test Plan

· User Documentation

· Hazard Analysis and Fault Analysis
	· System Test Plan Analysis Report

· Anomaly Report(s)

	
	Acceptance Test Plan Analysis

Validate that the Acceptance Test Plan satisfies the following criteria:

· Test coverage of system requirements

· Conformance to expected results

· Conformance to project defined standards

· Ability of the environment to support and achieve the objectives

· Adequacy of the defined operational environment

· Adequate coverage of system hazards and faults
	· Concept Documentation (system requirements)

· SRS

· IRS

· Acceptance Test Plan

· User Documentation

· Hazard Analysis and Fault Analysis
	· Acceptance Test Plan Analysis Report

· Anomaly Report(s)

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	Hazard Analysis

Analyze the analysis performed that determined the software contributions to system hazards. The hazard analysis shall:

· Identify the software requirements that contribute to each system hazard

· Validate that the software addresses, controls, or mitigates each hazard

	· SRS

· IRS

· Hazard Analysis and fault analysis
	· Hazard Analysis Report

· Anomaly Report(s)

	Design IV&V
	Traceability Analysis

Trace design elements (SDD & IDD) to requirements (SRS & IRS), and requirements to design elements. Analyze relationships for correctness, consistency, and completeness. The task criteria are as follows:

· Correctness

· Validate the relationship between each design element and the s/w requirements

· Consistency

· Verify that the relationship between the design elements and the software requirements are specified to a constant level of detail

· Completeness

· Verify that all design elements are traceable from the s/w requirements

· Verify that all s/w requirements are traceable to the design elements
	· SRS

· SDD

· IRS

· IDD
	· Traceability Analysis Report

· Anomaly Report(s)

	
	Software Design Analysis

Evaluate the design elements (SDD & IDD) for correctness, consistency, completeness, accuracy, readability, and testability. The task criteria are as follows:

· Correctness

· Verify & validate that the source code component satisfies the s/w design
	· SRS

· IRS

· SDD

· IDD

· Design Standards
	· Software Design Analysis Report

· Anomaly Report(s)

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	· Verify that the source code components comply with standards, references, regulations, policies, physical laws, and business rules

· Validate the source code component sequences of states and state changes using logic and data flows coupled with domain expertise, prototyping results, engineering principles, or other basis

· Validate that the flow of data and control satisfy functionality and performance requirements

· Validate data usage and format

· Assess the appropriateness of coding methods & standards

· Verify the implementation of coding methods & standards

· Consistency –

· Verify that all terms and code concepts are documented consistently

· Verify that there is internal consistency between the source code components

· Completeness – Verify that the following elements are in the SDD, within the assumptions and constraints of the system:

· Functionality (e.g., algorithm, state/mode definitions, I/O validation, exception handling, reporting, and logging)

· Hardware, software, and user interface descriptions

· Performance criteria (e.g., timing, sizing, speed, capacity, accuracy, precision, safety, and security)

· S/W control (e.g., initialization, state monitoring, transaction)
	
	

Table 3 (cont.) IV&V Tasks, Input and Output Documents

	
	· Verify that the SDD and IDD satisfy specified configuration management procedures

· Accuracy

· Validate that the logic, computational, and interface precision (e.g., truncation and rounding) satisfy the requirements in the system environment

· Validate that the modeled physical phenomena conform to system accuracy requirements and physical laws

· Readability

· Verify that the documentation is legible, understandable, and unambiguous to the intended audience

· Verify that the documentation defines all acronyms, mnemonics, abbreviations, terms, symbols, and design language

· Testability

· Verify that there are objective acceptance criteria for validating each design element and the system design

· Verify that each design element is testable to objective acceptance criteria
	
	

An analysis of the artifact list was begun. However, it was discovered that this list does not cover all the phase activities as the first list (Table 1) does. Also, further discussions between the D.N. American team and the TPOC brought out the fact that the documents (artifacts) themselves were too complex, not standardized and the necessary data/information elements are of a lower level, i.e., within the documents, not the documents themselves. However, this list does supply further detail to many of the activities in Table 1 and to the aspect chosen. This information will be used in developing a prototype for this critical aspect.
2.4 Decision

Various references to traceability kept coming up throughout discussions with the TPOC and in our analysis. For example, we discussed tracing requirements to test cases and test scripts. This is easiest when a test script has the same file name as a test case and the script is commented (or documented somehow). Often neither of these is the case and the analyst has to open the script and manually inspect the code. There is no tool to assist in doing this now. The code (in CSTOL or STOL) is opened in Notepad and inspected.

Another important aspect of traceability discussed was tracing the Science and Mission requirements to the derived system requirements. IV&V increasingly needs this traceability to provide strong arguments that certain derived requirements must be met and tested in order to insure that the mission is met. IV&V mostly inspects the flight software (FSW) requirements, but needs to start looking more at the FSW to mission tracing. This is difficult as the development is very distributed and IV&V does not always get requirements traceability from the developers. IV&V may just get the documents and have to dig out the trace.
As Table 2 shows traceability must be also be determined and tracked between requirements and design, code and design, mission requirements and design, and system test cases, scripts and requirements.

Overall the TPOC said that there is a great deal of use of traceability in performing IV&V. Besides having to determine the trace there is a challenge in organizing and managing the traceability once determined. For example, a requirements by test case matrix for a system could involve hundreds, if not thousands, of cells. This is unmanageable on paper and barely manageable on common table- or matrix-producing tools such as Microsoft Excel. Also, note that such a traceability matrix only involves two software phases (requirements and software testing). However, traceability is needed between requirements and design, code, etc. Such a multi-dimension matrix is untenable with current COTS, but is, in fact, an outstanding opportunity for visualization.
One possibility for providing visualization for traceability for the requirements to test cases matrix is as follows. The visualization would start with a “high level” matrix that just shows top level requirements as rows and test cases as columns. This matrix might have numbers in each cell or colors to indicate the extent to which requirements are covered by test cases. For example, a green cell or cell with 100 would indicate that the requirements under requirement 3.1 (top-level) are fully covered, while a red cell or number of 50 or less indicates a problem for requirements under 3.4. The user could then click on a cell with a problematic indicator and produce a “zoomed-in” matrix of the next level, or all requirements, under 3.4 and find which requirements are not covered. Further, the user could click on cells with test cases and get textual information on the test case; for example, name and path of test script or even the description of the test case and/or the test script code.
Traceability as a critical aspect was then considered against the four criteria introduced in the introduction to this section.
Value to IV&V Personnel. Based on discussions with the TPOC, documentation shared with the team and considering the overall part traceability plays in any complete IV&V effort, the D.N. American team judged traceability to be of high value to IV&V personnel. The TPOC concurred in this judgment.

Data/Structured Information Can be Identified and Extracted. The data/structured information necessary would be the identified phase items (each requirement, design specifications, test cases, etc. from documentation), the description (text, tables, graphics) for each item. and the trace between these items. This information can be extracted from some project sources (documentation or personnel) or from work performed by IV&V personnel and then entered into a database.
Data/Structured Information Usually Available. IV&V personnel currently have to either find the information just described from project material or construct it from the documentation and personnel available from each project. Thus, the necessary information would be available for visualization.
Visualization Would Improve Performance on Traceability. Based on the information the D.N. American team received (discussions with TPOC, viewing a large requirements to test case traceability matrix produced by TPOC, analysis of some documents), and feedback the TPOC gave on possible traceability visualization examples produced by the team, the D.N. American team judged that visualization would improve performance on managing traceability information. The TPOC concurred.
Since the current project has a limited time frame and budget it was decided to pursue only traceability as the critical aspect. In fact the prototype will concentrate on visualizing requirements to test case (also, known as test procedures) and attempt to incorporate tracing to test scripts.

Although analysis of IV&V activities indicated that Documentation and Control/Flow Logic are also critical aspects there is not enough time and resources to pursue these also in this phase of the CI. Traceability was chosen over these other two for the first aspect based on the above arguments and:

· The TPOC’s discussions continually indicated the importance of this aspect,
· The documentation provided to the D.N. American team related to traceability,

· Documentation trees, as an aspect for visualization, appears to involve the introduction of large scale (expensive) knowledge or document handling tools, which the time frame and budget for this CI do not allow for,

· The research field of software visualization has some current efforts concerning Control/Flow Logic but none (that we know of) concerning traceability; furthermore, the current E2V2O2S2 project could be extended to apply to Control/Flow Logic.
3 Visualization Technology Review

This review was undertaken, not to be a comprehensive overview of the field, but to discover which tool or language would be most appropriate for the current research. Our sources of information were: the Multimedia document [Prologic,01], web searches and a search through a private search consultant - NERAC [NERAC]. Many tools were rejected as soon as the reference and summary was found. The reasons for rejecting these were usually that they were either too domain-specific (e.g., Groundwater Visualization), applied strictly to charts for numeric data, were actually computer workstations (older references) or similar reasons.

From these sources we identified 28 tools/languages/APIs (Application Programming Interfaces) to investigate. In general we considered available COTS products, and languages and APIs. We have not reviewed programs or tools produced by the myriad of visualization research projects at universities and research organizations
. These are in general too specific (to a particular research area) and/or without the support needed to ensure ease of use and continuing maintenance and upgrading.

Of the 28 identified, initial investigation let us to conclude that 17 did not qualify for a more complete evaluation. Table 4 shows these tools and the reason for not considering them.

Table 4. Visualization Tools not completely Evaluated

	Tool
	Source of Information
	Reason for Not Evaluating

	Program Visualizer (PV)
	http://www.research.ibm.com/pv/

	No longer offered or supported.

	aiCall
	http://www.absint.com/aicall/
	Only supports Infineon and ST Micro-electronics processors.

	OmniViz
	http://www.omniviz.com/
	Has domain specific (non-sw analysis) modules. One is library science.

	Leonardo
	http://www.dis.uniroma1.it/~demetres/Leonardo/
	Only available for Macintosh.

	SAS/Insight
	http://www.sas.com/rnd/app/da/insight.html
	Tool for analyzing scientific and statistical data, not applicable software IV&V.

Table 4 (cont). Visualization Tools not completely Evaluated
	Visualization Workbench
	http://www.paragon.com/
	Older tool that doesn't appear to be supported anymore.

	SpyKer
	http://www.lynuxworks.com/
	Environment for visual debugging of embedded Linux systems.

	FltMaster
	http://www.ssmotion.com/
	Visualization environment for aerospace testing.

	Cognos Visualizer

	http://www.cognos.com/
	Focuses on visualizing business information such as sales and marketing.

	CARD
	http://www.computer.org/proceedings/compsac/8105/81050624abs.htm
	Only available in Japan.

	ARM
	http://satc.gsfc.nasa.gov/tools/arm/
	Not updated—has bugs and incomplete feature set.

	xSUDS-SDL
	http://www.chillarege.com/fastabstracts/issre99/99102.pdf
	Not updated—no release date.

	PROGRES
	http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
	Not updated —also, this is a software programming tool, not analysis

	McCABE/IQ2
	http://www.mccabe.com/products/mccabe_iq.htm
	Oriented towards software development

	jGRASP
	http://www.eng.auburn.edu/department/cse/research/grasp
	Product is in Beta revision.

	FAUST
	http://www.icad.org/websiteV2.0/conference/ICAD97.weinstein.pdf
	Product is not visual, it is for sonification—adding sound to program code.

	Look!
	http://www.windriver.com/products/html/look.html
	Code visualization, development tool

3.1 Individual Tool Review

The remaining tools/languages/APIs were subjected to a more complete evaluation. Each tool, language or API was evaluated using the following attributes:

Name - the name of the tool and company/organization which provides it.

1. Availability - where information can be found to procure the tool.

2. Purpose - a brief explanation of what the tool does.

3. Type - Application, API, or Language.

4. Description - a brief description of the item.

5. Platform Flexibility - the hardware, software, operating systems and/or processors needed to run the item.

6. Visualization Flexibility - the extent to which the item provides for doing a variety of visualizations.

7. Implementation - a general impression of what it would take to implement this item.

8. Ease of Use - a general impression of how easy this item would be to use.

9. Advantages - advantages of using this item.

10. Disadvantages - disadvantages of using this item.

3.1.1 eBizinsights Product Suite
From Visual Insights. There are actually three tools in the suite: eBizinsights/XL 3.0, Advizor and 3D Studio.
3.1.1.1 Availability
Information and product available at http://www.visualinsights.com/
3.1.1.2 Purpose

Enables analysis of e-commerce at a website. Also, provides general website traffic and usage patterns.
3.1.1.3 Type
Application.
3.1.1.4 Description

Provides 2D and 3D (in 2D space) charting, network (paths) and simple flowchart visualizations concerning web usage and web site architecture.
3.1.1.5 Platform Flexibility

eBizinsights/XL 3.0 works with Microsoft IIS, Netscape/iPlanet and Apache HTTP web server environments. Advizor runs in MS Windows NT 4.0, 95, 98 and 2000 environments. There are three versions of 3D Studio; one for Java classes, one for C++ and a general prototyping tool. All run in MS Windows NT 4.0, 95, 98 and 2000 environments.
3.1.1.6 Visualization Flexibility
As far as application to IV&V the visualization flexibility is minimal as the tools only apply to websites. Within web site application the visualization flexibility is still rather limited as there are only certain visualizations supported (see Descriptions above).
3.1.1.7 Implementation
Besides effort at learning the tools, for the best affect the eBizinsights/XL 3.0 tool, should be integrated with an appropriate web server and database. This suite provides no data mining only visualization of the data. Cost of the products are: $25,000 for server license with access from 4 CPUs, then $2000 per additional CPU. Maintenance is 20% per year of total contract.
3.1.1.8 Ease of Use

Information and demos on the website indicate that the tools would be easy to use once training and integration issues are resolved. End-users, who receive e-commerce visualizations, should be able to easily use tool.
3.1.1.9 Advantages

Provides COTS product for visualizing web site usage information and making projections.
3.1.1.10 Disadvantages

Only applicable to analyzing website usage. Does not appear at all useful for IV&V software visualization at this time.

3.1.2 aiSee
From Angewandte Informatik.
3.1.2.1 Availability

Information and product available at www.absint.com/aisee/
3.1.2.2 Purpose

Automatically calculates a customizable layout of graphs specified in GDL (Graph Description Language). This layout is then displayed, and can be printed or interactively explored. A variety of graph visualizations can be displayed.

3.1.2.3 Type

Application.

3.1.2.4 Description

aiSee provides a point and click interface for designing a variety of graph visualizations from GDL input. aiSee was initially developed to help visualize the data structures of compilers, but can be used to investigate other information where graphs are useful (e.g., call graphs, database management, organization charts, code structure). Once the user builds or imports a GDL file she can use the different features of aiSee to provide a variety of visualizations of the same file, helping understanding and discovery. aiSee can also export static graphics of the visualizations as PPM, BMP or Postscript files.
3.1.2.5 Platform Flexibility

aiSee runs under Windows 95/98/2000/NT/ME, various Unix dialects including Linux and Solaris, and MacOSX/X11.

3.1.2.6 Visualization Flexibility
aiSee only produces graph visualizations. However, it does offer a wide variety of graph visualizations (15) and the designer can manipulate the look and interaction capability of the graph and add animation.
3.1.2.7 Implementation

aiSee does not appear that difficult to learn, but the user will have to learn GDL and construct GDL, or use compilers that can produce GDL output. The tool is stand-alone, no additional server or software development packages are needed. The cost of a single aiSee user license is $355.50 for a “light” version and $454.50 for a Professional version. Site licenses and support packages are available.
3.1.2.8 Ease of Use

It appears that the learning curve would be a bit more difficult than using Power Point, but far easier than learning a major graphics tool (e.g., Adobe Illustrator). After learning aiSee appears easy to use.
3.1.2.9 Advantages

If you have GDL output or use graphing very frequently to analyze and/or develop software aiSee is worth considering.
3.1.2.10 Disadvantages

Only produces graph visualizations, needs GDL input and is only sold and supported from Germany.
3.1.3 Inxight product suite

From Inxight Products. There are many Inxight visualization products. The three most relevant tools were examined: the VizServer, MetaText Server, and software development kits.

3.1.3.1 Availability

Information, product demonstrations, and purchasing information are available at http://www.inxight.com/
3.1.3.2 Purpose

Analyzing, organizing, categorizing and navigating information on the Internet and enterprise networks. These tools provide a way to organize unstructured information, such as diverse documents and databases.

3.1.3.3 Type

Application.

3.1.3.4 Description

Inxight MetaText Server – This tool is used for structuring unstructured documents for improved access and use. The types of unstructured information Inxight MetaText Server(IMS) is useful for include Web pages, emails, news feeds, word processing documents, presentations and other forms of content. IMS achieves this by automatically extracting and indexing metatext, the information that identifies the content and context of a document. With IMS, you can extract summaries and key entities, or find similar documents and related concepts for most unstructured text. This tool is most useful when organizing large volumes of data.

Inxight VizServer for navigating and analyzing databases. As with MetaText Server, VizServer is an enterprise solution for navigating, exploring and understanding information. VizServer uses databases to interface with other Inxight applications, such as the Inxight Star Tree and Table Lens technologies.

Inxight Star Tree SDK (software development kit)—for creating and modifying Inxight applications for deployment on the World Wide Web. Star Tree technology is Inxight's technique for navigating and visualizing Web sites and other hierarchical information collections. This visualization technique is very similar to the SHriMP (see below) “fish eye” viewing technology, discussed below. Star Tree is especially effective in organizing and displaying huge volumes of related data, such as collections in business intelligence, e-commerce, e-publishing or Web development areas. A unique graphical interface presents complex hierarchies of information (such as a set of documents). Star Tree technology forms the basis for Inxight's Star Tree SDK with its APIs for integrating Star Tree navigation and visualization capabilities into OEM and enterprise applications.

3.1.3.5 Platform Flexibility

The StarTree MetaText Server and VizServer packages allow for creating and maintaining information visualizations for deployment to other users on the World Wide Web (or within an enterprise network), and requires J2EE servers in place (Windows NT/2000, or Solaris servers). The StarTree SDK requires Java programming or Windows ActiveX programming environments.

3.1.3.6 Visualization Flexibility
The visualizations are useful for viewing hierarchical information, but are limited to StarTree technology. This technology, which is somewhat similar to the SHriMP technology (discussed below) creates a large, centered view of a data object of interest, while the other related objects are diminished in size. The TableLens application is a means of viewing very large tables of data on one screen. Color coding and the ability to drill down enable a person to organize this information. The flexibility for both these applications is in the underlying interface to the software which allows many different types of documents to use this view—databases, textual documents, etc. However, even when using the SDK to create novel applications, these tools limit one to either the StarTree or TableLens visualizations.

3.1.3.7 Implementation

Implementing this system would require adding a Windows or Solaris server to an existing intranet system. It is also noteworthy, however, that the evaluation versions of the VizServer and MetaText Server were difficult to deploy without extensive assistance from Inxight technicians. The cost for the VizServer or MetaText Server is $75,000.

3.1.3.8 Ease of Use

In visualization mode, the StarTree and TableLens views are easy to work with and manipulate. There is, however, significant overhead associated with manipulating the documents of interest so that they conform to the format used by the programs. The StarTree SDK is a straightforward set of Java classes which can be used and modified to create customized StarTree applications (e.g. the color scheme or object shapes can be altered).

3.1.3.9 Advantages

For very large volumes of documents, StarTree provides a meaningful, easy to understand means of viewing relationships among documents. Similarly for TableLens and databases. The SDK provides a straightforward means of altering the basic functionality or appearance of StarTree applications.

3.1.3.10 Disadvantages

The usefulness of these applications is limited to viewing large collections of documents or large collections of data in a single database. The visualizations are limited to the StarTree or TableLens technology, even if the SDK is used. The visualizations are useful, but are simple two dimensional graphs. The relatively expensive VizServer or MetaText Server are needed to realize the full capability of StarTree or TableLens.
3.1.4 SHriMP

The SHriMP(Simple Hierarchical Multi-Perspective) visualization technique is a research tool. There are several examples of its implementation in various commercial applications, mainly focused on networked viewing of enterprise-wide documents and information. The technique is also applied to the visualization of software code.
3.1.4.1 Availability

Information and software available at http://www.csr.uvic.ca/shrimpviews/
3.1.4.2 Purpose

SHriMP can be used to visually represent interrelated objects in software or in other information-intensive applications (such as knowledgebases).

3.1.4.3 Type

Application (SHriMP itself is open source, available for download. The various commercial incarnations of SHriMP are COTS applications).

3.1.4.4 Description

SHriMP is a visualization technique, designed for visualizing and exploring software architecture and any other information space. SHriMP is used with languages or data that have been processed into a standard form. After processing, SHriMP is language independent. The SHriMP visualization technique has been designed to assist people in browsing and exploring complex information spaces. The primary focus of SHriMP is as an environment for exploring large software programs.

3.1.4.5 Platform Flexibility
At present SHriMP is constrained to visualizing C code (by means of the RIGI reverse engineering tool). There are current projects in place for parsing and preprocessing other languages, such as JAVA.

3.1.4.6 Visualization Flexibility
SHriMP has been used in visualization of business process flow, expert systems knowledgebases, and software code. For the purpose of code visualization, the code must be pre-processed by an ancillary program (i.e. the RIGI program). For the other applications, the process or information being visualized must be codified in a way that is compatible with SHriMP.

3.1.4.7 Implementation

This program is implemented for use on any Windows or UNIX platform which supports Java , and supports C code development. The RIGI tool for C code requires Linux, IBM AIX 4 (RS6000), SunOS 4, Windows95/Windows NT, or a Sun Solaris System.

3.1.4.8 Ease of Use

For C code, the conversion of code to a graph is automated. This conversion is accomplished by means of command line tools for C, but would require programming or purchasing more tools for parsing programming languages other than C. After code is in the required format, SHriMP is graphical, and has a straightforward graphical user interface for manipulating code objects and viewing relationships.

3.1.4.9 Advantages

The SHriMP tool itself is a freely available piece of research software.
For C code, this is a strong alternative to the Inxight products reviewed above.

Once code or information is in the required format, the visualizations are useful.

3.1.4.10 Disadvantages

Pre-processing of C code is required in order to use SHriMP. A large amount of parsing and preprocessing are required for languages other than C or for other information applications. Because SHriMP is a research tool, it is anticipated that using SHriMP would require purchase of a commercial implementation in order to make full use of its features. Visualization is constrained to two dimensional diagrams.

3.1.5 CodeTEST

From Wind River Systems, this is a suite including the CodeTEST/Coverage, CodeTEST/Memory and CodeTEST/Trace tools. This section concentrates on two of the tools—CodeTEST/Coverage, CodeTEST/Memory.

3.1.5.1 Availability

This is a commercially available product, located at http://www.windriver.com/products/html/codetest.html
3.1.5.2 Purpose

The CodeTest Suite is a set of tools designed for verification of embedded software.

Primary users include firmware or application software developers.

3.1.5.3 Type

Application.

3.1.5.4 Description

CodeTEST/Coverage gives developers an interactive view of system tests as they are running, which helps gauge testing efficiency. The goal in using this software is to pinpoint errors earlier in the development cycle, which reduces the time needed to get products to market.

CodeTEST/Memory enables developers to pinpoint memory problems, before they can affect system operation. The intent is for developers to proactively track dynamic memory allocation and identify memory leaks before they cause system crashes.

3.1.5.5 Platform Flexibility

Covers Intel, Motorola, MIPS, and SPARC platforms. These tools are integrated with the Tornado II and Tornado 3 development environments, sold by the same vendor. The language support is C/C++.

3.1.5.6 Visualization Flexibility
The visualizations are specifically limited to code coverage and memory visualization. The code coverage visualization is of interest, in that it provides a way for developers and test engineers to verify software characteristics at the unit, integration, and system stages of the development cycle. These visualizations are limited to graphs and tables, but are fairly comprehensive. Components include coverage analysis and a target agent that eliminates hardware probing. Although the flexibility is limited, this tool exemplifies the application of visualization to code verification.

3.1.5.7 Implementation

CodeTEST uses both C and C++ code, and is available for most major development platforms and architectures. The program requires a little modification to the user code in order to use the visualizations. In addition, purchase of the company’s Tornado II or Tornado 3 IDE is recommended for ease of use.

3.1.5.8 Ease of Use

The CodeTEST programs are integrated into the Tornado II and Tornado 3 IDE’s from Wind River Systems, and are thus accessed through a GUI, which makes them easy to use. The available output graphs are easy to read.

3.1.5.9 Advantages

CodeTEST, particularly CodeTEST/Coverage, provides a way to visualize code coverage at the unit, system, and integration levels.

3.1.5.10 Disadvantages

Coverage is visualized, but is limited in scope. The focus of these tools is on code visualization, rather than process visualization. The visualization is limited to very simple views, primarily 2D charts. The domain is limited to embedded software and firmware development.
3.1.6 xSUDs

Available from Telecordia Technologies, this is an integrated suite of tools for software maintenance.

3.1.6.1 Availability

Information and product available at http://xsuds.argreenhouse.com/
3.1.6.2 Purpose

xSuds can be used to analyze the dynamic behavior of software and to allow the user to visualize all program data through an integrated graphical user interface. The primary focus is on debugging during the testing and maintenance phases of software development.

3.1.6.3 Type

Application.

3.1.6.4 Description

This suite of tools is focused on visualization during software maintenance, and the management of C code. It includes tools which assist with test coverage measurement, test case management, regression testing, test creation, dynamic program slicing, debugging, detecting date-sensitive code, and a graphical tool for displaying file differences

3.1.6.5 Platform Flexibility
This suite works with C, C++, and Java. It is available for Solaris, Windows NT, Windows95, SunOS, AIX, and HP-UX.
3.1.6.6 Visualization Flexibility
The toolset is centered on the visualization of software code by software developers, software and system testers, and software maintainers. The environment is capable of displaying many types of information related to software design and testing. The visualizations are in the form of code highlighting and color-coding of sections of code.

3.1.6.7 Implementation

The tool suite operates in a graphical user environment(GUI) that is consistent in look and feel across both Windows and Unix platforms, listed previously. Use of this software would require interfacing an existing compiler with the tool suite, and altering IV&V practices to adapt all code being tested to the requirements of this tool.

3.1.6.8 Ease of Use

To get to the point at which the GUI is useful, it would be necessary to use command line tools to process the software code of interest. Experienced software developers and computer scientists will be able to do this, but it does present some overhead.

3.1.6.9 Advantages

This is a full suite of tools, useful in the development of software tests and maintenance.

The visualizations make good use of color and syntax highlighting to pinpoint areas of software code which are of interest. The product is available across Windows and Unix platforms.

3.1.6.10 Disadvantages

The tools are highly oriented towards the development part of the software lifecycle, limiting its applicability to IV&V. The visualizations are limited to color and syntax highlighting. These are useful but there is little more in the way of visualizing interactions among code components.

3.1.7 OpenDX (Open Data Explorer)
Available from IBM.

3.1.7.1 Availability

OpenDX is freely available from IBM under an open source license at http://www.opendx.org/.

3.1.7.2 Purpose

OpenDX is a visualization tool for displaying complex sets of 3D information.

3.1.7.3 Type

Application.
3.1.7.4 Description

OpenDX is a uniquely powerful, full-featured software application for the visualization of scientific, engineering and analytical data. Its open system design is built on a standard interface environment. Its sophisticated data model provides users with great flexibility in creating visualizations. In addition, OpenDX provides the ability for users to write OpenDX modules to extend its functionality.

3.1.7.5 Platform Flexibility
OpenDX runs on Windows, Linux, and a variety of Unix platforms. Its 3D visualization capabilities require a 3D graphics card with OpenGL support.

3.1.7.6 Visualization Flexibility

OpenDX provides a high degree of visualization flexibility through its modular design and variety of accepted data formats. It is primary focus is time series 3D graphical representations of data.

3.1.7.7 Implementation

OpenDX and its predecessor, IBM's Data Explorer, have been around for over 5 years. OpenDX is a robust, well-supported visualization tool and is available for free under an open source license. A 3D graphics card is needed to run Open DX.
3.1.7.8 Ease of Use

OpenDX is fairly difficult to use as it provides a large set of features in a single package. It is a powerful visualization and graphics tool with a fairly steep learning curve.

3.1.7.9 Advantages

OpenDX is a robust tool with many visualization capabilities available under an open source license. It can it be used to develop almost any 3D visualization.

3.1.7.10 Disadvantages

OpenDX is not well documented and because of the multitude of features it provides, it can be difficult to use.

3.1.8 Java / Java 3D

Initially developed by Sun Microsystems and available from Sun and other sources.
3.1.8.1 Availability

Java and Java 3D are freely available and can be downloaded from a variety of sources. Two leading vendors of Java runtime environments and development kits are Sun Microsystems (http://java.sun.com) and Blackdown (http://www.blackdown.org).

3.1.8.2 Purpose

Java is a cross-platform software development language that can be used for a wide variety of programming tasks. Java 3D provides the programmer with a set of 3D graphical tools based on OpenGL for building virtual 3D environments.

3.1.8.3 Type

Language/API.
3.1.8.4 Description

Java was developed by Sun Microsystems to enable cross-platform application development where a programmer could write an application once and that application could be run on a Windows platform, a Linux platform, a Solaris platform, and even within a web browser. Java is inherently object oriented and the language has a wide variety of utilities or libraries built into it.

Java 3D is an extension to the Java programming language that allows programmers to build virtual 3D environments. Java 3D is based on OpenGL developed by Silicon Graphics, Inc. Java 3D provides tools such as objects, actors, canvases, and cameras to allow the construction of complete, dynamic 3D scenes.

3.1.8.5 Platform Flexibility
Java and Java3D run time environments run on a wide range of platforms including Windows, Linux, Solaris, and various other Unix environments. In addition Java3D requires an OpenGL compatible 3D graphics card.

3.1.8.6 Visualization Flexibility

Java 3D provides a toolset for visualization and ,as such, provides a great degree of visualization flexibility. Java contains SWING components for 2D visualization and along with Java3D provide a robust platform for almost any visualization.

3.1.8.7 Implementation

Java has been a viable software development environment for over five years. Java 3D is not as well established in the world of 3D graphics but within the last twelve months has emerged as the premier toolkit for 3D graphics in Java. Java and Java3D runtime environments are available without cost. A 3D graphics card is needed to run Java 3D.
3.1.8.8 Ease of Use

Both Java and Java 3D are moderately easy to use. Java provides a straightforward programming environment but does have the complexities of an object-oriented language. Java 3D is also relatively easy to use but the programmer must have an understanding of the OpenGL style of developing and rendering 3D graphics.

3.1.8.9 Advantages

Java and Java 3D provide a robust, capable, and stable environment for developing 3D simulations. Both are also available without cost.

3.1.8.10 Disadvantages

Java and Java 3D comprise a development environment, which requires software programmers. Java and Java 3D are not a point and click interface and require an investment in time and expertise to use.

3.1.9 VTK

From Kitware,Inc.
3.1.9.1 Availability

Visualization ToolKit (VTK) is freely available at http://www.kitware.com.

3.1.9.2 Purpose

VTK is a cross platform set of libraries and utilities for constructing advanced 3D environments.

3.1.9.3 Type

API

3.1.9.4 Description

VTK was developed by Kitware (www.kitware.com) to be an open source, freely available software system for 3D computer graphics, image processing, and visualization used by thousands of researchers and developers around the world. VTK consists of a C++ class library, and several interpreted interface layers including Tcl/Tk, (Tool Command Language/Toolkit) Java, and Python.

VTK supports a wide variety of visualization algorithms including scalar, vector, tensor, texture, and volumetric methods; and advanced modeling techniques such as implicit modeling, polygon reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation. In addition, dozens of imaging algorithms have been directly integrated to allow the user to mix 2D imaging/3D graphics algorithms and data. The design and implementation of the library has been strongly influenced by object-oriented principles.

3.1.9.5 Platform Flexibility
VTK is set of software development libraries and utilities that are available for Windows, Linux, and a variety of Unix platforms.

3.1.9.6 Visualization Flexibility

While VTK can be used to produce practically any visualization, it primarily specializes on time series 3D representations of complex scenes.

3.1.9.7 Implementation

VTK has been a viable software development toolkit for advanced 3D visualization for over 4 years. Aside from its Platform Flexibility it also requires an OpenGL compatible 3D graphics card for displaying 3D visualization simulations.

3.1.9.8 Ease of Use

VTK is moderately easy to use. The interfaces are well defined and easy to understand but VTK programmers must have an understanding of the OpenGL style of developing and rendering 3D graphics.

3.1.9.9 Advantages

VTK provides a robust, capable, and stable environment for developing 3D simulations and is available without cost.

3.1.9.10 Disadvantages

VTK comprises a set of development libraries and utilities, which require software programmers to utilize. VTK is not a point and click interface and requires an investment in both time and expertise to use effectively.

3.1.10 OpenGL (Open Graphics Language)
Originally developed by SGI and available from them and other sources.
3.1.10.1 Availability

One of the best sources for OpenGL libraries and documentation is at http://www.opengl.org.

3.1.10.2 Purpose

OpenGL is a 3D hardware acceleration standard and a cross platform set of libraries and utilities for constructing advanced 3D environments.

3.1.10.3 Type

API

3.1.10.4 Description

OpenGL is an environment for developing portable, interactive 2D and 3D graphics applications. Since its introduction in 1992, OpenGL has become one of the industry's most widely used and supported 2D and 3D graphics application programming interface (API). OpenGL incorporates a broad set of rendering, texture mapping, special effects, and other powerful visualization functions. Developers can leverage OpenGL across all popular desktop and workstation platforms, ensuring wide application deployment.

3.1.10.5 Platform Flexibility
OpenGL libraries are available for a wide variety of platforms including Windows, Linux, and several Unix variants. OpenGL requires a compatible 3D graphics card.

3.1.10.6 Visualization Flexibility

OpenGL is used to create time series and static 3D visualizations. Since it is an API, it has a great deal of flexibility as to what type of visualization can be produced with it.

3.1.10.7 Implementation

OpenGL has been a viable software development toolkit for advanced 3D visualization for nearly ten years. OpenGL libraries are available for free but require a compatible 3D graphics card.

3.1.10.8 Ease of Use

OpenGL is fairly difficult to use. The interfaces are well defined and easy to understand but OpenGL programmers must have an understanding of the OpenGL style of developing and rendering 3D graphics as well as an understanding of some hardware issues involved in rendering 3D graphics.

3.1.10.9 Advantages

OpenGL provides a robust, capable, and stable environment for developing 3D simulations and is available without cost.

3.1.10.10 Disadvantages

OpenGL comprises a set of development libraries and utilities, which require software programmers to utilize. OpenGL is not a point and click interface and requires an investment in both time and expertise to use effectively.

3.1.11 Qt

From TrollTech.
3.1.11.1 Availability

Qt is available from TrollTech (http://www.trolltech.com) under both an open source and commercial license.

3.1.11.2 Purpose

Qt is a graphics toolkit used to build GUI applications.

3.1.11.3 Type

API

3.1.11.4 Description

Qt is a C++ toolkit for application development. It lets application developers target all major operating systems with a single application source code.

Qt provides a platform-independent API to all central platform functionality: GUI, database access, networking, file handling, etc. The Qt library encapsulates the different APIs of different operating systems, providing the application programmer with a single, common API for all operating systems. The native C APIs are encapsulated in a set of well-designed, fully object-oriented C++ classes.

3.1.11.5 Platform Flexibility
Qt is a set of software development libraries and utilities for Windows, Linux, Solaris, HP-UX, IRIX, AIX, and many other Unix variants.

3.1.11.6 Visualization Flexibility

Qt provides libraries and utilities for visualization and, as such, provides a great degree of visualization flexibility. It primarily is used for GUI development and the development of complex 2D visualizations, but it also has OpenGL extensions for building 3D environments.

3.1.11.7 Implementation

Qt has been a viable software development toolkit for visualization and GUI development for over five years. It is available as both an open source product for free as well as under a commercial license for $1500 a seat.

3.1.11.8 Ease of Use

As a development toolkit, Qt is easy to use. It is extremely well documented and developers need only understand basic GUI development paradigms. To do 3D visualizations with Qt the programmer must have the additional understanding of the OpenGL style of developing and rendering 3D graphics.

3.1.11.9 Advantages

Qt provides a robust, capable, and stable environment for developing GUIs and visualization applications and is available commercially for a reasonable cost.

3.1.11.10 Disadvantages

Qt comprises a set of development libraries and utilities, which require software programmers to utilize. Qt is not a point and click interface and requires an investment in both time and expertise to use effectively.

3.2 Choice for Use in This Project
In order to come to a decision between the items evaluated we constructed a decision matrix (see Table 5). The tools fully reviewed are in the first column, the categories used for making a decision are in the top row. The first four of these categories are directly from the evaluation categories used for the tools. The last two, Learning Curve and Cost, were not specific categories in the evaluation, but can be inferred from the evaluations. The text in each cell gives a value (e.g., High, Medium, or Low for Platform Flexibility) or a description for the category above the cell for the tool to the left. Cells with italicized, bold text show values or descriptions which were reasons for rejecting a tool as inappropriate for this project as described next for those tools.

eBizinsights. The major reason for rejecting this tool is that it is aimed at websites (Other category). However, it also has a high cost ($30,000) and has low Visualization Flexibility. Since the present project needs to remain highly flexible at this time in terms of specific choices of visualization any tool with low Visualization Flexibility is not acceptable.
aiSee. This tool also has low Visualization Flexibility. Also, any data must be transformed into GDL before this tool can be used adding additional work and perhaps even placing a constraint we can not overcome. Finally, we were unsuccessful in contacting this company at emails and phone numbers given on the website and it is not a US company. The later means that support will likely be difficult and US government regulations may preclude any purchase.

InXight. The cost of this suite is extremely high ($75,000) and the Learning Curve is fairly high. Also, we had great difficulty loading and running the evaluation copy provided and the support to do this was poor.

SHriMP. Platform Flexibility was low, as this is only for C code at this time. Also, SHriMP itself is a research development application.
CodeTest Suite. Also, has low Platform Flexibility (C/C++ only) and is geared toward software development. As discussed above we will not be investigating code analysis on this project.

xSUDS. This has low Visualization Flexibility and is also oriented toward software development and code analysis.

This leaves the five Languages/APIs evaluated: OpenDx, Java/Java3D, VTK, OpenGL and Qt. Except for VTK, the decision among these five was not clear cut as there were not major reasons for rejection. In the case of VTK, the Ease of Use is rated as Fairly Difficult while the others are Easy or Moderate. It was therefore rejected.

Among the remaining four the Ease of Use and Learning Curve categories were the differentiators. On these Qt was evaluated as Easy and Very Low respectively, while OpenDx and OpenGL were moderate on both. This leaves Java/Java3D as a close second since, like Qt, Ease of Use was rated Easy. However, Java/Java3D was rated moderate on Learning Curve while Qt was rated as Very Low.
Admittedly this Learning Curve rating is more geared toward the current project with the current team members being more familiar with Qt than with Java/Java3D. However, as the purpose of this evaluation was not a general evaluation of these tools, but an evaluation to chose a tool specifically for this project, such a bias is appropriate.
Thus, Qt is our choice for the language to use in our development for the Requirements Traceability Prototype.

4 Summary

Based on the available information in the time frame established for this analysis we have decided that the IV&V aspect of Requirements Traceability will be the aspect which this CI will develop a visualization prototype for. Based on our evaluation of tools, languages and APIs which could be used to develop this prototype and the needs of the present project we have concluded that the language Qt will be the choice of development tool.
Table 5. Decision Matrix
	Item
	Platform Flexibility
	Visualization Flexibility
	Implementation
	Ease of Use
	Learning Curve
	Cost
	Other

	eBizinsights
	High
	Low
	Needs server/DB
	Easy
	Low
	$30K
	For websites

	aiSee
	High
	Low
	Need GDL input
	Fairly easy
	Fairly Low
	$355 - $455
	Could not contact, not US company

	Inxight
	High
	Medium
	J2EE Servers and Java/Windows Environment
	Moderate
	Fairly High
	$75K
	Evaluation copies very difficult to run, tech. support poor.

	SHriMP
	Low
	Medium
	UNIX only, C, some pre-processing of code
	Fairly easy
	Fairly Low
	SHriMP is free—commercial implementations will cost.
	SHriMP is a research product.

	CodeTest Suite
	Low
	Medium
	Platform flexible, must purchase additional IDE
	Easy
	Low
	There is a cost, but vendor has not replied
	Oriented towards software development

	xSUDS
	High
	Low
	Windows and Unix,
	Moderate
	High
	There is a cost, but vendor has not replied.
	Oriented towards software development

	OpenDx
	High
	Medium
	3D graphics card
	Moderate
	Moderate
	Free
	Good 3rd party modular support

	Java/Java3D
	High
	High
	3D graphics card
	Easy
	Moderate
	Free
	

	VTK
	High
	High
	3D graphics card
	Fairly Difficult
	Moderate
	Free
	

	OpenGL
	High
	High
	3D graphics card
	Moderate
	Moderate
	Free
	

	Qt
	High
	High
	3D graphics card
	Easy
	Very Low
	For commercial use $1500; otherwise free.
	Well documented, integrates easily with OpenGL

5 References

	aiCall
	http://www.absint.com/aicall/

	aiSee
	www.absint.com/aisee/

	ARM
	http://satc.gsfc.nasa.gov/tools/arm/

	CARD
	http://www.computer.org/proceedings/compsac/8105/81050624abs.htm

	CodeTest
	http://www.windriver.com/products/html/codetest.html

	Cognos Visualizer

	http://www.cognos.com/

	eBizinsights Product Suite

	http://www.visualinsights.com/

	FAUST
	http://www.icad.org/websiteV2.0/conference/ICAD97.weinstein.pdf

	FltMaster
	http://www.ssmotion.com/

	Inxight
	http://www.inxight.com/

	Java / Java 3D
	http://java.sun.com and http://www.blackdown.org

	jGRASP
	http://www.eng.auburn.edu/department/cse/research/grasp

	Leonardo
	http://www.dis.uniroma1.it/~demetres/Leonardo/

	Look!
	http://www.windriver.com/products/html/look.html

	McCABE/IQ2
	http://www.mccabe.com/products/mccabe_iq.htm

	NERAC
	http://www.nerac.com/

	OmniViz
	http://www.omniviz.com/

	OpenDx
	http://www.opendx.org/

	OpenGL
	http://www.opengl.org

	Program Visualizer
	http://www.research.ibm.com/pv/

	PROGRES
	http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html

	Prologic, 01
	Prologic, Inc., Multimedia Software Engineering (MSE) Technology Assessment and Report, Document Number 8522.02.04.05.010731, August 31, 2001.

	Qt
	http://www.trolltech.com

	SAS/Insight
	http://www.sas.com/rnd/app/da/insight.html

	SHriMP
	http://www.csr.uvic.ca/shrimpviews/

	SpyKer
	http://www.lynuxworks.com/

	Visualization Workbench
	http://www.paragon.com/

	VTK
	http://www.kitware.com

	xSUDS
	http://xsuds.argreenhouse.com/

	xSUDS-SDL
	http://www.chillarege.com/fastabstracts/issre99/99102.pdf

6 Acronyms

	2D
	Two Dimensional

	3D
	Three Dimensional

	API
	Application Programming Interface

	BMP
	Bit Mapped

	CI
	Center Initiative

	COTS
	Commercial Off-the Shelf

	CSTOL
	C Spacecraft Test and Operations Language

	E2V2O2S2
	Extensible Environment for Verification and Validation of Object Oriented Software Systems

	FMEA
	Failure Mode and Effects Analysis

	FSW
	Flight Software

	GDL
	Graph Description Language

	IBM
	International Business Machine

	IDD
	Interface Design Document

	IMS
	Inxight MetaText Server

	IRS
	Interface Requirements Specification

	IV&V
	Independent Verification and Validation

	NASA
	National Aeronautics and Space Administration

	OpenDX
	Open Data Explorer

	OpenGL
	Open Graphics Language

	PPM
	Portable PixMap

	SDD
	Software Design Document

	SDK
	Software Development Kit

	SGI
	Silicon Graphics Incorporated

	SHriMP
	Simple Hierarchical Multi-Perspective

	SIVVP
	Software Independent Verification & Validation Plan

	SRS
	Software Requirements Specification

	ST
	Software Test

	STD
	Software Test Document

	STOL
	Spacecraft Test and Operations Language

	STP
	Software Test Plan

	SW or S/W
	Software

	Tcl/Tk
	Tool Command Language/Toolkit

	TPOC
	Technical Point of Contact

	VTK
	Visualization Toolkit

	XML
	eXtensible Markup Language

� With the exception of SHriMP which has been used by many commercial endeavors.

� Note: The usual rule herein would have been to relegate this tool suite to the table as being rejected since it was applicable only to the web. However, we realized that the IV&V web site is important to the Facility so we investigated further to supply information for possible future Facility web site use. Also, the term “visual insights” was initially a set of research applications applied to software visualization (and often referenced) so our initial thought was there was a possible fit here.

xl
39
8521.04.21.05.020520

