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ABSTRACT TC "ABSTRACT" \f C \l "1" 
The report presents the results of a research task to develop a paradigm to transfer Object-Oriented (OO) design diagrams to software fault trees.  The purpose is to enable the use of Fault Tree Analysis for software using the OO methodology for development. 

EXECUTIVE SUMMARY TC "EXECUTIVE SUMMARY" \f C \l "1" 
As software usage in mission critical applications increases, better methodologies are needed for identifying and balancing risks.  As these methodologies mature, tools and techniques are needed to facilitate their application to mission software. Software fault tree analysis (SFTA) is one method under study at the Software Assurance Technology Center (SATC) of NASA’s Goddard Space Flight Center (GSFC) to determine its relevance to reducing risks of software. 

Originally fault tree analysis (FTA) evolved in the aerospace industry in the early 1960’s as a method to identify faults in hardware systems. The method systematically identifies and graphically displays the ways that something can go wrong in a system.  A system is analyzed in the context of its environment and modes of operation to identify credible causal events.  Subsystem and component failure events that can cause system failure are linked using simple logical relationships. An important part of the FTA method for systems is the quantification of the probability of occurrence of a failure.  FTA can also be used to investigate actual as well as possible failures.

Software engineering researchers have attempted to adapt FTA to software, hence SFTA. The first part of this research project attempted to find commercial tools for SFTA. Essentially, while many vendors claimed their tools are useful for SFTA, the reality is that the tools require too much manual effort. The lack of information on probabilities of specific software fault types eliminated application of one aspect of the method, that is, the quantitative part. Issues involved with applying commercial tools to software code dealt with the efficacy of expending effort on code rather than on software design. Other researchers have made some effort to apply SFTA to requirements and code. The SATC research team decided to consider application to the design structures of Object-Oriented programs, rather than to the code. Then, analysts would be aware of specific sections of code where potential problems may occur.  

The SATC team attempted to develop a paradigm for automated transformation of activity, sequence and state diagrams of the UMLTM methodology that could be implemented into a commercial tool for FTA. The results indicate that complete transformation is impractical because the intellectual analysis to assess the software for faults would be lost. 

The FTA methodology consists of two parts: the analysis to locate the source of the fault (qualitative) and the probability assigned to the fault (quantitative). For software, numbers for probability of faults are not available, yet. Some promising approaches for determining probability do exist. Two of these were examined by this research.
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1 Introduction  TC  "1.
Introduction" \l 1 
As software usage in mission critical applications increases, better methodologies are needed for identifying and balancing risks.  As these methodologies mature, tools and techniques are needed to facilitate their application to mission software.

Fault Tree Analysis (FTA) evolved in the aerospace industry in the early 1960’s [1].   It is a proven methodology for identifying a hardware system’s potential hazards, faults and failures. The FTA method systematically identifies and graphically displays the ways that something can go wrong in a system.  A system is analyzed in the context of its environment and modes of operation to identify credible causal events.  Subsystem and component failure events that can cause system failure are linked using simple logical relationships.  FTA can also be used to investigate actual as well as possible failures.

FTA can be used for both qualitative and quantitative analysis.  The graphical nature of the technique facilitates the qualitative identification of design weaknesses such as single-point failures and safety critical failure combinations.  Quantification of the event’s probability of occurrence is not needed to obtain valuable insight into the weakness of a design, but is necessary to identify the paths most likely to occur. The method uses graphical symbology to design a tree structure representing a fault or failure event and identifying all possible causes. 

Because the method is successful for systems, the obvious question is “How can it be applied to software?  Can the same tools be used? Are there specific Software Fault Tree Analysis (SFTA) tools available?  Can they be used by system and software quality assurance staff rather than experts in formal specification?” Software engineering researchers have attempted to adapt FTA to software, hence SFTA.

A team at the Software Assurance Technology Center (SATC) at NASA’s Goddard Space Flight Center (GSFC) conducted a study to explore FTA and software tool availability for FTA. A variety of commercial and research tools has been developed to support system and hardware FTA.  The originators of some of these tools claim to have added features to their product to perform fault tree analysis on software.  These commercial tools are expensive and evaluation prior to purchase is time consuming and difficult.  An objective source of information for examining tools that apply FTA methodologies to software is needed.  One result of this study is a set of criteria for evaluating FTA tools, and their potential for SFTA. Criteria were developed in detail for user interface, functionality, output, FTA model, security, operational issues, adaptability, cost of tool, and return on investment. 

The next step of this study considered the extent to which FTA can be applicable to SFTA and examined vendor claims about adding SFTA capabilities to commercial FTA tools.  The lack of information on probabilities of specific software fault types eliminated application of the quantitative aspect of the method. Issues involved with applying commercial tools to software code dealt with the efficacy of expending effort on code rather than on software design. Other researchers have made some effort to apply SFTA to requirements and code. The SATC research team considered application to Object-Oriented programs to the design structures and not to the code.   This research project attempted to generalize mappings from OO diagrams to SFTA symbology.  

The approach to mapping OO diagrams in software fault trees was a search for a project that has OO diagrams. The next step was to transform the diagrams into software fault trees. After manually entering the software fault trees into a commercial tool, the intent was to determine how well the tool does indeed identify the potential causes of the faults.  The lessons learned from this part of the study can be built into a paradigm for transforming OO diagrams into software fault trees.

Finally the study would not be complete without some discussion on the quantitative aspects of FTA as applied to SFTA. 

2 FTA TC  "2.
FTA" \l 1 
FTA is a method for systematically identifying and graphically displaying the ways that something can go wrong.  A system is analyzed in the context of its environment and modes of operation to identify credible causal events.  Subsystem and component failure events that can cause system failure are linked using simple logical relationships.  FTA can also be used to investigate actual as well as possible failures.

A fault tree is a hierarchical, tree-like structured graphical representation of events that contribute to possible system failures or hazardous system states. It is a convenient notation for representing a Boolean expression that records the relationship between states and/or events.  The “branches” of the tree encompass all probable combinations of hardware, software and human errors that could produce undesirable consequences.

FTA can be used for both qualitative and quantitative analysis.  The graphical nature of the technique facilitates the qualitative identification of design weaknesses such as single-point failures and safety critical failure combinations.  Quantification of the event’s probability of occurrence is not needed to obtain valuable insight into the weakness of a design, but is necessary to identify the paths most likely to occur.

The basic procedure for performing FTA is first to identify a specific system failure or hazard to be analyzed (the “top event” of the “Tree”) as the starting point.  Then working backwards, each subnode is expanded, until all parallel and sequence combinations of events that could cause the top event to occur are identified. No further analysis can be performed or a basic fault event is reached (the leaves of the tree). Each subsequent level of the tree’s subnodes from the “top event” represents the preconditions with an “AND” or “OR” relationship for the subnode above.

Because the fault tree is a pictorial representation of the Boolean relationships among fault events, Boolean Algebra can be used to analyze the sets of events that cause the top event to occur.  A “cut set” is a combination of events and conditions that can cause the top event to occur.  A “minimum cut set” is a combination of the tree’s events and conditions, arrived at using Boolean Algebra, that is sufficient and necessary to cause the top event to occur.  A minimized minimum cut set cannot be further reduced and still ensure that the top event occurs.

The minimal cut set technique is used to determine the weakest system links.  For the analysis of a large and/or complex system, this technique is used to reduce the number of cut sets and basic events and associated component failures that must be examined.

“Structural Importance” is a qualitative assessment of events appearing in the shortest cut set or in more than one cut set.  “Common Cause Failures” (CCF) are failures that stem from the same root cause(s).

Component failure can be characterized by one of three failure mechanisms:

1. A “primary failure” is a component failure due to the material or processes and/or practices used in the manufacture or development of the component.

2. A “secondary failure” is a failure due to the component being subjected to stress by its environment or operational use.

3. A “command fault” is a failure due to a component not functioning because an inadvertent operation has occurred or the component has received an improper control signal.

FTA is now considered to be a critical method for safety evaluations.  The best practices that have evolved for FTA structure and quantitative analysis are:

1. Build the fault tree and verify it against the Preliminary Hazards Analysis (PHA), the Failure Modes and Effects Analysis (FMEA), Drawings /Schematics, and an Operation Logic Tree.

2. Include all Primary, Secondary and Command Faults.

3. Encompass every fault from the FMEA or other analysis.

4. Provide the origin of all data, scaling factors/expressions and raw data necessary to duplicate the analysis.

5. Apply a safety factor of 5 to all probabilities.

6. Accumulate probability of failure over all phases of the life cycle.

3 SFTA TC  "3.
SFTA" \l 1 
There has been significant research on software fault tree analysis, primarily by Leveson [2], Lutz [3], and Dugan [4].  In most cases SFTA is used at the code level, and the size of the software (measured by lines of code) to which the SFTA has been applied, is relatively small, approximately one thousand lines of code. Leveson [5] has generated a set of templates that could be used in SFTA, where a specific language construct (syntax) has been represented in the form of a fault tree.  It is important to mention that when FTA is applied to software, and specifically at the code level, this research addressed only the qualitative analysis, since at this level quantitative analysis does not make sense.  Therefore, at implementation (coding phase), the objective of using SFTA is to identify the set of instructions that could possibly cause the software to reach a hazardous state.  Therefore, one could use SFTA in combination with formal code inspection in order to increase confidence in the safety of the software under investigation.   Finally, it has been pointed out by a number of researchers that SFTA has some weaknesses when there are loops involved in the code, but loops are almost always present in software. Therefore, this is a weakness that needs to be overcome.   Some researchers like Helmer [6], Modugna [7] and Lutz [3] applied SFTA to requirements with some success. 

Researchers and practitioners generally agree that applying SFTA at the code level is a very cumbersome and labor-intensive activity.  In addition, it is a well-known fact that defect detection and correction at the implementation phase is much more costly than at the earlier stages of the software development life cycle.

Given this rationale, we recommend applying SFTA to requirements and design.  The process is to use SFTA during the requirements and design phase to identify the critical component of the software where safety and hazardous states are the major concerns.  Then SFTA may be applied at the code level only for these critical components.  It follows, of course, that those components should be flagged for special attention during development and verification and validation activities.   

3.1  TC  "3.1   SFTA for Requirements" \l 2 SFTA for Requirements

The main objectives of applying SFTA during this phase of software development are to: 

· Identify weaknesses that exist in the requirement specification.  Weak requirements will either be modified or additional requirements will be added in order to eliminate or mitigate these weaknesses. 

· Identify all the requirements that have a direct effect on the safety of the system.  Once requirements with safety considerations are identified, these requirements will be traced throughout the development life cycle.  It is assumed that a requirement traceability matrix is included in the software development artifacts to help with this task. 

3.2 SFTA for Design TC  "3.2   SFTA for Design" \l 2 
The main objectives of applying SFTA during this phase are to:

· Identify the weaknesses of the high-level design.  Appropriate modifications will be implemented in order to strengthen the overall design.

· Identify the components/modules and subcomponents that have direct effect on software safety.  These modules and those implementing the requirements with the safety consequences are identified. Then, special attention may be given to the generation of their implementation.

The details of the application of SFTA during the design phase are discussed in Section 5 of this paper.

3.3 SFTA for Code TC  "3.3   SFTA for Code" \l 2 
The main objective of applying FTA to code is to identify critical code components that have direct bearing on the safety of the software.  In this phase, fault trees will be generated for all the modules previously identified (during the detailed design phase) as critical modules affecting software safety.  The goals are to:

· Identify a set of key instructions that could place the system in a hazardous state.

· Add appropriate safeguards that prevent the software from reaching such a state.  

As previously mentioned, the majority of the previous research in SFTA has been applicable to this phase of the software development.

One of the major advantages of focusing on requirements and design first is to avoid generating fault trees unnecessarily for significant amounts of code in the system. It limits the application of SFTA to small, but critical portions of the code that affect the safety of the software.   Applying SFTA to the entire system at the detailed design phase will be much more efficient than broadly applying it at the code level.  Another advantage of this approach is that by applying SFTA at every stage of development, safety issues are identified early in the development life cycle and remedies can be implemented as early as possible.

4 Data for the Transformations TC  "4.
Data for the Transformations" \l 1 
An objective of the SATC team was to identify a NASA project with a well -documented and understandable design, and then to investigate the transformation of the project’s activity diagrams, state diagrams and sequence diagrams into fault trees.  After an exhaustive search, we found two NASA projects willing to provide data, one from Langley Research Center and one from Kennedy Space Center. Unfortunately, neither project met our requirements. We needed a project with a complete set of UMLTM diagrams representing its design and also frequent access to the designers and domain engineers for reference and clarification.  The project needed some safety-critical features or hazards; otherwise the fault trees would not be meaningful. The Kennedy project is in project archives in pdf format and knowledgeable personnel are not accessible to us.  While the data from Langley is current, the project is a data administration system and is not really suitable for a fault tree analysis.  We did however initially use an activity diagram from a pseudo project. 

As a result the research team looked at other alternatives.  We decided to identify a non-NASA project, with a domain of common interest to NASA and software artifacts readily available to the team.  We considered student projects at Embry Riddle Aeronautical University (ERAU) where one of the SATC investigators teaches.   

In order to be able to show the strength and weaknesses of the SFTA and the possible FTA tool that will be adopted by the team to perform such a study, we recognized that the selected project should not be a “toy” problem. Rather it should be as close as possible to a “real” problem, with possibly a “real” customer, and be as complex as one would expect a real problem to be.  For this purpose, we decided to look at the projects developed or being developed by the undergraduate software engineering students in their senior design class.   

After examining some of the previous projects and the existing project under development, we decided that a project best matching our objectives must be closely related to a NASA mission and have a relatively high complexity. Another criterion is the availability of the domain experts to which we could refer to get additional information or clarification.  We identified such a project, one that deals with air traffic control. However, the major problem we faced was the fact that this project started January 3rd,, 2003; we had to wait for the artifacts to be generated.  Although this was identified as a major risk to meeting milestones of our research project, we decided the payback would far out-weigh the risks associated with the wait. We adopted this project.

The project selected is the development of an Air Traffic Control (ATC) training system.  This is a distributed system over a local area network where pilots, air traffic controllers and supervisors (traffic managers) work in concert in order to control the airspace traffic over a country.  The main purpose of this system is to train the air traffic controllers to enable them to successfully implement the air traffic procedures as defined in the Federal Aviation Administration (FAA) 7110 manual [8]. This project requires students to implement an automatic air traffic controller that is capable of implementing some of the ATC procedures in the event there is no controller for a specific sector, or in case the trainee is interested in seeing the appropriate procedure in a specific situation. In addition, this system should allow the supervisors to define the airspace by defining sector boundaries, airways, and fixes.  

There are two types of aircraft in this system: 

1. A set of simulated aircraft that are supposed to follow a set of predefined flight plans; in addition these aircraft are capable of following the air traffic controllers’ commands, which are issued based on the existing air traffic situation (e.g., deviation from the flight plan in order to eliminate a possible conflict). 

2. A second set of aircraft is controlled by humans, that is, the flight plans for these aircraft are under the control of a user (human pilot).  This capability will allow the human pilots to take control of the aircraft by modifying their directions, altitude, and speed.  The human pilots have the capability to force anomalies (e.g., loss of engine, medical emergencies, hijacking) on the aircraft.  

This is a very complicated project (over 200 objects and over 10,000 LOC), and obviously satisfies our objectives of complexity and potential hazards. Due to the fact that there are a number of qualified air traffic controllers and network administrators employed at ERAU, we satisfy the remaining objective of access to domain experts.

5 Application of SFTA to Software Design TC  "5.
Application of SFTA to Software Design" \l 1 
Applying SFTA during the detailed design phase will produce the best return on investment.  It is here that a software product exists in its most ideal form for SFTA to be applied.  Software is represented in the form of some number of modules where functionality, interfaces, inputs, and outputs are well defined.  This is the closest we get to representing software structure in a way that is analogous to hardware modeling, a point prior to development where the salient system features, e.g., gates, encoder, functionality, interfaces, inputs and outputs are well defined. The same can be said about a software system at the detailed design phase.  Here the software is represented with an equivalent amount of detail that we can achieve the equivalent degree of insight.  Applying SFTA at this point enables us to identify modules (objects, methods, or functions) that could directly affect the safety of the system. 

In both the preliminary and detailed design phases, once a module or a set of modules is identified as having possible impacts on the safety of the system, additional safeguards need to be embedded into the design in order to guarantee their safe operation.  It is worth mentioning again that generating fault trees for the system at this point will be a much more efficient choice than generating them during the implementation phase.  

With the exception of Pai’s work [9] on dynamic fault trees for systems, we were unable to find any previous work that applied SFTA during the design phase.  The SATC team chose the Object Oriented Design (OOD) methodology as the vehicle for the application of SFTA at the design level.  There are two primary reasons for choosing OOD: 1) much recent software design uses OOD and the designs are implemented using OO languages, and 2) recently many OODs use the UMLTM (Unified Modeling Language), which is standardized and commonly used by the software development community [10]. 

UMLTM uses a number of views and diagrams to describe software systems.  The problem is how to relate these to the notation used in FTA.   As the first step, we looked at all the different UMLTM diagrams and identified those we believe best match the SFTA.  During this process, we identified the activity, sequence and state diagrams, as the first candidates for the application of SFTA.

Initially we applied SFTA to the activity diagram [11].  While we learned that it is possible to apply SFTA to the activity diagram, we also learned that special care is needed in order to handle any loop in an activity diagram.  Some ongoing research in this area [12] appears promising; however, much work is still needed in this area.  

We then attempted to apply SFTA to the sequence diagram, at which point we came across additional findings.  We learned that while SFTA may serve as a technique for verification of design, it could also serve as a vehicle for improved communication with customers and other stakeholders.  

Communicating and validating critical system details becomes challenging, to say the least. The reason is that most end users are not familiar with OO design artifacts such as graphs and diagrams.  However, the majority of customers in the aerospace industry are familiar with hardware and they are generally comfortable with logic diagrams, the fundamental concept behind fault trees.  Even in those rare instances where customers are unfamiliar with the concepts behind logic diagrams, it is relatively easy to achieve a comfort level with a handful of logic gates.  Therefore familiarizing the customer with logic gate is a less challenging task tan familiarizing them with complexity of the sequence diagram.  These findings suggest that SFTA should be used not only as a verification technique for the software design, but also as a communication vehicle with customers.  

Our work also indicates that customers, after reviewing a fault tree, easily detect the occurrences of missing design components.  By pointing out these missing components, they are actually completing the fault tree, thereby improving quality of the design as well as the ultimate system.  

Our investigation also revealed some limitations in translating a sequence diagram into a fault tree.  The issue is specifically related to representing the timing problem in the sequence diagram.  Typically, there are two major timing situations.  In the first, one event must be completed before a second can start.  In the second case, an event must start but need not complete before a second is initiated.  Efforts in the research community [13] are assessing the timing problem, where a set of augmented logic gates can be used to enforce the appropriate sequencing.  Another limitation exists with respect to iteration and specialized loops. When we applied SFTA to the state diagram, we arrived at the same set of observations as in the case of sequence diagrams.  

These conclusions confirm the strength of SFTA for design verification and effective communication with stakeholders.  As noted in the case of activity and sequence diagrams, special care must be given when representing timing constraints and occurrences of iteration.

5.1 Activity Diagram TC  “5.1   Activity Diagram”\l 2 
As previously reported [11], SFTA application to the activity diagram has shown some promise. We applied fault tree analysis to the design represented by Fig. 1, to show how SFTA can assist in detecting problems in design.   The analysis helps to identify what can go wrong in a system, what can happen that should not happen, and weaknesses in the design.  This activity diagram led to two separate software fault trees. One, shown in Fig. 2, addresses the failure of the system to meet its function.  The other, Fig. 3, addresses a failure in which the system does something it should not do.

Fig.2 addresses the problem where the system fails to accomplish its intended functionality of updating the user’s profile even though the user performed all the required activities.  This failure is identified by the top level OR gate, where the lower level gates and inputs identify different ways in which the profile may not be modified.  For example, gate 1.3 (the House gate) represents the situation where the user failed to enter any revision, and as a result, the system did not update the profile, of course this is what we expected to happen.  On the other hand, the OR gate 1.2 represent the situation, where the user did not get access to the system, and as a result he did not get the chance to update his data.  In this situation, the lack of access may be the desired behavior of the system. For example, gate 1.2.1 represents the situation where the user failed to enter the appropriate password more than three times.  However, inputs 1.2.2 and 1.2.3 represent the situations where the system failed to show the appropriate security display and/or the failure to validate the data entered, respectively.  The FTA tool was able to identify these situations as possible causes of the overall system failure to update the user profile.

Fig.3 addresses a different problem with the system.  In this case we are more concerned with identifying any breech of security, meaning accessing the system when you should not have been given permission to do so.  While developing the fault tree for this hazard, two weaknesses of the design were revealed.  There was nothing built in to verify that the password file has not been corrupted. Also, no function was built to verify that each logout had been recognized. In addition, there are three possible causes that would allow illegal access to the system: the user is invalid and got in anyhow; the wrong priority is assigned to the user who got to a forbidden location; and, access was incorrectly granted after three failed password attempts.   Again, in this case the FTA tool was able to identify the corresponding weaknesses.  
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We have applied FTA to some additional activity diagrams.  In this process the research team recognized that in some cases we were forced to go back to the original requirement and the corresponding use cases in order to identify the possible hazard in the activity diagram.  It is very possible that a specific hazard will be missed if the source of the fault tree is only the activity diagram.  Therefore, the existence of the domain knowledge during the development of the fault tree for the activity diagram has improved the quality of the fault tree and it increased the possibility of identifying hazards that could possibly be missed if such information was not available.   Human intellect is, and will remain, significant in building and analyzing safety-critical systems. This is a valuable lesson that is often learned and then forgotten when any new software method or tool comes along. 

5.2 Sequence Diagram  TC   “5.2   Sequence Diagram”\l 2 
Next the research team began looking at the application of the fault tree to the sequence diagram.  The sequence diagram represents a dynamic view of the system; therefore timing and sequences of the event obviously have a major effect on the operation of the system.  Given the above fact, we were originally suspicious of the usefulness of the application of the SFTA to sequence diagrams, because FTA mainly ignores the timing. However Helmer’s work [13] shows that we might be able to incorporate temporal logic as part of the fault tree analysis.  Therefore, we decided to first apply traditional fault tree analysis to the sequence diagram. Then when need arises, we can take a look at Helmer’s work to apply the augmented fault tree analysis and possibly compare the two results.  The following section describes the sequence diagram example and its corresponding SFTA.
The following sequence diagrams represent the sequence of activities during the air traffic controller training system initialization.  The initialization process is divided into two steps, which are represented in a sequence diagram (Fig. 4 and Fig. 5) [14].  Fig. 4 is mainly concerned with establishing a client connection, where the client computer requests the server computer to be granted a client status. 

Once the client server connection is established, the user of the client computer tries to log into the system as pilot, controller, or supervisor. This process is represented in Fig. 5. It is necessary to point out that one of the requirements of the system is that a client computer can represent only one of the allowable user categories. Therefore once the client computer is established as a controller, then it cannot support any other user, unless the controller logs out.  In addition, each user has a unique ID, and once logged into the system, that user is not allowed to login again from another client computer.  
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The following fault tree diagram (Fig. 6) is the representation of the Fig. 4 and Fig. 5 sequence diagrams.  The hazard under investigation for this Fault Tree Analysis is the failure of the system to initialize properly.  Basically, there are two possible contributors that could affect the proper initialization of the system; these are 1) failure to connect appropriately to the rest of the network, or 2) failure to login appropriately to the system.  Fig. 6. is described in detail in the following paragraphs.

As was mentioned, the hazard under investigation is system failure to properly initialize.  This hazard is shown by gate 1.  One source of such a hazard is the failure of the local computer establishing a proper client server connection; this is shown by gate 1.1. However, if the appropriate client server connection is established then the problem with the appropriate login could be the cause of the hazard; this is shown by gates 1.2, and 1.2.1.  

There are possibly two reasons for the failure of the system to establish the client server connection; these are failure of appropriate IP address identification (1.1.1) and failure of appropriate socket creation (1.1.2).  The reasons behind the failure of IP address identification are a) user failure of requesting for connection (1.1.1.1), b) user failure of providing the correct IP address (1.1.1.2) and c) in the case of automatic extraction of the IP address, failure of the system to do so (1.11.1.3). Cases (a) and (b) are considered to be the expected behavior of the system, where case (c) is considered to be the software or hardware failure.  On the other hand, if the IP address is properly identified, then there is still a possibility that the appropriate client server connection is not established, this maybe due to the fact that the server refuses to establish the connection (1.1.2.1).  There are two possible contributing factors to this situation; these are a) the number of the requests for connection exceeds the size of the queue for the server (1.1.2.1.1), or b) the number of allowed client connections already reached its limitation (1.1.2.1.2).  In either case, the software must have appropriate exception handling to gracefully inform the user of the situation, and the absence of such exception handling would allow the hazard under investigation to be instantiated.
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As previously mentioned, if the client server connection is established, then the problem with failure to appropriately initialize may lie on the failure to login to the system (1.2.1).  There are three possibilities for such a failure:

a) System fails to display the appropriate login menu (1.2.1.1).

b) A user has already logged in to the system from this client, and now this is the second attempt to login under different role (1.2.1.2); this is not allowed based on the system requirement. 

c) Finally in the third case the user provides an incorrect user ID and/or password (1.2.1.3); in this case the system is correct by not allowing the initialization to take place.  

Our initial indication from our limited experience shows that, using commercial FTA software, the system was able to identify all possible minimum cut sets, which indicates the path in which a hazard is linked to a specific event causing that hazard.  However, the availability of the domain knowledge will make the analysis much more powerful.  The problem with the client server was identified, specifically the problem with the size of the queue and the number of available client ports, only because of the domain knowledge. None of this information was represented in the sequence diagram. A fault tree that was purely generated from the sequence diagram would miss these problems.   While any automated tool to reduce manual effort is valuable, we must remember that the human intellect must play a major role in safety analyses. 

5.3 State Diagram  TC  "5.3   State Diagram" \l 2 
When we applied SFTA to the state diagram, we arrived at the same set of observations as in the case of sequence diagrams.  Fig. 7 represents the state diagram for a pay at the pump system. There are two distinct system states - idle and active.  The active state is further divided into five sub-states - validation, selection, processing, pumping and printing.  The main purpose of this system is to provide the appropriate type of gas (i.e., regular, unleaded, super) to customers after validating a method of payment.  


Figure 7.
A state diagram for an automatic pay at pump system TC "Figure 7.
A state diagram for an automatic pay at pump system" \f D \l "1" 
The hazard in this example is a malfunction of the pump by either providing gas to a customer with no credit or providing the wrong type of gas.  Fig. 8 represents the corresponding fault tree diagram for the gas pump system.  AND Gates 1.1, 1.2, 1.3, and 1.4 represent, the failure of the validation, selection, processing, and pumping respectively.  Inputs to each gate are further identified by a series of OR gates, circles (identifying basic event), diamonds (identifying incomplete structure), and triangles (identifying transfer of information or connectivity).  Since the sequence is critical in this state diagram (i.e., one state must be completed before the next downstream state starts) this timing requirement is represented by a combination of a triangle and NOT gate.  For example, the combination of the triangle 1.2.1.1 and NOT gate 1.2.1 represents the fact that a card was inserted after which it was validated (i.e., enough credit is available for purchase).

These conclusions confirm the strength of SFTA for design verification and effective communication with stakeholders.  As noted in the case of activity and sequence diagrams, special care must be given when representing timing constraints and occurrences of iteration.




[image: image6]
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6 Lessons from the Applications TC  “6.
Lessons from the Applications” \l 1 
Each of the three UMLTM diagrams for this study has issues that affected how they can be transformed into fault trees.  The following subsections of this paper provide a discussion of these issues and the lessons learned from each type.

6.1 Activity Paradigm TC  "6.1.   Activity Paradigm" \l 2 
 As our first attempt, we applied SFTA to the activity diagram.  We learned that while it is possible to apply fault tree to the activity diagram, we also learned that a complete automated transformation of the activity diagram to fault tree is not possible. However, it is possible to automatically generate a portion of the fault tree from an activity diagram.  We should point out that total transformation might not be a desirable option.  The main reason is that once we start relying on the automatic conversion of the design artifact to fault tree, then any defect in that artifact is also transferred to the fault tree.  For example, if there is a missing component in the design artifact, by automatic transformation, the same component will be missing in the fault tree, and it could be missed completely.   We also learned that special care is needed in order to handle any loop in an activity diagram.  Some research in this area [12] shows some promises; however, additional work is needed in this area.  Another obvious problem with application of fault tree to software was the lack of reliability data for software and its components, resulting in a lack of quantitative analysis of the fault tree.

Hints on FT generation for Activity Diagram:

· Identify the activities that affect the hazardous situation under investigation. Each activity is represented as either a basic or intermediate event.

· The sequence of activities represented in the activity diagram that contribute to a hazardous state could be represented as all feeding to an individual OR gate (Fig. 9).

· A decision point (XOR split), is represented by an OR gate, with its input representing each branch of the decision (Fig. 10).

· An XOR joint is represented by an AND gate with its input representing each input to the XOR joint (Fig. 11).

· A fork is represented by an OR gate with each input representing a branch of the fork (Fig. 12).

· A joint is represented by an AND gate with each input representing an input to the joint (Fig. 13).

· Typically, the existence of swim lane does not alter the fault tree, since the purpose of the swim lane is to group activities based on the actor, therefore it is mainly for clarity.
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Figures 9 –13 Activity diagram transformations to software fault tree TC "Figures 9-13  Activity diagram transformations to software fault tree" \f D \l "1" 
6.2 Sequence Paradigm TC  "6.2.   Sequence Paradigm" \l 2 
Next we attempted to transform a sequence diagram to a fault tree.  In this process we came across some additional findings.   It became obvious that complete automatic generation of the fault tree from sequence diagram is not possible. However, it is possible to generate a minor (even less than the activity diagram) part of the fault tree automatically.  In addition, it became obvious that we may not want to automatically generate the fault tree.  The main reason is the fact that, if we are able to automatically transform a sequence diagram, or any other design artifacts to fault tree, then the defects, or the missing components, that are already in the design (in this case sequence diagram) will also be transformed, which as a result defeat the purpose of having a fault tree.  

Another finding of this stage was that the fault tree, besides serving as a technique for verification of the design, also could serve as a vehicle for communication with the customer.  Generally, customers are not familiar with the OO design graphs (e.g., sequence diagram), and it is a challenging issue to communicate the details of the sequence diagram to a customer who is not familiar with those conventions.  The majority of the customers are hardware or system engineers who are mainly familiar with logic diagrams, which is the fundamental behind the fault tree.  Even in the rare cases where the customer is not familiar with the concept of a logic diagram, it is a much easier task to train the customers in the operation of a handful of logic gates than training them in the sequence diagram.  Therefore, because of the above findings, fault tree analysis should be used not only as a verification technique for the software design, but also as a communication vehicle with the customer.  Our experience has shown that customers who look at a fault tree could easily detect missing components from the design, and by pointing out these missing components, or actually completing the fault tree, the designers could incorporate these components to their design, as a result improving the quality of the design.

Hints on FT generation for sequence diagram:

· Identify each object that affects the hazard, and represent each one as either a basic or an intermediate event.  Each of these events feeds into an OR gate that generates the hazard under investigation (Fig. 14).

· Typically, any message (e.g., create, show, etc.) that is affecting the hazardous situation is represented as an input to the OR gate, which its output feeds to the object that sent and received that message.  It is possible for the object to fail to send that message or receive it; therefore, it should be represented as a basic event to the sender and receiver object (Fig. 15).

· The timing problem in the sequence diagram has generated a challenge for the development of the fault tree.  Typically, there are two major timing situations.  In one case, event A has to be completed before event B can start, and the second case is when event A has to start, but it does not necessary have to be finished before event B starts.  Some research [13] has examined the timing problem, where a set of augmented logic gates can be used to enforce the appropriate sequencing; however, these augmented gates are not represented in anyone of the fault tree tools.  For the time being, we can handle the timing problem in the following manner:

· For the case, where event A has to be completed before event B, we can AND the outcome of event A with the event B to enforce this timing sequence  (Fig. 16).

· To handle sequencing of two events (objects) concurrently active (e.g., it is required for the first object to become active before the second object becomes active). For example, object A instantiates object B, and then both objects perform concurrent activities.  In order to represent this timing sequence, we can represent object A with two sub-objects (A1 and A2), where sub-object A1 represents the activity that is required to be completed up to the instantiation of object B, and sub-object A2 represents object A’s activity starting with the instantiation of object B.  As a result, the relationship between sub-object A1 and B is the same as what is described in previous bullet.  By following this approach, we realize that we limit the timing constraint between the sub-object A1 and B, and as a result, there is no timing constraint between the sub-object A2 and B since they are active concurrently.   

· If a message is sent to/from multiple objects, this can be represented via transfer logic gate (Fig. 17).

· Iteration (i.e., multiple call to self) affects the fault tree from the quantitative point of view.  There is no additional gate needed to represent the iteration; however, it affects the failure model.  For example, if an object has an effect on a specific hazardous state, it does not matter if it is called once or many times; however, if it is called multiple times, then its quantitative effect increases.  Therefore, using this approach, we would need to represent the reliability model of the component, when it is done once, and then incorporate another reliability model when it is done N times.  For example, if call A has the failure probability of 0.1%, and it is possible for Call A to be repeated 50 times, then obviously, the probability of the failure for 50 times is no longer 0.1 %.
· When an object is created by another object, the created object is represented as a basic or an intermediate event (Fig. 16).
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Figures 14-17.  Sequence diagram transformation to software fault tree TC "Figures 14-17  Sequence diagram transformation to software fault tree" \f D \l "1"  

6.3 State Paradigm TC  “6.3.   State Paradigm”\l 2 
In the next step, we transformed the state diagram to a fault tree, and we came to the same set of conclusions as the transformation of the sequence diagram to a fault tree, therefore, confirming the strength of the fault tree for verification of the design, and the communication medium with the customer.  Again, as we saw in the case of the activity diagram, special care should be given when there is a loop in the state diagram [12].

Hints on FT generation for state diagram:  

· The output of an OR gate represents the hazard, where the inputs to the OR gate represent the different state in the state diagram.  Depending on the hazard under the investigation, it is possible that some states are not represented in the fault tree, due to the fact that it may not have a direct effect on that hazard (Fig. 18).

· Again in the state diagram, timing is an important issue.  Transmission from one state to a downstream state requires completion of the previous state. Therefore, there is a need for combining the state with the transition that resulted to reaching that state with the help of an AND gate (Fig. 19).  

· Each state represents the root of a branch, where the leaves of the branch represent the detail of that state (lower level activities).  Usually these activities are shown in the activity/action portion of the state (Fig. 20).

· If there is more than one transition out of a state, then that state is represented as an intermediate state, with an OR gate feeding to it, and the inputs to the OR gate are the basic event representing the individual transitions (that effect the hazard).

· Self-transition has the same effect as the iteration in the sequence diagram.  Therefore, wherever there is a self-transition, there is no effect on the structure of the fault tree; however, there is an effect on the quantitative portion of the fault tree, by affecting the failure model of the state.
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Figures 18-20. Transformation of state diagram to software fault tree TC "Figures 18-20 Transformation of state diagram to software fault tree" \f D \l "1" 
6.4 Feasibility and Value of Automated Transformation  TC  “6.4    Feasibility and Value of Automated Transformation” \l 2 
One of the original goals of the project was to define total automation of the transformation of the design module to corresponding fault trees. There are two questions. First, is it necessary to have such a capability, and second, is it possible to have such a transformation?  To answer the first question, we should first identify why one would use the fault tree analysis, that is, the question is “Who are the possible users of the fault tree analysis?”  

Once the possible users of the fault tree analysis are identified, shown in Table 1, then we should evaluate the importance of the automatic transformation for the each group of users.  

Table 1. Users of SFTA TC "Table 1. Users of SFTA" \f F \l "1" 
	Proposed users 
	How they use SFTA

	Developers/Designers
	A tool to improve the product under development.  A vehicle for communication between themselves and the customer.  

	Quality Assurance
	A tool for validating the software product.

	Managers
	A tool for risk analysis and for identifying areas that need special attention. 

	Testers
	 Aid to planning testing activities, e.g., identifying the area that requires additional stress testing.  Testers also may use SFTA for  validation and verification.


Total automated transformation may not be necessary for the developer/designer and quality assurance community.  These two groups use SFTA analysis as a form of validation of the work product.  In the process of validation, automation may actually be counterproductive.  When we trust the automation of the transformation of the design artifact to a fault tree, we are saying that we believe and trust the original source.  If this is true, then the question becomes “Why are we validating a product that whose validity we already trusted?”  If there is any defect in the original source of the automation (design artifact), then those defects are transformed to the fault tree.  In addition, analyzing a work product is not yet a science. An analysis requires the skill, that is, the intellectual involvement of the analyst, and that skill is very hard to automate. 

Managers use the fault tree for the purpose of the risk analysis, and less of validation of the work product.  In this capacity, managers rarely start with the detailed design artifact (e.g., state, sequence diagram) to perform his/her risk analysis; therefore, there is no need for the manager for the automation.  However, the managers will use the results of SFTA relative to risk as provided to them by their engineers and quality assurance staff. 

Testers use the fault tree analysis either as a tool for the validation and verification, which in this case, there is no need for automation as it is discussed for the developers and quality assurance group.  They may also use the fault tree for the test planning.  In this case, they are more interested in analyzing the software from the standpoint of its use (e.g., which modules are used more often), which in this case, they will not usually start from the low-level design artifact, but they are more interested in the operational profile.

Given the above argument, 100% automation is not desirable.  In addition, based on our initial experience, it is also impossible to accomplish 100% automation. However, we have provided a series of general rules as a guideline for the transformation of the design artifact to their corresponding fault tree representation.  It is important to use as much as possible of the automated transformation in conjunction with intellectual reasoning about the activity, sequence, or state diagram. Then all of the proposed users have a valuable for identifying potential hazards and risks to the software system. 

7 The Quantitative Problem TC  "7.
The Quantitative Problem" \l 1 
The next stage of our research was to investigate the problem with the lack of probability, or reliability, data for software failures.  The lack of such data reduces the power of the fault tree analysis, since these analyses will be based only on the qualitative analysis, and not the quantitative aspect.  Even without the software probability data, we can identify the minimum cut set, which tells us what could possibly be the causes of a specific hazard, quality, or safety concern; however, it cannot tell us which one of these causes has the highest probability.  Therefore it is necessary to develop a technique that helps us in the quantitative analysis of the fault tree.  

NASA has funded some promising research in probabilistic risk assessment (PRA) on quantifying the probability of certain software failures [15].  We are interested in this work because it may enable quantification of software failure types based on the taxonomy developed by this research. We have considered fuzzy probability and are attempting to build a taxonomy of elements that affect the software development environment. Together perhaps the two NASA funded research efforts can eventually lead to a consolidated quantification of software failure probabilities. 

7.1 One quantitative approach TC "7.1
One quantitative approach" \f C \l "2" 
In the NASA research, Smidts and her group have asked four basic questions for PRA:

1. What can go wrong?

2. What are the consequences?

3. What is the probability that this will go wrong?

4. What is the uncertainty? [15] 

The researchers attempt an answer to the first question for software by developing and validating a software failure modes taxonomy. The two top levels are functional failure modes and software interaction failure modes.  The second category breaks into input/ output failure modes, support failure modes, and environmental impact factors so that there are actually four principal taxonomy elements.   The next step, to answer questions 2 and 3, breaks the probability assessment into three logical levels, a concept the team is still developing for its quantification approach. At the first logical level, PRA analysts quantify the probability of software failure when no specific information is available. At the second logical level expert opinion elicitation identifying causal factors that influence the four principal failures types of the taxonomy and to quantify the relationship between the causal factors and the failure types.  At the third logical level, the team expects that once these relationships are established, then analysts with knowledge of the development environment could assess values of these causal factors and quantify the unknown probabilities of the four principal failure types.

7.2 Fuzzy logic approach TC "7.2
Fuzzy logic approach" \f C \l "2" 
 Research has shown some promising results in the area of fuzzy probability [16], [17], [18].  A major strength of the fuzzy probability is shown in situations where there are not enough data samples to be able to come up with a meaningful probability data.  For software, as we all know, there is not a large amount of software reliability data collected (or if it is collected it is not published) by the industry.  Given this situation, we can try to come up with some fuzzy probability that affects the reliability of the software.  

Our discussion for fuzzy probability relative to software failures involves considering the issues of three categories: software characteristics, probability, and fuzzy or subjective probability. 

Among the software characteristics to consider are the following:

· Usually each software program is unique.

· Copies are usually the exact copy of the same item, with exactly the same quality, unless there was a problem in the medium on which the copy was made, or the hardware that was used to make the copy.

· If a new version of the software is made, then that by itself is a unique program, since it behaves differently from the original version (due to the enhancement, or additional functionalities.)

· In the case of reusable code, the final product is still a unique entity, since there are no two individual programs that use exactly the same reused components.

· Software does not age, that is, parts do not wear as hardware does. 

· Software performance does not degrade over the period of time due to the age, except when there is a memory leakage problem.

· There is not enough information regarding the data faults.

· Data collection for software is relatively new and what exists is often proprietary. Therefore, there is not a lot of historical data collected and shared in the community

Given the issues concerning software, the next step is to consider the needs for identifying probability of software failure: 

· In order to come up with a meaningful probability data, a large sample of data N>20  is necessary. 

· These data should be collected over a relatively long period of time.

· Total probability elements in a domain should add up to 1.

· In probability, there is no room for ignorance.

· Probability does not allow for the representation of expertise, as in gut feeling, intuition or experience. 

Fuzzy (subjective) probability is different.  It is more forgiving than mathematical probability. Some differences are the following: 

· Fuzzy probability does not require large number of samples N could be equal to one.

· According to Zadeh, “fuzzy logic is in essence, the logic of perception, while bivalent logic is the logic of measurement” [19].

· The sum of all fuzzy probabilities does not have to add up to one.

· Fuzzy probability allows for ignorance.

· Fuzzy probability allows for the introduction of expertise in the form of gut feeling, intuition, or experience.

8 Summary TC  "8.
Summary" \l 1 
The research initiative on software fault tree analysis continues to be challenging.   SFTA is useful when errors in the software can lead to hazards, but NASA data is hard to come by to prove this premise. For this project we have elected to use data from an ERAU student project whose objective is to use OO modeling (UMLTM ) for designing a complex FAA system and other devised sample problems..  The UMLTM diagrams are proving adequate for developing software fault trees with potential hazards. 

We have shown that an analyst can uncover root causes of potential hazards, but we have also shown that a tool cannot replace the human’s domain knowledge. Yet, the tool can save much time in transforming software design into fault trees.  So far, we are convinced that SFTA can be useful for safety-critical software projects.

We have yet to develop the paradigms for the remaining UMLTM chart types.  One commercial tool vendor has been negotiating collaboration with GSFC to enable their tool to use the UMLTM and SFTA paradigm.
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In a FTA diagram there are four types of symbols: Primary Event Symbols, Intermediate Event Symbols, Gate Symbols, and Transfer Symbols.

1.  The Primary Event Symbols are: Basic Event, Conditioning Event, Undeveloped Event and External Event.

BASIC EVENT

A Basic Event is a fault initiating event and does not require further development.  It is represented on the FTA diagram by a circle.

CONDITIONING EVENT

A Conditioning Event is a system state (i.e. a specific restriction or condition) that permits a fault to occur.  It is primarily used with PRIORITY AND and INHIBIT GATES.  It is represented on the FTA diagram by an oval.

UNDEVELOPED EVENT

An Undeveloped Event is one that is not further developed either because it is of insufficient consequence or because information is not available.  It is represented on the FTA diagram by a diamond.

EXTERNAL EVENT

An External Event is one that is normally expected to occur. It is represented on the FTA diagram by a house shaped polygon.

2.  There is only one Intermediate Event Symbol.

INTERMEDIATE EVENT

An Intermediate Event is one that occurs because the logical requirements of a preceding gate have been satisfied by one or more events.  It is represented on the FTA diagram by a rectangle.

3.  The FTA Gate Symbols are AND, OR, EXCLUSIVE OR, PRIORITY AND, and INHIBIT.

AND GATE

The output of an AND GATE is a fault if all of its input faults occur.  It is represented on the FTA diagram by a closed horseshoe symbol.

OR GATE

The output of an OR GATE is a fault if at least all of its input faults occur. It is represented on the FTA diagram by a convex sided arrowhead symbol.

EXCLUSIVE OR GATE

The output of an EXCLUSIVE OR GATE is a fault if one and only one of its input faults occur. It is represented on the FTA diagram by a convex sided arrowhead symbol encompassing an isosceles triangle.

PRIORITY AND GATE

The output of a PRIORITY AND GATE is a fault if all of its input faults occur in a specific sequence. It is represented on the FTA diagram by a closed horseshoe symbol encompassing an isosceles triangle.  The specified sequence required to satisfy the gate’s priorities is represented on the FTA Diagram by a CONDITIONING EVENT drawn to the right of the PRIORITY AND GATE.

INHIBIT GATE

The output of an INHIBIT GATE is a fault if its single input fault occurs in the presence of an enabling condition. It is represented on the FTA diagram by a hexagon. The required enabling condition is represented on the FTA Diagram by a CONDITIONING EVENT drawn to the right of the INHIBIT GATE.

4.  The two FTA transfer symbols are Transfer In and Transfer out.

TRANSFER IN

The TRANSFER IN symbol indicates that the tree is developed further on another graph or page beginning at the TRANSFER OUT symbol corresponding to this input symbol.  The TRANSFER IN symbol is an equilateral triangle with a connector at its apex.

TRANSFER OUT

The TRANSFER OUT symbol indicates that this portion of the fault tree must be attached at a corresponding TRANSFER IN symbol within a higher level graph. The TRANSFER OUT symbol is an equilateral triangle with a connector on one of its sides.

In addition to the basic symbols defined above various engineering domains have developed a wide variety of unique symbols.  Most of these symbols are variations on the common gate symbols.  For example, the “N of K” gate is a special “AND” gate that is satisfied if N number of K number of inputs are TRUE.
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The search for Fault Tree Analysis tools occurred in late 2001. Of the 33 commercial tools for FTA identified, two vendors claimed that their tools would enable SFTA. These are the Item Toolkit and Relex. We explored the use of the Item toolkit.

TOOL


SOURCE
1. BRAVO


JBF Associates

2. CAFTA for Windows
SAIC

3. CARA-FaultTree

Sydvest Software

4. CARE FTA

BQR Reliability Eng. Ltd.
5. CUTSET


Open Channel Foundation
6. ETA-II


SAIC

7. EventTree


Item Software

8. FaultTree+


Isograph Inc 

9. FaultTree+ for Windows
Item Software

10. Fault Tree


Mitchell & Gothier

11. FaultrEASE

Computer Soft

12. Formal-FTA

Formal Software

13.   FTAP


University of California Berkeley

14. FTRAN


Rex Thompson & Partners

15.   Galileo


University of Virginia

16. IMPORTANCE

National Energy Software Center

17.   Item Toolkit

Item Software

18.  LOGAN


RM Consultants Ltd.

19.  MFAULT


National Energy Software Center

20.  PREP/KITT

National Energy Software Center

21.  RELEX Fault Tree
Relex Software Corporation

22.  Reliadigm Design

Reliadigm corp.
23.  RESULTS II

Management Sciences
24.  RESULTS III

Management Sciences
25.  Risk Spectrum Fault 
Innovative Software Designs

26.  RKP606


Innovative Timely Solutions 

27.  SAICUT


SAIC

28.  SAIPLOT


SAIC

29.  SAM2000


University of York

30. SAPHIRE


Integrated Reliability and Risk Analysis System

31.   Tofs


Tofs AB 

32. Tree Master

Management Sciences

33.   WinR


Sandia Lab

Detailed discussions with these vendors indicated different results. Attempts have been made to use some of these tools directly but the tools did not use any of the software diagrams as input. Users would need to manually convert their design or codes into formats acceptable to these tools.  At least one automobile manufacturer decided to stop the project to apply SFTA to their software because the task was simply too tedious and complex.

A user could take a software design or code, manually apply STFA, and then enter the result into an FTA tool.   The process means going through the code structure, diagramming it in some manner either manually or with another tool, then converting the diagram to a fault tree. At that point, one could enter data into a commercial FTA tool.  

Another issue concerning the FTA methodology is that a large part deals with the probability of a specific fault type occurring, for hardware and system faults, a recorded history of failures exist.  Probabilities of these failures are known. A major difference between software and hardware is that software does not degrade, and therefore the probability of the software failure due to degradation is meaningless. For software, researchers and practitioners have tried to associate a failure rate to fault classes but with limited success. One problem has been the collection of software fault data; another is the accuracy of the data once acquired. A large portion of the FTA tool capability is the assignment of probability to the risk of the failure occurring, but if that part is useless for software, then a large part of the cost of the tool is wasted where software faults are the issue. 

We were able to experiment with fault trees for software with a demonstration version of one tool, the ITEM Toolkit from ITEM Software.  We were able to accomplish our early objectives using UMLTM activity diagrams manually
Appendix C.
Tool Evaluation Criteria TC  "Appendix C.
Tool Evaluation Criteria" \l 1 
For the tools found to be viable commercial products, nine categories of criteria have been developed for their evaluation.

1. USER INTERFACE criteria assess the degree that the tool provides common graphic user interface features and capabilities.

2. FUNCTIONALITY criteria assess the extent that the tool provides advanced features for the manipulation and management of graphic displays and data.

3. OUTPUT criteria assess the tool’s variety of output media and versatility in supporting the formulation and structure of output data.

4. SFTA MODEL criteria are used to assess the scope and power of the tool’s analytic capabilities.

5. SECURITY criteria assess the tool’s ability to protect its data and processes from unintentional actions by authorized users or the malicious acts of others.

6. OPERATIONAL ISSUES criteria are used to evaluate the availability and accessibility of the tool, the extent that its installation and use is supported.

7. ADAPTABILITY criteria provide a measure of the extent that the tool can be used to support SFTA.

8. COST OF TOOL criteria are used to determine the fiscal resources necessary to acquire and support the tool’s use.

9. RETURN ON INVESTMENT criteria are used to determine the staff resources required to use and support the tool’s use.

Details for each category are included in the FY02 second quarter deliverable to the IV&V Facility. 
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� One of the researchers is also involved with development of the Software Assurance Standard from Code Q.  The draft standard has a requirement for adequate training of assurance personnel in both domain and analytic techniques. 


� This information came from a telephone discussion with one vendor, instead of directly from the manufacturer.  
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