An Extensible Environment For Conducting Code Inspections

Marcus S. Fisher

NASA Independent Verification & Validation Facility

100 University Dr.

Fairmont, WV 26554

1.304.367.8337

marcus.fisher@ivv.nasa.gov
This document is being submitted as a deliverable for the research project entitled "An Extensible Environment for Verifying & Validating Object Oriented Software (E2V2O2S)". Marcus S. Fisher at the IV&V Facility in Fairmont, West Virginia is conducting the research and the Office of Safety and Mission Assurance (OSMA) Software Assurance Research Program provides the funding.

51.0
Introduction

2.0
Related Work
7
2.1
Software Inspections
7
2.2
Orthogonal Defect Classification (ODC)
11
2.3
XML and XSL
17
2.4
Java Markup Language (JavaML)
20
3.0
Methodology
21
3.1
Roadmap
21
3.2
Procedures
22
3.2.1 Data gathering
22
3.2.2 Data Classification
22
3.2.3 Process Automation
26
4.0
Results
28
4.1 Data Gathering
28
4.2 Data Classification
28
4.3 Process Automation
34
5.0
Lessons Learned
42
6.0
Conclusions
43
7.0
Bibliography
46
8.0
Appendices
48
8.1
Appendix A
48
8.2
Appendix B
49
8.3
Appendix C
50
8.4
Appendix D
53
8.5
Appendix E
58
8.6
Appendix F
60
8.7
Appendix G
61
8.8
Appendix H
71
8.9
Appendix I
72
8.10
Appendix J
76
8.11
Appendix K
78
8.12
Appendix L
82

Abstract

Significant improvements to the inspection process are unlikely to come from just reorganizing the process, but rather will depend on the development of new defect detection techniques. New techniques must reflect the latest project experience and rules most frequently broken and be more efficient in its application. One way to advance the discipline would be to leverage the wealth of knowledge the discipline acquires during software code inspections. Knowledge in the form of software defects would greatly advance the discipline's defect detection strategies.

This research has modeled the defects extracted from a software development project using the Orthogonal Defect Classification (ODC). Performing analysis on this model enables checklists to be synthesized based on the rules most frequently broken during software development. Once the checklists are created we introduce a technique that will automatically apply them to source code. The environment involves modeling the source code using the eXtensible Markup Language (XML) and modeling the checklist using the eXtensible Stylesheet Language (XSL). Any web browser or transformation engine can then easily process these models.

This technique explores only a small portion of the code inspection process. We focused on improving the defect detection process and we believe this combats several problems inherent with code inspections. First, there is a limited amount of time for inspectors to search for defects, so any automation will greatly enhance the process. Second, inspectors can only work with small amounts of code (less than 250 lines). Automating the search technique allows larger work products to be examined. Third, the effectiveness of the inspection is greatly affected by the inspector’s knowledge and experience. Regression analysis on defect repositories captures the knowledge experienced inspectors have left behind. This is an attempt to make the model more formal. Fourth, conducting an inspection with a different group of inspectors yields different results, so modeling the checklist and automating the detection technique makes the process repeatable. Fifth, different technologies require different checklists. Checklists focused on object oriented languages will not provide adequate coverage for imperative based languages, which are action oriented and not object oriented. The environment we introduced can withstand modifications and reinsertion into the defect detection process.
1.0 Introduction

The increasing uses of software in mission and safety critical systems rely heavily on advanced verification and validation (V&V) techniques for success. One way to advance the discipline of V&V would be to leverage the wealth of knowledge the discipline acquires during software code inspections. Knowledge in the form of software defects would greatly advance the discipline's defect detection strategies. Not only must we be concerned with advancing our V&V methods, we must also be able to integrate our newly developed techniques seamlessly into the development process. This alone can complicate things even more. The software development process is amorphous by nature, be it waterfall, iterative development, or an undefined chaotic process and it has also been found that the dominant cause of system outage has shifted to software given that it has not kept pace with improvements in hardware [17]. To combat these shifts and gain higher levels of assurance, developers must turn to faster, better, and adaptable verification techniques.

Code inspections, an activity of code verification, has endured great success and the benefits are self-evident (e.g., early defect detection and removal) but this technique is not commonly used, mainly because of its significant cost and time [2]. Fagan first introduced formal inspections in the early 70’s [2] and today is a well-defined process [1]. However, Gilb found that inspections cost around 10-15% of the development budget [3]. This is very significant. Unless we are able to drive the cost of code inspections down or increase their effectiveness, we can not expect a large number of projects to employ the technique.

Software inspections are an example of a validation technique for improving software product quality and reducing development time and cost. They are a peer-review process that have shown to decrease costs, decrease development time, and increase quality through a detailed examination of work-in-progress with the objective of identifying defects. They occur during development, providing early feed back on product quality. During a software inspection, small groups of personnel study work products independently and then meet to examine the work in detail. The main objective of an inspection is to identify defects. One standard way to detect defects is through the use of inspection checklists. Checklists are largely responsible for the overall productivity of the inspection and vary in their format. The standard format is for checklists to contain questions. The purpose of the questions is to guide the inspector to the troublesome areas in the source code.

It has been shown that inspections can identify up to 80% of all software defects and can do so during the early stages in development. When combined with normal testing practices, defects in the field can be reduced by a factor of 10 [10]. The downfall is that inspections can absorb a significant percentage of the effort during the first half of the development cycle. However, what is overlooked is the net reduction in development that results from defects found and fixed during inspections with less effort than that expended on fixing defects found in test [10]

Beside the high costs associated with performing inspections there are other limitations to the technique. They are based on an informal model, which resides within each inspector's knowledge domain and experience. It also requires highly experienced analysts in order to provide complete coverage of the possible defect types. Yet a significant amount of the highly skilled and highly paid analyst's time is spent on repetitively looking for defects that are easy to locate. Studies have shown that the experience levels of the analysts are vital to conducting beneficial source code inspections [9]. Specifically, they showed that very experienced personnel were required to assess the flow of logic, the metrics, and concurrency issues associated with the source code. However they did show that newly trained analysts can be employed to perform consistency checks and language related issues. Although there have been only a few of these studies we can be confident in saying that having analysts with experience, will only benefit the code inspection process not impede it.

There is no confidence that repeating the inspection process on the same source code will yield the same results. Different groups of inspector's can derive different results. The inspectors rely on their experience to identify where they should look and what to look for in finding defects, sometimes guided by a checklist [12].

Only a small amount of time is allocated for inspectors to detect defects. Wenneson observed that defect density (e.g., number of defects found per thousand lines of code (Defects/KLOC)) declines with increasing inspection rates (KLOC/hour) [24]. Chaar et al also reports that increasing the inspection rate resulted in a decrease in the density of defects found [9]. So it is in the project's best interest to create a manageable workload. This results in only working on small, but complete, work products (e.g., 250 lines of code). For systems that are quite large, this would require several or even thousands of inspections to take place. On one particular system, which contained half a million lines of added and changed code per release and a base of five million lines can required roughly 1,500 inspections [22]. Not only are the labor costs unacceptable, holding such a large number of meetings can cause delays [22].

As technologies advance, checklists normally don't stay in step. How does an inspector select the best code inspection checklist for the project? The cost of using all possible checklists is too expensive and impractical, yet the checklists have the greatest impact on the overall productivity of the inspection. The checklist should reflect the latest project experience and rules most frequently broken, with respect to the technology they are designed for. This is realized when attempting to apply assessment techniques designed for object oriented code to imperative driven languages, the coverage is not the same. The rules most frequently broken are dependent on the technology being used by the project, hence refinement is required and driven by project characteristics. It would be nice to have one set of defects that represent all projects, however studies show that predictability factors for defects differ across the spectrum of projects [5].

Although a significant amount of software inspection research has focused on making structural changes (team size, number of sessions, et cetera) to the process, these changes did not always have the intended effect. Porter et al [22] believe the significant improvements to the inspection process are unlikely to come from just reorganizing the process, but rather will depend on the development of new defect detection techniques.

The code inspection's defect detection technique must be constantly refined in order to bring about the most benefit to the projects. Refinement must look at employing the latest technologies (e.g., open-source, Internet based) in order to help drive their costs down and bring them to the frontier of technology. It must also leverage the knowledge gained from previous inspections. Even though we know that we can not accurately predict fault types across every domain, we can at the least represent the best practices and lessons learned to date.

By automating the defect detection techniques we can take out the subjectiveness and make the activity repeatable for all levels of personnel. Hence, automation based on historically proven techniques captures those experience-related issues. This is along the same argument that code inspections must begin codifying it solutions and trend towards a true engineering discipline

This research will look at modeling the defects found during previous code inspections and a technique to synthesize checklists based on the regression analysis of that defect model. In addition, we will introduce a method for automatically applying the synthesized checklist to source code in order to lessen the amount of time inspectors spend on searching for common defect types.

It is our belief that based on defect modeling, checklists can be improved and refined. The defect model provides us the leverage to synthesize our checklists. This will identify the latest knowledge concerning the technology in question. The knowledge gained will identify which activities locate the most frequently occurring defects and as a result we can model these activities so that the process of searching for defects can be automated. Automating the use of the checklist will combat the high costs and free up resources that can be utilized in finding the more elusive defect.

Section 2.0 of this paper presents the technologies needed to perform this research. Section 3.0 defines the methodology that we use. Section 4.0 provides the results of this research. Section 5.0 identifies the lessons that were learned from this research and section 6.0 summarizes the research project via a conclusion.

2.0 Related Work

The purpose of this section is to provide an overview of the various technologies that were employed during this research. Section 2.1 explains software inspections, section 2.2 explains the Orthogonal Defect Classification (ODC), section 2.3 explains the Extensible Markup Language (XML) and the Extensible Stylesheet Language (XSL), and section 2.4 provides an overview of the Java Markup Language (JavaML).

2.1 Software Inspections

Validation is a key activity that is essential to checking the correctness of the design and implementation of a software product against some predefined criteria [9]. It aims at finding software defects early in the development process to avoid the high costs of removing these defects later in the development cycle. Software inspections are an example of a validation technique for improving software product quality and reducing development time and cost. They are a peer-review process that have shown to decrease costs, decrease development time, and increase quality through a detailed examination of work-in-progress with the objective of identifying defects. They occur during development, providing early feed back on product quality.

During a software inspection, small groups of personnel study work products independently and then meet to examine the work in detail. Work products are small, but complete, and inspectors typically spend one to four hours reviewing the work product and related information before the inspection meeting. They were originally developed at IBM in the early 1970s, by Michael Fagan [2] and the traditional inspection process is comprised of the following steps:

· Planning – When a work product is complete, an inspection team is formed and a moderator is designated. The moderator ensures the work product satisfies the inspection entry criteria (e.g., code must be able to be compiled without error). Roles are assigned to the inspection team members, copies of the work product and related materials are distributed, and an examination meeting is scheduled.

· Overview – If inspectors are not familiar with the work product then an overview presentation is given by the author of the work product. Its purpose is to educate the inspectors and the moderator conducts it and the author presents the material.

· Preparation – Inspectors prepare individually for the examination meeting by thoroughly studying the work product and related materials. The objectives are to find as many defects as possible. There are various defect detection techniques that an inspector can employ, such as checklists.

· Examination – This is the meeting where the inspectors review the work product together. No time is spent discussing why defects occurred or how to correct them and only the work product is under scrutiny; criticism of the author must be avoided. All detected defects are classified and recorded. Examination is limited to a maximum of two hours. At the end of the meeting the team determines if the work product is acceptable as is, should be reworked with the moderator verifying the results, or reworked and then re-inspected.

· Rework – The author corrects all identified defects.

· Follow-up – The author’s corrections are checked by the moderator. If the moderator is satisfied, the inspection is officially completed.

Successful inspection meetings (the examination step defined above) require several roles to be filled. In addition to the author, these roles include the moderator, who runs the inspection meeting; a reader, who presents the work product during the examination step; and a recorder, who records the location and description of all defects discovered. Management is not included in the team, because experience has shown that when management participates, inspections tend to identify only superficial defects [10].

Literature shows that several variants of this approach have been proposed in order to improve inspection performance. These include Fagan Inspections, Active Design Reviews, N-Fold Inspections, Phased Inspections, and Two-Person Inspections [22]. Each of these is created by restructuring the basic process (e.g., rearranging the steps, changing the number of people working on each step, or the number of times each step is executed) [22].

A team of four to six reviewers normally carries out inspections. Some variations to this exist, however, research has shown no difference in the effectiveness of three, four, and five-person teams [23]. Traditionally, inspections are carried out in a single session. The N-fold inspection process is where N teams each carry out independent inspections of the entire work product. A single moderator, who removes duplicate defect reports, collates the results of each inspection. N-fold inspections are capable of finding more defects but they are far more expensive than a single team inspection [22]. Active Design Reviews (ADR) and Phased Inspections (PI) are also multiple-session inspection procedures. Each inspection is divided into several mini-inspections or phases. ADR phases are independent, while PI phases are executed sequentially, and all known defects are repaired after each phase [22]. Bisant and Lyle [20] proposed a two-person inspection method, which could have its application in those environments where access to larger team resources is not available.

Votta reports that inspection meetings are not as beneficial as managers and developers think they are. In addition, Votta found they cost much more in terms of product development interval and developer’s time than anyone realizes [21]. As a result of analyzing the inspection process, Votta [21] made the following two suggestions: (1) the number of participants required at each inspection meeting should be minimized, and (2) he proposed two alternative fault collection methods:

· Collect faults by deposition (small face-to-face meetings of two or three people), or

· Collect faults using verbal or written media (telephone, electronic mail, or notes)

Perpich [19] also explored the inspection process and identified that the dissemination of critical information and the synchronization of coordinated activities are critical problems in geographically separated, large-scale, software development environments [19]. Their previous studies have shown that the inspection interval is typically lengthened because of schedule conflicts among inspectors, which delay the inspection meeting. They exploited the information dissemination qualities and the on-demand nature of information retrieval of the web, and platform independence of browsers, to build a tool that integrates into their development process [19]. They found the cost savings just from the reduction in paper work and the time savings from the reduction in the distribution interval of the inspection package (the work product) have been substantial.

Since Fagan published his software inspection process, many organizations have experimented with, and modified, aspects of the process to fine-tune it to their environment. A lot of the work has been focused on incorporating networked workstations to support distributed groups. In a computer-supported cooperative work (CSCW) or GroupWare environment, the work of multiple people is assigned, performed, coordinated, monitored, and combined using workstations [10]. Although these modifications are still experimental, they provide services that include assigning participants to reviews and distributing work products, browsing work products and related material electronically, annotating parts of the work products that contain defects or suspicious statements, and collecting and reporting statistics on the review process.

Automated support and modifications to the traditional inspection process can be beneficial and improve inspection effectiveness. Others, however, may be detrimental. The research to test the effects of these changes is still in progress [10]. It is not the intent of this research to explore the different versions of software inspections. This section simply provides an introduction to the software inspection process and we suggest reading [10] for an in depth exploration into the inspection process.

Not only are their variations to the software inspection process, many people tend to confuse or use reviews/walkthroughs interchangeably with inspections. There are significant differences between inspections and reviews/walkthroughs. Reviews and walkthroughs are informal in nature and leave some doubt about their overall effectiveness and their repeatability [9].

The spectrum of different review processes in use ranges widely. Examples include walk throughs, structured walk throughs, peer reviews, in-process technical reviews, and milestone reviews [10].

Walk throughs and informal peer reviews are often confused with inspections and can be contrasted with inspections as follows [10]:

· Walk-throughs are often used to present design and coding approaches and to inform coworkers and management about work in-progress. Finding defects is not the principal focus. Inspections are focused on finding defects.

· Walk through audiences can include as many as 20 or more people. Inspections limit team size to four or six coworkers.

· Walk throughs require little or no preparation by attendees. Inspections require one to four hours of preparation by each team member.

· The only roles that appear in walk throughs are the author and presenter. Inspections require a moderator and a recorder in addition to the author and presenter.

· Walk throughs usually have no prescribed time limits. Inspections are limited to a maximum of two hours.

· Walk throughs place no constraint on the amount of material to be covered. Inspections limit the size of the work product to 200-250 lines of code or a few pages of material [2].

· Walk throughs can cover work that has been completed for some time, work just completed, work in progress, and planned work. Inspections cover only work just completed.

· Walk throughs typically produce no tangible products. Inspections produce at least a list of the defects found, a summary report of the activity, and a sign-off when corrections are completed.

· Walk throughs have only a few general rules and no enforcement mechanism. Inspections have a number of specific rules that are enforced by the moderator.

Milestone reviews are very different from inspections. These include Preliminary Design Review (PDR), Critical Design Review (CDR), et cetera. Defects may be found during these reviews but their purpose is to aid project managers in judging the completeness of one major stage of work before advancing to the next stage. The number of participants is usually large, on the order of 20 to 100. Reviews usually take up a full day, some times two or three. The work under review represents the completion of major stages of work and is far too extensive to be reviewed in detail. Output from a review usually includes a pass-fail judgement by the principal reviewers and a collection of action items representing defects or discrepancies the developer is expected to correct

It has been shown that inspections can identify up to 80% of all software defects and can do so during the early stages in development. When combined with normal testing practices, defects in the field can be reduced by a factor of 10 [10]. The downfall is that inspections can absorb 20 to 30 percent of the effort during the first half of the development cycle. However, what is overlooked is the net reduction in development that results from defects found and fixed during inspections with less effort than that expended on fixing defects found in test [10]. Ackerman reported on a 6,000-line IBM business application, that inspections found 93% of all defects discovered [12].

A recent study by Porter et al [22] hypothesized that different inspection approaches create different tradeoffs between minimum interval times, minimum effort, and maximum effectiveness. They found:

· No difference in the interval or effectiveness of inspections of two or four-person teams. The effectiveness of one-reviewer teams was poorer than both of the others [22]. For practitioners this suggests that reducing the default number of reviewers from four to two may significantly reduce effort without increasing interval or reducing effectiveness.

· Two two-person teams were not more effective than one two-person team. They also found that two-session inspections without repairing defects in-between have the same interval as one-session inspections [22].

· They found that repairing defects in between multiple sessions had no effect on observed defect density, but in some cases increased interval dramatically [22].

· They also found that about one-half of the defects reported during preparation turned out to be false positives and only 13% concern defects that would compromise the functionality of the system. This suggests that a good deal of effort is being expended on defects that might be better handled by automated tools or standards [22]. For researchers, developing better defect detection techniques may be the most important avenue of opportunity.

Wheeler et al reported that it took approximately one staff hour of inspection time for each defect found by inspection, whereas it took two to four staff hours of testing time for each defect found by testing [10]. Russell, at Bell-Northern Research, suggests for every man-hour invested, you can find one defect. He also shows that this is two to four times faster than detecting code errors by testing [26].

Table 1 is taken from [10] and shows a defect profile with inspections. The table shows the conventional sequence of software development phases. The second column, Number of Defects, indicates the number of defects that are passed on from one phase to the next. The values that appear in parenthesis indicate the number of defects that would be passed on to the next phase if an inspection had not been conducted. As an example, the table depicts that if inspections are conducted only 1 defect is estimated to escape System Test phase, whereas 10 would escape if inspections were not conducted. This data is widely reported industry figures [25]

Table 1. Defect Profile with Inspections. The parenthesized value indicates the number of defects that would have been passed on to the next phase of development if inspections were not performed.

Development Phase
Number of Defects

Requirements
5 (20)

Design
10 (40)

Code
15 (100)

Unit Test
7 (50)

Integration Test
3 (20)

System Test
1 (10)

2.2 Orthogonal Defect Classification (ODC)

The challenge of making software engineering a true engineering discipline still exists. First of all, no process can be modeled as an observable and controllable system unless explicit input-output or cause-and-effect relationships are established and secondly, when cause-and-effect is recognized, though qualitatively, it is not abstracted to a level from which it could graduate to engineering models. Orthogonal Defect Classification (ODC) bridges these gaps between quantitative methods and qualitative analysis by bringing in scientific methods that define a measurement system in an area that has been historically ad hoc. It does better than raw counts of defects by using the semantic information contained within.

ODC exploits defects that occur all the way through development and field use. It converts what is semantically rich into a few vital measurements on the product and process. These measurements provide a firm footing upon which sophisticated analysis and methodologies are developed. ODC's success illustrated that a new class of methods can be developed that rely on semantic extraction of information linking the qualitative aspects from root-cause analysis to measurable computable aspects from statistical defect models [15]. The semantic extraction is done via classification. The objectives are to contrast the classical methods of growth modeling with what can be achieved via semantic extraction from defects.

[image: image1.wmf]Frequency of Defects

273

161

126

53

8

5

4

0

0

0

50

100

150

200

250

300

assignment

documentation

checking

algorithm

function

timing

interface

Relationship

Build

Defect Type

Number of Defects

Consider the example growth model depicted in figure 1. Ideally the graph should plateau, signifying a decreasing number of defects being detected and promising fewer defects in the field. The sudden increase in the defect rate, during the time period of 900 days, identifies the criticality of the situation. Classical growth curve modeling techniques would recognize this trend and identify it as a problem. However, the problem with this is that it would be recognized too late to take all but some desperate reactive measures, unless the modeling technique used some comparison function that determined when the slope of the line deviates from some predetermined stability value. However, employing a technique such as that would only raise a flag, it would not identify the potential cause of the problem nor would it motivate corrective measures.

Figure 1. Example growth model for defects experienced during development life cycle

ODC’s classification system relies on two attributes, defect type and defect trigger. Actually there are more than two attributes, however these two require some explanation, the others are intuitive.

ODC categorizes defects, with respect to defect type, into the following classes: function, assignment, interface, checking, timing/serialization, relationship, build/package/merge, documentation, and algorithm. These classes capture the essence of what was fixed, thereby identifying the nature of the work necessary to fix the defect. This attribute of the defect is called the defect type and Appendix B provides a definition for each class.

In addition to assigning a defect to a defect type class, ODC also assigns a second attribute. A defect is also assigned to a defect trigger class. The trigger is what facilitated the fault to surface and appendix A provides a definition for each defect trigger class. The three classes of triggers are inspection, unit/function test, and system test. There are sub-classes within each defect trigger class that helps associate what activity the individual was doing to surface the defect. Within the inspection class of triggers, the value-set is design conformance, logic/flow, lateral compatibility, backward compatibility, concurrency, internal document, language dependency, side effect, and rare situation. Within the unit/function test class of triggers, the value-set is simple path, complex path, test coverage, test variation, test sequencing, and test interaction. Within the system test class of triggers, the value-set is workload volume/stress, recovery, startup/restart, hardware configuration, software configuration, and blocked test execution.

This means that we categorize a defect into classes that collectively point to the part of the process that needs attention, much like characterizing a point in a Cartesian system of orthogonal axes by its x, y, and z coordinates [15]. This is the objective of the defect type attribute. The intent of capturing defect triggers is to provide a measurement of the verification aspects

One of the first things an organization must do once they have decided to implement ODC is to define the activities they perform. After the activities have been defined, the above defect triggers must be mapped to those activities. Once the defects are placed in the appropriate class, we examine how the distribution contributed by defects changes as a function of time. Consider the example in figure 2, which shows the proportion of defects that have the type function during each development period. This example was taken from [15]. The early periods of development, periods 0-2 in this example are characterized by larger amounts of design, whereas the latter parts, period 2-3.5, are characterized by greater amounts of implementation and system test. Thus, the expectation would be that the proportion of defects of type function would be initially larger and smaller later. However, in this example we are not experiencing this. It is showing that we are revealing more function defects as we age in the development life cycle, hence the crisis. Instead of relying on raw defect counts, we could identify possible reasons for this phenomenon and apply corrective measures now, not later.

[image: image2.wmf]Frequency of Defect Triggers

340

189

94

6

1

0

50

100

150

200

250

300

350

400

Logic / Flow

language

Dependency

Internal

Document

Concurrency

Rare

Situation

Defect Trigger

Frequency

 Figure 2. Proportion of Function defects during the periods of development

The defect type’s granularity is such that the classifications apply to a defect found in any phase of the development process, yet can be associated with a few specific activities in a particular process. For example, a typical association that occurs is to tie the functional defect to the design process, thus no matter where the defect is found, if the distribution peaks with function dominating the distribution, it is indicative of an activity that escaped the design phase. Similarly, an assignment or checking defect may be associated with the coding phase and is expected to be weeded out with code inspections and unit-test type activities. The previous example illustrated the use of qualitative information in defects converted to a quantitative measure to make earlier predictions than more traditional quantitative methods. In addition, it provides clues to the reasons, which are translatable to recommendations for action.

Table 2 shows the defect types, and associates a phase of the development process with each of these types.

Table 2. The defect type and development process association [7].

Defect Type
Process Associations

Function
High-level Design

Interface
Low-level Design

Checking
Low-level Design or Code

Assignment
Code

Relationship
Code

Timing/Serialization
Low-level Design

Build/Package/Merge
Library Tools

Documentation
Publications

Algorithm
Low-level Design

Examining table 2 we can infer if a function defect is found, whether during unit test or system test, it still points to the design phase that the defect should be associated with. Similarly, a timing error would be associated with low-level design. This form of association shows where in the development process the defect escaped.

The elements belonging to the set of defect types are different enough that they span the development process. Given this set of defect types, there are several opportunities for providing feedback to the developer based on the profiles of the defect type distribution. Developers can exploit the defect type by generating the distribution of the defect types in each phase of development. Given a development process one can describe the expected behavior. For instance, in most development processes where a design is conducted prior to coding and testing, the function defects should be found early in the process and ideally very few at system test [7]. On the other hand, timing/serialization defects are found during system test. Assignment and interface defects can have profiles that peak at unit-test and integration test, respectively [7]. Table 3 shows, which defect type profiles, should peak depending on the process verification stage

Table 3. Where to expect defect types to peak when profiling

Defect Type
High-level Design Inspection
Low-level Design Inspection
Code Inspection
Unit Test
Function Test
System Test

Function
X

X

Interface

X

X

X

Checking

X
X

Assignment

X

Relationship

X

Timing/Serialization

X

X

Algorithm

X
X
X

Build/Package/Merge

Documentation

Essentially, the defect type distribution changes with time, and its distribution provides an indication of where the development is, logically [7]. The change in distribution of the defect type thus provides a measure of the progress of the product through the process. At the same time, it provides a means to validate if development is logically at the same place as it is physically [7]. For instance, if at system test the profile of the distribution looks like it should be in unit test or integration test, then the distribution indicates that the product is prematurely in system test.

Defect triggers can be used on their own to measure the effectiveness of the verification phase. They can also be used with field data to recognize the different environmental stresses that are placed on a product. The following example, figures 3-4, uses the idea of triggers combined with the defect type to illustrate measuring the effectiveness of the inspection. This example was extracted from [15] and is from a high-level design inspection of a middle-ware software component.

Figures 3 and 4 show the distribution of defect types and triggers subgrouped by defect types. Examining the defect type distribution, we notice that it is typical of what a high-level design inspection should produce: the number of function defects is fairly large, the mode being documents, which is understandable since it was a document review. The trigger distribution shows that the logic/flow trigger found the largest numbers of defects. Again this is expected given that completeness and correctness are major issues considered in a high-level design inspection. Since this is a middle-ware component that will be used by several other products, interface defect types are important as well as the lateral compatibility trigger. The surprising factor is that the lateral compatibility trigger surfaced no defects! Given the nature of the component, this raises serious questions regarding the skills of the inspection team, particularly from a cross-product perspective. This was true for this inspection, a check of the team’s membership found few people with that particular skill [15]. In this case, an additional review was requested to fill the gaps.

[image: image3.wmf]Defect Trigger vs Defect Type

0

50

100

150

200

250

300

350

400

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Trigger

Frequency

timing

checking

documentation

assignment

interface

algorithm

function

 Figure 3. Frequency of Defect types

[image: image4.wmf]Defect Type vs Defect Trigger

0

50

100

150

200

250

300

timing

checking

documentation

assignment

interface

algorithm

function

Defect Type

Frequency

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

 Figure 4. Frequency of Defect Triggers categorized by Defect Type

The concept of ODC is that it examines the normalized distribution of all defects found during a phase against what the process should achieve. This instrument will allow us to measure the progress of a product through the process. A departure from the expected distribution or a change from the expected trend identifies problems and recommends possible corrective action. ODC data provides a foundation of good measurements that can be exploited for a variety of new analysis methods. One of the natural extensions is illustrated by using the defect-type data to significantly enhance the methodology of growth models. It provides greater insight than is commonly available by examining the relative growth of different types of defects. Examining them against a common abscissa is what provides the additional insight to help make key qualitative inferences that drive decision [15].

Industry has benefited a great deal from implementing ODC. When ODC has been applied to reduce the cost of classical root-cause analysis, it achieves cost reductions by a factor of 10 [15]. Another organization showed when they fully employed ODC, coupled with the Butterfly Model, they achieved a defect reduction by a factor of 80 in 5 years [15]. Bassin and Santhanam exploited the information captured by ODC triggers to evaluate the development activities and identify specific actions for improvement in development [16]. They used ODC to evaluate the development of an IBM mainframe that went through several releases. They concluded during initial releases of the product that inspection activities were either the least effective or there was an insufficient amount of effort applied. In any event, they used this knowledge to improve their development activities for the remaining versions. They immediately noticed that the volume of faults had decreased dramatically, specifically later releases experienced a decrease in the number of defects by 90% [16]. The authors of [18] indicate the classification scheme they developed, which is derived from ODC has high repeatability and can also be applied to evaluate the repeatability of other defect classification schemes. Although they do suggest that further experiments are required to truly state that there is a global defect classification scheme.

As with any promising new technique, there is some cost associated with it. However, the cost impact on implementing ODC is minimal. The required time is probably negligible once one establishes a tracking system to track defects. There is an initial setup cost that involves education, tools (e.g., the tracking system), and process changes to get started.

In the absence of feasible and cost-effective theoretical methods for verifying the correctness of software designs and implementations, software inspections and test play a vital role in validating both. However these techniques do not offer software designers, developers, and test planners any significant guidance for rectifying, in process, the weaknesses of their procedures, and for assessing the implications of any rectifying actions on their inspection and test processes [9]. ODC can remedy this.

2.3 XML and XSL

The Extensible Markup Language (XML) is a meta-markup language, which provides a format for describing structured data, separating how data should look and what the data actually means. The World Wide Web Consortium (W3C) provided the recommendation for XML for expressing the structure and content of information in a text-based format [11]. XML is similar to HTML in that they are made up of elements. Each element consists of a start tag and an end tag, both of which have the same name.

<start_tag> contents go here </end_tag>

For example, to represent my name the XML element could look like the following:

<name> Marcus Fisher </name>

Another way of representing my name in XML could look like:

<name>

 <first>Marcus </first>

 <last> Fisher </last>

</name>

The main point to be made is that XML tags are unbounded, XML allows for an unlimited set of tags that are user defined.

The structure of an XML document consists of a Prolog and the Contents. The prolog contains the following:

1) Version Declaration – identifies the version of XML that the document conforms to, what character encoding is used, and whether or not the document is dependent on others.

2) Document Type Declaration – contains the document’s name and the Document Type Definition (DTD).

3) Processing Instructions - instructions are passed on to the application.

The Contents of an XML document contains:

1) Tags – anything written between angled brackets and must have a closing tag (i.e., <atag></atag>)

2) Elements – an opening and closing tag and anything in between (i.e., <atag>contents</atag>)

3) Attributes – tags can have attributes associated with them

Although structured data can be represented in an XML document, processing such a document can present some ambiguities. The same can be experienced when trying to search for information in HTML documents. In an HTML document, inserting my name in a <H1></H1> tag does not provide any significant knowledge about the characters “Marcus Fisher”. However, XML associates a Document Type Definition (DTD) with its documents. The DTD provides the structure and format for each XML document. This acts like a protocol when processing an XML document. The DTD governs every XML document associated with it, which empowers processors with knowledge about each item contained within the XML documents. A DTD to govern an XML document containing my name may look like:

<!ELEMENT name (first, last)>

<!ELEMENT first #PCDATA>

<!ELEMENT last #PCDATA>

XML documents that abide by these rules lets the processor know that the first element that will be encountered is a name element. The name element will contain two other elements, first and last, respectively. Each first and last elements contain parseable character data, as defined by #PCDATA. Now when a processor encounters the character strings “Marcus” and “Fisher” it can infer that this is a first and last name of a person.

Another benefit of using XML is that up until now we have only been concerned with providing a standard format for structured data, we do not need to be concerned with how to render the data, whereas with HTML you concern yourself with how the data is to be rendered. The requirement for viewing the data is fulfilled by XSL.

XSL is the mechanism that translates the logical structure of an XML document into presentable form. XSL includes both a transformation language and a formatting language, which can function independently of each other. The transformation language provides elements that define rules for how one XML document is transformed into another. The transformation language can transform an XML document into another XML document, an HTML document, standard text, or some other format.

XSL contains a list of template rules. The templates are made up of two parts:

1) Pattern – selects the element(s) from the XML document using a criteria, and

2) Action – outputs a template when the “Pattern” is found.

Each template rule is an <xsl:template> element. The pattern of the rule is the value of its match attribute. The output template is the contents of the element.

<xsl:template match=”tag_name”>

…”output template”…

</xsl:template>

For example, earlier I used the following XML structure to represent my name:

<name>

 <first>Marcus </first>

 <last> Fisher </last>

</name>

In order to output an HTML file we would write an XSL file like this:

1) <xsl:stylesheet xmlns:xsl=http://www.w3.org/TR/WD-xsl>

2) <xsl:template match=”name”>

3) <HTML>

4) <HEAD>

5) <TITLE>Marcus Fisher</TITLE>

6) </HEAD>

7) <BODY>

8) <xsl:apply templates select=”first”/>

9) <xsl:apply templates select=”last”/>

10) </BODY>

11) </HTML>

12) </xsl:template>

13) <xsl:template match=”first”>

14) <H1><xsl:value-of select=”.”/></H1>

15) </xsl:template>

16) <xsl:template match=”last”>

17) <H1><xsl:value-of select=”.”/></H1>

18) </xsl:template>

19) </xsl:stylesheet>

In an XSL transformation, an XSLT processor (e.g., Internet Explorer) reads both an XML document and an XSL document. Based on the rules defined in the XSL document, it generates an output document. The first template rule in the above example, line 2, matches the root element name. It replaces this element with an <HTML> element in the output document along with the results of applying other template rules in the XSL document. Other template rules get called as a result of the <xsl:apply-templates select=”first”/> statement, line 8. The second template rule matches the first element, line 13. It replaces each first element with a <H1> tag, the contents of the <xsl:value-of select=”.”/> statement, and a closing </H1> tag. The results of a <xsl:value-of select=”.”/> statement is the contents of the element in the input XML document, in this case it is the character string “Marcus”. Control returns to line 9 where other template rules get called. As a result, the third template rule matches the last element, line 16. Again, a <H1> tag is output, the value of <xsl:value-of select=”.”/>, and a closing </H1> tag. The transformation will result in a document that looks like:

<HTML>

 <HEAD>

 <TITLE>Marcus Fisher</TITLE>

 </HEAD>

 <BODY>

 <H1>Marcus</H1>

 <H1>Fisher</H1>

 </BODY>

</HTML>

As you can see any web browser can render this document. The above process takes place when referencing the XSL document in the XML document. When you try to load the XML file into a web browser it first grabs the XSL style sheet and applies it to the data in the XML document. The output of this process is what gets displayed in the browser.

An alternative mechanism to apply the XSL document to an XML document is to incorporate the use of a transformation engine, like XT [14]. XT is an implementation in Java of XSL Transformations. As we saw above, XSL Transformations (XSLT) provides elements that define rules for how one XML document is transformed into another document. Using this technique enables us to transform the XML model into HTML code, which then is easily rendered by any web browser. The XT engine performs the preprocessing and the output of this action can then be loaded into a web browser. This application is important in combating the differences encountered among web browsers.
Although this is a simple example, it shows how XML is used to represent structured data and XSL is used to render that data in a format suitable for display in a standard web browser. This capability is utilized extensively in industry, where the data structures remain the same but must be rendered differently depending on the situation.

2.4 Java Markup Language (JavaML)

Tools that aide engineers during code analysis must uncover the structure of the software much like techniques of compilers. Actually, the front-end of compilers are usually duplicated in every tool that needs to reason about the program beyond its lexical nature [13]. This redundancy in effort could be lessened if the structured representation of the source code could be made available to various tools. This would require a universal format for directly representing program structure, which other software engineering tools could easily analyze and manipulate [13].

Greg Badros developed JavaML at the University of Washington. JavaML provides a complete self-describing representation of Java source code. It reflects the structure of the software directly in the nesting of elements in the XML-based syntax [13]. In order to generate a JavaML model requires the use of the IBM Jikes Java Compiler. The author of [13] has developed a patch to the Jikes compiler that will automatically generate a JavaML model based on the Java source code it is compiling.

JavaML models the programming language constructs of Java independently of the specific syntax of the language [13]. JavaML is defined by the DTD in appendix D and provides more than just the structure of the program [13]. It also reflects extra edges in the program graph using the linking capabilities of XML. The linking capability enables tools to trace from a variable use to its definition. The process is to compile the Java source file using the Jikes compiler and the JavaML patch. The output will be the class file and an XML document, which is the XML model of the source code. Consider the following Java source code:

import java.applet.*;

import java.awt.*;

public class FirstApplet extends Applet

{

 public void paint (Graphics g)

 {

 g.drawString(“My First Applet”, 25, 50);

 }

}

The resulting XML model for the drawString method call would be represented as follows:

<send message=”drawString”>

 <target>

 <var-ref name=”g” idref=”frmarg-13”/>

 </target>

 <arguments>

 <literal-string value=”My First Applet”/>

 <literal-string kind=”integer” value=”25”/>

 <literal-string kind=”integer” value=”50”/>

 </arguments>

</send>
A key benefit of JavaML is its ability to leverage the growing infrastructure of XML and related tools and techniques [13]. We saw in the previous section that XSL can be used to transform XML documents into other formats. This is true with JavaML, XSL can be used to transform JavaML documents into other formats as defined by the rules in the XSL documents.

3.0 Methodology

Our approach is based on a regression analysis of existing defects. Through statistical analysis we can identify a set of defects that most frequently occur during a software development project. This will enable the synthesis of checklists to reflect the latest project experience and the rules most frequently broken during software development. As a result, we develop techniques that can automatically use the checklists to search for defects in source code freeing precious time to look for more project specific issues.

Software defects are violations of specific rules. Thus, we can apply statistical analysis of defects to identify the set of rules that are most frequently violated, which translates to what the analyst should be looking for. In addition, this will uncover the code verification activities that were responsible in finding the violated rules, which translates to where the analyst should be looking.

An ideal mechanism to automate the defect detection technique should consist of; (a) the means to model the product under assessment; and (b) the means to search the model in pursuit of violated rules. We will show that the approach XML and XSL take in data modeling and data rendering is well suited for our methods.

Section 3.1 provides a general view of the research, via a roadmap, that identifies the objectives for each procedure and the section of this paper it is addressed in. In order to improve the effectiveness of code inspections through regression analysis of existing defects, we need data that is relevant to the process. That is why our first step is to collect the appropriate data. This is detailed in section 3.2.1. Our second step is to apply a defect model that can be used to synthesize a checklist. This is detailed in section 3.2.2. Lastly, to ensure the most frequently occurring defects are not overlooked in the future and to improve the effectiveness of code inspections, we detail a mechanism that can employed to automate the defect detection process during code inspection. This is detailed in section 3.2.3.

3.1 Roadmap

The end goal is to have a code inspection environment that:

1) Enables checklists to be synthesized from regression analysis of software defects, and

2) Allow these checklists to be automatically applied to source code.

Procedure
Objective(s)
Section

Data Gathering
· To define a set of software defects that were discovered during a code inspection
3.2.1

Data Classification
· To apply a defect model to the software defect data set

· To synthesize a code inspection checklist based on analysis of the defect model

· To have developed a standard format for representing software defects
3.2.2

Process Automation
· Develop an environment that enables a code inspection checklist to be automatically applied to source code
3.2.3

3.2 Procedures

For each of the following sections we extend the roadmap discussed above by defining the activities performed in order to meet the objectives.

3.2.1 Data gathering

Defects that arise during a project are usually retained in various formats and are dependent on the organization. In addition, defects occur during all phases of the development life cycle and pertain to various work products (e.g., software requirement specifications, software design documents, source code, et cetera). Source code is the work product used for code inspections, hence we will only concentrate on those defects associated with source code.

Using the entire set of software defects we filter out only those defects that are relevant to the source code. Each defect is analyzed with the objective of identifying only software defects. If the defect is in the source code we capture it for use in our research, if it does not pertain to source code then we discard it. The manual collection of data can be supported with CASE tools, which will be addressed in the conclusion of this paper.

3.2.2 Data Classification

The following activities occur during this procedure:

1) Apply a defect model to a set of software defects,

2) Synthesize a checklist based on analysis of the defect model, and

3) Use a markup language to represent the software defects.

The output of the previous procedure consists of a large data set of software defects. A defect model will be applied to this data set. We employ the use of a defect model in order to derive frequency distributions and a code inspection checklist. We also provide a standard format, via a markup language, that can be used to represent software defects. This enables an easy extraction of data and facilitates the reuse of this data for future research projects.

3.2.2.1 Applying Orthogonal Defect Classification

The defect model that we seek must be capable of capturing the following semantics:

1) Where the defect occurred in the source code, and

2) The activity that discovered the defect.

IBM’s approach to defect modeling is based on Orthogonal Defect Classification (ODC) and is well suited for our research. In order to provide quantitative statistical feedback to the development process, IBM proposed defect modeling based on the ODC [7]. The basic idea is to capture defect semantics and map them to the development process as well as the test process. See section 2.2 for details pertaining to ODC. According to ODC, a defect model has two attributes:

1) Defect Type – maps a defect to the development process

2) Defect Trigger – maps to an event that helped detect the defect

ODC was to be used for the evaluation of the development process progress. In particular, IBM analyzed the defect trigger distribution to assess the results of design and code inspections from the project management perspective. We have found that the same semantic classification concept can be successfully applied for our research.

Following the same concept, our defect model will use the same attributes to describe a defect. The defect type attribute will take on values that represent where the defect occurred in the source code and the defect trigger attribute has values that represent how the defect was detected.

Assigning values to the defect trigger attribute and the defect type attribute is fairly straightforward. For each defect, assign a defect trigger and a defect type.

The defect trigger represents the activity that was performed when the defect surfaced. In order to integrate ODC into the work environment, we take the activities that a code inspection team performs and map them to the ODC defect triggers. This is required because at this point in time, organizations rarely use the ODC. Instead they reflect code inspection activities specific to the organization's business paradigm. To remedy this and generate defect trigger values we must develop a conversion routine that maps the organization’s code inspection activity to a defect trigger. Table 4 is an example of such a mapping. This is just a generic example and is not intended to be the actual mapping used by most organizations.

Table 4. Code inspection activities mapped to ODC defect triggers

Code Inspection Activity
Defect Trigger

Verify logical structure and syntax
Logic/Flow

Verify the source code follows the project’s defined coding standard
Language Dependency

Verify the code is maintainable
Backward Compatibility

Derive and Assess source code metrics
Rare Situation

Verify terms between data dictionary and code
Internal Document

Verify algorithms
Design Conformance

Verify timing constraints
Concurrency

The mapping of activities may differ from one organization to another, it is important that the employers of ODC justify the linkage.

To assign a value to the defect’s defect trigger attribute requires the analyst to identify the activity they were performing when the defect surfaced and find the related defect trigger in the table above. We have chosen to inherit the defect triggers identified in [8]. Reusing the defect trigger value set allows us to incorporate other research results. We must use similar categorical data items in order to use results from previous research efforts. A detailed explanation of the defect triggers can be found in Appendix A.

The defect type attribute represents where the defect was found in the source code. Again we chose to inherit the defect types from [8]. The possible values for defect types are function/class/object, assignment/initialization, interface, checking, timing, relationship, build/package, documentation, and algorithm. A description for each defect type can be found in Appendix B. Again this step is fairly straightforward. By analyzing the defect set we are able to associate a defect type for each element of the set. Both defect trigger and defect type attributes are explained further in Appendix A and B.

Upon associating each defect with a defect type and defect trigger we are able to perform statistical analysis. Analysis takes the form of identifying those defect types with the highest frequency. Frequency distributions are then computed for defect type attributes and defect trigger attributes. Frequency distribution allows us to prioritize the components in our checklist. Why do we need to prioritize? In order to answer this lets summarize what we have done up to this point. We have associated a defect type and defect trigger for each defect in our set. This provides the foundation to synthesize our checklist. The defect type values identify where the defect was located and the defect trigger values identify how to find the defect. In doing this we are discovering the rules that are most frequently broken during software development. All rules seem to be equally important [1] and [3] suggests checklists should not exceed one page. Frequency distributions allow us to prioritize which rules should be reflected in our checklist, this keeps checklists to a manageable level. However, one could argue that since this research plans to provide an automated technique to apply a checklist to source code, it would be feasible to include all the rules. We do plan to provide an automated technique that searches for defects, however we use a prioritized list to guide our development. We will focus on providing automated search techniques for those rules most frequently broken first and then expand from there.

3.2.2.2 Synthesize Checklists

Chernak [1] has shown that the code inspection process becomes more productive and the inspectors find more defects when a checklist is represented by two components 1) where to look for a defect and 2) How to detect the defect. The defect model will be used to supply these two components to our checklist. The defect type attribute identifies where in the work product the defect occurred, “where to look”. The defect trigger attribute identifies how the defect was detected, “how to detect”. However, based on the values in the defect model, we can not objectively provide these two components. For example consider a defect with the following attributes shown in table 5:

Table 5. Example association of a defect with a defect type and trigger

Defect No.
Defect Type (where to look)
Defect Trigger (how to detect)

1
Assignment
Logic/Flow

A checklist like this is not much of a guide for an analyst. So we need to analyze what these values mean and scope them accordingly to generate a checklist. A value of “assignment” for the defect type means value(s) are assigned incorrectly or not assigned at all. This defect type points to regions of the source code that uses variables, parameters, operators and objects. Analyzing all the defect types will result in different perspectives for each type. This provides the “where to look” component for our checklist.

A value of “logic/flow” for the defect trigger means the inspector used knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete. The “how to detect” component of the checklist is derived by analyzing the defect trigger for each defect and specifying how it was detected.

The checklist will then be synthesized by analyzing the attributes of each defect. Table 6 shows what typically results after the analysis.

Table 6. Example checklist derived by analyzing the attributes of a defect

Defect Type
Where To Look
How To Detect

Assignment/Initialization
Variables
Must be initialized when they are declared

Assignment/Initialization
Variables
MAGIC and hard-coded literals must be assigned to a constant

Documentation
Variables
Must have comments when declared

Documentation
Methods
Methods that do nothing must be commented with why it is they do nothing

Et cetera
…
…

3.2.2.3 Generate SDML Documents

The author of [1] supports our assessment that a project defect repository should be in place and available for defect analysis. Not only would this benefit regression analysis of existing defects it would benefit other software assessment paradigms such as software reliability. Today, the software market offers many tools for project management, however these different proprietary tools do not allow easy data exchange or extraction. They all provide their own format for modeling software defects. Research projects must tweak their methods for extracting defect data every time they obtain access to a project’s defect repository. The problem is that there is no standard data structure to represent the project's defects.

The data scheme that we developed is found in Appendix C. Basically we have developed a markup language to retain software defect information. The language can be used to generate documents for each identified defect. We developed the Software Defect Markup Language (SDML) to enable this. The SDML Document Type Definition (DTD), Appendix C, states the rules a defect document must follow. This provides a clean and systematic interface into the document in order to extract and collect information regarding software defects.

A SDML document is organized such that defects are associated with the Computer Software Configuration Item (CSCI) and its software metrics. The data scheme is identified in Appendix C, however, table 7 provides a high level description of a SDML document. The frequency column identifies how many times the element may occur in the SDML document. A plus sign (+) signifies one or more occurrences, a question mark (?) signifies that the element is optional, and if it is blank then that means the element appears once with respect to its parent element.

Table 7. High level description of a SDML document

Element
Frequ.
Description
Attribute(s)
Attribute Description

module

This is the root element of the document

|-csci

The CSCI that the defect was found in
Name
The name of the CSCI

 |----defect
+

Type
ODC defect type

 |

Impact
The impact the defect has

 |

Severity
The severity the defect has

 |----description

A description of the defect represented in English sentence(s)

 |----template

Will be used to automatically generate XSL style sheets (future research)

 |----date_found

The date the defect was discovered

 |----time_found

The time the defect was discovered

 |----trigger

Container for the ODC defect trigger

 |----inspection

Inspection defect triggers
Value
The defect trigger that surfaces defects when reviewing design or comparing code against the documented design

 |----unit_test

Unit test defect triggers
Value
Simple_path | complex_path

 |----function_test

Function test defect triggers
Value
Test_coverage | test_variation | test_sequencing | test_interaction

 |----system_test

System test defect triggers
Value
Workload_stress | startup_restart | recovery_exception | h/w_config | s/w_config | blocked_test_mode

 |----type_statistic
?
Can be used to explain the statistics used on categorical data

 |----metrics
?
Contains those metrics associated with the CSCI

 |----tool_driven
?
Container for those metrics derived from CASE tools

 |----metric

Container for the metrics that follow

 |----sloc
?
Source Lines Of Code

 |----vg
?
Cyclomatic Complexity

 |----comment_percentage
?
Percentage of comments in source code

 |----weighted_methods
?
A count of all methods implemented in the class

 |----response
?
A count of all the methods that can be invoked by a message from a class

 |----coupling
?
A count of the number of other classes to which a class is coupled

 |----depth
?
The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root node

 |----number_children
?
The number of immediate subclasses subordinate to a class

 |----criticality_risk
?
Container for the criticality and risk scores of the CSCI. Defined in CARA

 |----performance_ops

Associates the criticality of the CSCI with respect to performance and operational constraints
driver_value
catastrophic | critical | high | moderate | low

 |----safety

Associates the criticality of the CSCI with respect to safety contraints
driver_value
catastrophic | critical | high | moderate | low

 |----devp_cost_schedule

Associates the criticality of the CSCI with respect to the development's cost and schedule
driver_value
catastrophic | critical | high | moderate | low

 |----complexity

Associates the risk associated with the CSCI with respect to its complexity
driver_value
catastrophic | critical | high | moderate | low

 |----maturity

Associates the risk associated with the CSCI with respect to the maturity of the technology
driver_value
catastrophic | critical | high | moderate | low

 |----requirements

Associates the risk associated with the CSCI with respect to the stability of the requirements
driver_value
catastrophic | critical | high | moderate | low

 |----testing

Associates the risk associated with testing the CSCI
driver_value
catastrophic | critical | high | moderate | low

For each CSCI we generate a SDML document that identifies all it’s defects and metrics. Now that we have each defect represented in its own document using a standard format we can then apply any tool that can interface with XML to perform data analysis. In addition, future research efforts are able to automatically extract data via the Internet or through basic file extraction.

3.2.3 Process Automation

Research has repeatedly shown that time is a critical factor during a code inspection [10]. Code inspectors prepare for the inspection meeting by studying the work product and related materials [2]. They suggest 1.5 hours per inspector as a maximum preparation time. [10] has also reported that the inspection meeting be limited to a maximum of two hours because inspectors tire after this amount of time, and their ability to detect defects decreases dramatically [2].

An environment that enables an analyst to automatically apply a checklist to source code drastically cuts down on the time required to find frequently occurring defects and enables the analyst to allocate their time to search for more project specific defects.

What this environment intends to do is enable analysts to automatically apply a checklist to a software product to automatically search for defects, which will free up the analyst’s time and resources to possibly focus her search for more domain specific issues. We must recognize that the defects that were used to synthesize our checklist do not represent the universal set of software defects and when applied on future projects may not discover the same set of defects. Menzies states that domain general fault predictors are notoriously hard to produce and experiments with machine learning strongly suggest that different factors are crucial in different domains [5]. However, since the process is aided by automation it is feasible to synthesize our checklist based upon lessons learned. These discoveries impose a condition that our environment must be capable of displaying. The condition is that our environment must be extensible.

1) An extensible environment enables the checklist to be reconfigured to reflect other types of defects, and

2) An extensible environment enables the automated search techniques to be generated for the modified defect types.

We will need the following capabilities to implement such an environment:

a) A mechanism to model source code (our work product),

b) A mechanism to model the code inspection checklist, and

c) A mechanism to apply capability (b) to capability (a).

We can easily show that the Extensible Markup Language (XML) and the Extensible Stylesheet Language (XSL) can provide these mechanisms. The procedure for doing so will entail:

1) Using XML to model the source code,

2) Using XSL to model the code inspection checklist, and

3) Using a web browser, or transformation engine, to apply XSL to the XML model to automatically identify defects in the source code

In order to model Java source code using XML we employ the use of the Java Markup Language (JavaML), as explained in section 2.4.
In the related work section of this paper we introduced XSL and how it functions with XML (see section 2.3). The next step in our research is to model the code inspection checklist using XSL in such a way that it can be applied to the generated XML model.

XSL style sheets are used to represent the items contained in a checklist. Suppose the following checklist had the following entries:

Defect Type
Where To Look
How To Detect

Assignment/Initialization
Variables
Must be initialized when they are declared

Assignment/Initialization
Variables
MAGIC and hard-coded literals must be assigned to a constant

Documentation
Variables
Must have comments when declared

Documentation
Methods
Methods that do nothing must be commented with why it is they do nothing

Et cetera
…
…

The code reviewer would then proceed to write XSL style sheets that represent each entry. So there would be style sheets written that:

1) Displayed variables that were not initialized when declared,

2) Displayed variables that are assigned to hard-coded literals,

3) Displayed variables that do not have comments associated with their declaration, and

4) Displayed methods that do not have comments associated with them if they do not contain any code in their body.

The result’s section of this paper, section 4.0, provides a set of style sheets based on the checklist that is generated from this research.

4.0 Results

A software development project was identified that was willing to work with this research by providing all the defects that surfaced during the course of developing the system. The system consists of approximately 130 KSLOC and is still under development. The system can be characterized as real-time and distributed. The defects surfaced as a result of code verification while the development team was in the coding phase. As previously described, we conducted three procedures (1) data gathering, (2) data classification, and (3) process automation.

4.1 Data Gathering

Reports from the code verification activities were evaluated and defects that were associated with the source code were extracted. In addition, the activity that surfaced the defect was also captured. The main reason for this extraction is because the reports identified various types of defects. Not only were defects in the code represented in these reports, issues with the development organization’s procedures and associated risks also populated the reports. This research was only interested in source code, hence we only concentrated on those defects associated with source code.

4.2 Data Classification

During implementation, code verification activities discovered 630 software defects. One of the benefits of using ODC is that software engineers acquire profiles of the defect distributions across several phases of the development life cycle, aiding them in the decision making process. We have taken a "snapshot", implementation phase, of the product as it evolves through the life cycle in order to confirm the types of defect most frequently found during coding. This in turn will help synthesize the appropriate checklist for future projects to employ. The results of applying ODC are shown in figures 5 - 8. Table 8 shows the mapping of code verification activities to defect triggers.

Table 8. Mapping of code verification activities to defect triggers.

Code Verification Activity
Associated Defect Trigger

Verify consistency between the code and software design document
Design Conformance

Verify algorithms per software design document
Design Conformance

Verify logical structure and syntax via static analysis
Logic/Flow

Verify coding standards and best practices are being followed
Language Dependency

Verify the code is maintainable
Language Dependency

Source code data collection and metrics assessment
Rare Situation

Verify sample input and output data
Side Effect

Verify terms between data dictionary and code
Internal Document

Verify timing constraints
Concurrency

Perform interface analysis
Lateral Compatibility

Review software libraries and releases/versions
Backward Compatibility

The distribution of defect types (Fig. 5) reveals a relatively high percentage of assignment (43%), documentation (25%), and checking (20%) defects, and relatively low percentages of algorithm (8%), function (1%), timing (< 1%), interface (< 1%), relationship (0%), and build (0%) defects.

The distribution of defect triggers (Fig. 6) reveals a high percentage of logic/flow (53%), language dependency (30%), and internal document (15%) triggers that surfaced defects. The triggers that surfaced the most defects focused their analysis on language specific details, compilation concerns, documentation dependencies, and basic programming practices.

Figure 7 shows the majority of defects were found by the logic/flow trigger, which means the analyst used knowledge of basic programming practices and standards to examine the flow of logic or data. The language dependency trigger surfaced the second most defects, which means the analyst was checking the language specific details of the implementation. The third most defects were discovered as a result of the internal document trigger. This means the analyst was concerned with incorrect, inconsistent, or incomplete documentation associated with the source code, which includes commenting.

The defect types that should peak during a code inspection are checking, assignment, relationship, and algorithm. As you can see from figure 5, algorithm and relationship defect types are low and in the case of relationship defects, there weren’t any found at all. These results raise a few concerns.

First, the distribution of algorithm defects could have possibly been higher. If the profile of algorithm defects is expected to peak during this stage then that means the remaining defects found during subsequent activities will not have a greater distribution than 8%. Can we accept this as a feasible assumption? In order to find algorithm defect types requires an analyst to examine efficiency or correctness problems that affect a task and can be fixed by (re) implementing an algorithm without the need of a change in design. Since the language dependency trigger surfaced the majority of algorithm defects we can safely say that algorithm defect types were not completely ignored. However, this trigger means the analyst was focusing her attention on the efficiency of the language to perform the task and possibly not on project specific efficiencies. For example, the analyst may have focused entirely on the correctness of a data structure (e.g., circular linked-list) and not on the ability of it to complete a search operation in a required amount of time. In any event, I do not believe we can reach a binary decision based on these results, I believe we can only conclude that this may need to be monitored. Subsequent defect profiles may reveal an increase in this defect type, which is characteristic of unit and integration testing. The project should respond by doing the following:

· Verify that the unit test strategies are adequate and focused on discovering these types of defects, and

· During unit testing compute the difference in distributions of algorithm defects. If the delta is significant then the project needs to consider applying more effort in finding these types of defects, via more unit testing or an independent inspection of the code.

The second concern is the distribution of relationship defects. The profile should have responded with a high distribution of this defect type and we can see from figure 5, it did not. No defects found of that type is very significant. Although, there were a few interface defects (< 1%), but certainly not enough to counter the lack of relationship defects. Even if there were, interface defects should be filtered by design inspections. Interaction between methods, objects, components, and data structures is characteristic of real time distributed systems, which would lead to finding defects of type relationship. In addition, the lateral compatibility trigger is expected to detect incompatibilities between functions in the code and other system services, components, or modules with which it must interface. Figures 6 and 7 shows that this trigger didn’t surface any defects. Given the nature of the component, this raises serious questions regarding the skills and/or techniques of the analysts. If the project is confident with the skills of the analysts then their methods of performing analysis must be verified. Whatever the outcome, this finding must be raised to a level such the project provides resolution. The suggestion is for an inspection to be redone with analysts highly skilled in the intercommunication of modules, from a language perspective. It would also benefit having analysts with a significant amount of domain knowledge with these systems. Another recommendation is to incorporate a computer aided software engineering (CASE) tool designed to analyze inter-procedural communication mechanisms of source code.

The last concern is that a lot of time was spent on defects and triggers that could have hindered the analysts in finding other defects, like algorithm and relationship defect types. One possible reason for discovering few algorithm defect types could have been caused by the time constraint placed on the code verification activities. Studies show that time is a limited resource during defect detection activities and from our results it seems a significant amount of time was spent on discovering code specific defects (i.e. uninitialized variables, incorrect validation of parameters, commenting, et cetera). The high percentage of logic/flow defect trigger and the low percentage of algorithm defect types could have occurred because examination focused more on inspecting basic coding standards and dependencies. It is also possible that not enough attention was spent on analyzing project specific details of the code, such as algorithms, possibly due to the lack of having enough time to search for project specific defects.

[image: image5.wmf]Cumulative Defects versus Time

0

100

200

300

400

500

600

700

800

0

200

400

600

800

1000

1200

1400

Days

Cumulative Defects

Figure 5: Defect Type Distributions (Note: An automated technique for detecting assignment, documentation, and checking defects would enable analysts to search for more project specific defects)

[image: image6.wmf]Percent of Function Defects versus Development

Period

0

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

3

3.5

Period

Percent (%)

Figure 6: Defect Trigger Distribution

[image: image7.wmf]Frequency of Defect Types

0

5

10

15

20

25

30

35

Documents

Function

Interface

Algorithm

Timing/Serialize

Defect Type

Number of Defects

Figure 7: Distribution of Defect Types versus Defect Triggers

[image: image8.wmf]Defect Triggers versus Defect Type

0

10

20

30

40

50

60

Backward Compatibility

Design Conformance

Document

Logic/Flow

Rare Situation

Defect Trigger

Number of Defects

Documents

Function

Interface

Algorithm

Timing/Serialize

Figure 8: Distribution of Defect Triggers versus Defect Types

We are now able to synthesize a checklist based on analysis of the defects. In order to derive a checklist we analyze our ODC results starting with the defect types. We must analyze each defect type to generate the two attributes required for our checklist. For each defect type we provide values for the following two attributes:

1) Where to look for the defect, and

2) How to detect the defect.

The result of this assessment is the following checklist:

Defect Type
Where To Look
How To Detect
Item No.

Assignment / initialization
Pointers
Are they set to NULL after deleting the memory they point to?
1

Are computations actually pointer arithmetic?
2

Variables
Are there variables not initialized?
3

Is initialization performed in one place?
4

Are strings being initialized by hard coding a "\0"?
5

Variables being assigned to MAGIC and/or hard-coded literals
6

Class
Must have assignment methods for their data members
7

Documentation
Individual lines
Must not exceed 79 characters
8

Class
The structure of the class must be in this order: class, functions, and then data members
9

Data Declarations
Variables must have comments associated with them the first time they are used?
10

Are units on the data declarations specified?
11

Are the ranges or limitations of values specified?
12

Are flags documented to the bit level?
13

Are global variables documented as such?
14

Are counters documented?
15

Do identifiers have clear names?
16

Methods
Must have comments as a header detailing their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw
17

Comments must accurately describe the code
18

Methods that do nothing (e.g. return this) must be commented with an explanation
19

Control Structure
Is each control structure commented?
20

General
Is the comment percentage adequate?
21

Does each file have a header?
22

Is error and message propagation clearly identified?
23

Checking
Data
Are native constructs, which are dependent on underlying operating system (e.g., size) being checked before use?
24

Are there validity checks when casting between types?
25

Are variables checked that they don't go outside their range?
26

Constructs
Are there switch constructs with empty case statements?
27

Are there switch constructs with no default clauses?
28

Are there switch constructs with no break statements?
29

Does the code check the index of vectors or arrays before use to ensure they stay within their bounds?
30

Does the code check that there is valid data in a vector or array reference before use?
31

Loops
Are variables checked to ensure they don't exceed what they are assigned to?
32

Comparison
Do conditional use "=" instead of "=="?
33

Do constants appear on the left side of comparison operators?
34

Pointers
Are pointers checked before they get dereferenced?
35

Methods
Are return values checked before use?
36

Do methods check their parameters before use?
37

Is the status of routine execution returned?
38

Algorithm
Methods
Is main() in a file by itself?
39

Is their redundant code that is a candidate for becoming a subroutine?
40

Are there uses of system level functions, which may causes issues in porting or timing?
41

Function
Global variables
Can global variables cause collisions?
42

Files
Are files extremely large?
43

Methods
Are there methods that are easily over a hundred lines long?
44

Timing
Threads
Do multithreaded code use thread safe constructs?
45

Interface
Methods
Do method names in the body coincide with the methods defined in the header files?
46

The checklist defined above covers all the defects found during this development effort. This checklist can be considered a summarization of all the software defects that have occurred. Basically we could apply this checklist to the source code and reveal the same set of software defects we originally came up with. Appendix E contains the same checklist as presented above with explanations for each entry.

Generating SDML documents requires an interface to the organizations issue or defect-tracking tool, if one exists. Typically the organization’s CASE tool can output reports in a user-defined format. The format you select corresponds to the SDML DTD, as defined in Appendix C. If the interface does not support this feature then a simple HTML form and a Java servlet, or CGI, can accomplish the same task. In any event, an example of the SDML documents generated from this research can be found in Appendix F.

4.3 Process Automation

Unfortunately the project we obtained defect data from did not supply the source code as well. So the use of XML and XSL as an environment to conduct code inspections will be shown using different source code. However, we will use the same checklist that was synthesized in section 3.2.

Using the work of Dr. Badros [13], the source code in Appendix G was compiled and the XML model in Appendix H was generated. The JavaML model was described in section 2.4.

As stated previously, the checklist from section 3.2 will be used to show that XSL can effectively model its’ contents and automatically detect defects when applied to the XML model in Appendix H. However, the entire checklist will not be used, only a subset of the items in the checklist will be used as a proof of concept. The following subset of entries will be used:

Defect Type
Where To Look
How To Detect
Item No.

Assignment/initialization
Variables
Are there variables not initialized
3

Documentation
Data Declarations
Do variables have comments associated with them the first time they are used?
10

Documentation
Data Declarations
Are units on the data declarations specified?
11

Documentation
Data Declarations
Are the ranges or limitations of values specified?
12

Documentation
Data Declarations
Do identifiers have clear names?
16

Documentation
Methods
Must have comments as a header detailing their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw
17

Documentation
General
Is the comment percentage adequate?
21

Checking
Comparison
Do conditionals use “=” instead of “==”?
33

In order to model item number 3, we need to look at the variables in the program and identify those that are not initialized when declared. The XSL style sheet depicted in Appendix I will perform this function. The HTML document (Fig. 9) is the result of applying the style sheet (Appendix I) to the source code (Appendix H). The style sheet (Appendix I) identifies those class data members and local variables that are not initialized when declared. It generates an HTML file that when viewed by a Web Browser shows the line number where the variable is delared, the variable’s name, the variable’s data type, and what the variable is initialized to. The analyst needs to be aware when using this style sheet, the variable may be initialized somewhere other than where it is declared (e.g. in a constructor). In addition, it is a feature of Java that the compiler automatically initializes variables if a value is not specified. However, it is good practice and some standards require that variables be initialized when they are declared, if not, compilers may initialize the variables to values that the programmer had not anticipated. To interpret the results (Fig. 9) the analyst needs to consider two scenarios:

1) The variable may be initialized in the constructor, and

2) The variable may be initialized before it is first used.

An example of scenario 2 would be, if the variable gets declared on one line and then initialized on another and then used somewhere else. The following is an example:

1) void rangeFinder(int x)

2) {

3) int i;

4) int d=0;

5) i = d+x;

6) if (i<20)

7) System.out.println(“The variable is in range”);

8) else

9) System.out.println(“The variable is not in range”);

10) }

In this case, the output would identify variable i as not being initialized, although it has been on line 5. So the analyst needs to consider these scenarios before flagging them as defects. To support the analyst during these scenarios we wrote another simple style sheet to display the use of class variables. Specifically, the style sheet (Appendix J) identifies the class variable and where in the source code it is declared and where it is used. The results of applying the style sheet in Appendix J to the JavaML model in Appendix H is depicted in Figure 10. The results are extremely interesting for this example. Looking at figure 10, one can see the variable wordLen gets referenced, or used, before it gets initialized, or does it? First the analyst must remember that this application is an applet and the results in figure 10 show the sequential uses of the variable. The answer lies in the actual sequence that the methods get called. Just because the style sheet shows that the variable gets referenced first in the method paint() does not mean it’s an error. It is dependent on when the method paint() gets called. What we do know is that the method init() will get called first and then the method start(), because this is an applet. As you can see from figure 10, the start() method references the variable before it gets initialized. So in this example it would be considered a defect.

[image: image9.wmf]Frequency of Defects

273

161

126

53

8

5

4

0

0

0

50

100

150

200

250

300

assignment

documentation

checking

algorithm

function

timing

interface

Relationship

Build

Defect Type

Number of Defects

Figure 9: Output of applying the style sheet in Appendix I to the JavaML model in Appendix H. The results aide analysts in identifying variables that are not initialized when declared.

[image: image10.wmf]Frequency of Defect Triggers

340

189

94

6

1

0

50

100

150

200

250

300

350

400

Logic / Flow

language

Dependency

Internal

Document

Concurrency

Rare

Situation

Defect Trigger

Frequency

Figure 10. The results of applying the style sheet in Appendix J to the JavaML model in Appendix H. The results show when the variable gets initialized and when the variable gets used.

In order to model the items numbered 10, 11, 12, 16, 17, and 21 in the checklist, we wrote the style sheet in Appendix K. The results of applying this style sheet (Appendix K) to the JavaML model (Appendix H) are shown in figures 11, 12, and 13. Figure 11 shows the metrics associated with the use of comments throughout the source code. It displays the number of comments and the number of lines of code and computes the comment percentage. However, the actual effectiveness of this metric can be argued.

Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes highly maintainable. Specifically, they say a higher comment percentage (20-30%) decreases the testing efforts, increases understandability, increases maintainability, and decreases development effort [27]. Since comments assist developers and maintainers, higher comment percentages increase understandability and maintainability [29].

One study found that areas of source code with large numbers of comments also tended to have the most defects and consume the most development effort. The authors hypothesized that programmers tended to comment difficult code heavily [30]. Sometimes projects will adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be a side effect of the process itself [28]. Rather than focusing on the number of comments, focus on whether each comment is efficient. That is the reasoning behind figures 12 and 13.

Figure 12 presents the usage of comments with respect to the class variables. It presents it in a checklist format so that the analyst can systematically go through and mark each response. For each class variable, the style sheet reports the line number the variable is declared on, the identifying name, and the comment associated with the variable. The additional columns are created for the analyst to determine whether the comment clearly states the units associated with the values of the variable, the range of values the variable can take on, and whether the variable has a clear name.

Figure 13 is similar but it reports on the comments that are associated with the methods contained within the source code. The style sheet reveals the method’s name, the line number it occurs on, and the comments associated with it. It also provides columns for an analyst to answer questions relative to the comments. Questions such as:

· Do the comments accurately reflect the error propagation?

· Are the parameters to the method accurately and completely defined?

· Are the return values specified?

· Is the post-condition specified?

· Do the comments accurately portray the behavior of the method?

To answer these questions requires more information than what can simply be inferred from the comments, so the style sheet also identifies some additional information in order to help describe the behavior of the method. It identifies what exceptions are thrown by the method, the number of local variables contained in the method, the number of conditional statements in the method, the number of loops in the method, the number of calls the method makes, the arguments the method takes, and what the method returns.

Modeling the last item in the checklist, item 33, can be simply done with the style sheet depicted in appendix L. The result of applying this style sheet to the JavaML model depicted in Appendix H is shown in figure 14. The style sheet identifies all uses of conditions and determines if the operator was improperly used. It looks to see if the equal sign (“=”) was used when the double equals sign (“==”) should have been used. This occurs when the programmer is meaning to test for equality (“==”) but only uses a single equal sign (“=”), which is assignment.

The style sheets themselves act as queries, the processor is the actual mechanism that applies the query to the model, which in this case is source code. Just as a checklist acts as a guide to point analysts in the proper direction, the style sheets act as a guide to point the processor in the proper direction to uncover common programming mistakes. This technique can greatly reduce an analyst’s time so that he can concentrate on more project specific defects and being extensible allows the checklists to mutate in order to represent the latest lessons learned and best practices.

[image: image11.wmf]Defect Trigger vs Defect Type

0

50

100

150

200

250

300

350

400

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Trigger

Frequency

timing

checking

documentation

assignment

interface

algorithm

function

Figure 11. The results of applying the style sheet in Appendix K to the JavaML model in Appendix H. The results show the comment usage within the source code.

[image: image12.png]I b View Favostes Tools Help [+ |
.9 D G 3B

| Address [£] C\dev\ouceCodeXmlMasters\Hangman'Valniialize himl =] @G0 || Links »

Initialization of Class Data members

“++Tnportant***

This only reports when initialization does not oceur -~

when the variable is defined

LINE NUMBER | IDENTIFIER TYPE | INITIALIZED TO:

50 masTries finalint 5

53 mazWordLen finalint 20

56 secretWord(] char [Not Initalized

59 secretWordLen it [Not Initalized

63 wrongLetters(] char [Not Initalized

66 [wrongLetters Count [t [Not Initalized

70 word] char [Not Initalized

73 wordLen it [Not Initalized

e e Iy [e— |
€] Done [[EJos Compter y

Figure 12. The results of applying the style sheet in Appendix K to the JavaML model in Appendix H. The results show the comment usage within the source code with respect to the class variables.

[image: image13.wmf]Defect Type vs Defect Trigger

0

50

100

150

200

250

300

timing

checking

documentation

assignment

interface

algorithm

function

Defect Type

Frequency

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Figure 13. The results of applying the style sheet in Appendix K to the JavaML model in Appendix H. The results show the comment usage within the source code with respect to the class methods.

[image: image14.wmf]Cumulative Defects versus Time

0

100

200

300

400

500

600

700

800

0

200

400

600

800

1000

1200

1400

Days

Cumulative Defects

Figure 14. The results of applying the style sheet in Appendix L to the JavaML model in Appendix H. The results show the location of conditionals and whether or not they are used appropriately. The use of “=” instead of “==” is a common programming mistake and this style sheet is specifically looking for such instances.

5.0 Lessons Learned

The greatest benefit experienced during the course of this research has been the simplicity of writing style sheets in XSL. The time required to learn the technology and be able to apply the technique is almost negligible. The difficulties lie in capturing the concerns of an inspector in a checklist. However, using historical defect data as a stepping stone to synthesize checklists has revolutionized how we can represent the best practices and common mistakes encountered when programming.

We initially had two objectives for using Orthogonal Defect Classification (ODC):

· It was an appropriate way to organize our defect data, and

· We wanted to show that a classification scheme could help synthesize checklists.

We quickly realized all the benefits associated with ODC and have since generated additional research opportunities. Especially as a technique to aid in the selection of which activities to perform, based on known successes.

We also believe that a standard representation scheme for defects greatly benefits the sciences. A lot of effort is extended in capturing defect data, so any mechanism to support the process can only provide benefit. We see a future for the Software Defect Markup Language (SDML) as a tool that permits interoperability between defect analysis techniques. As we attempt to provide more automated techniques we see the need for a standard defect format. CASE tools will then be able to generate new search techniques as defects are added to the repository, hence making this technique repeatable for future projects.

The choice of using the Extensible Markup Language (XML) as the implementation mechanism has been widely reported by industry, and we concur. A standard representation of data using XML benefited in the following ways:

1) Their exists a myriad of open-source tools for XML that we can employ,

2) XML is greatly supported by the Internet,

3) Facilitates data exchange via the Internet or between separate defect repositories,

4) Provides an easy interface for extracting data automatically, and

As a means to represent source code, XML has numerous advantages. Especially in an organization that relies heavily on software assurance activities. The reason for this is that tools that support code verification can be limiting because they require the first stages of compilation to extract the structure of the program. The non-interoperability of tools then limits the organization to using only a few tools to provide the required assurance. XML brings the open source concepts to the assurance table, by providing the means to develop a standard representation for source code.

6.0 Conclusions

Software inspections are an example of a validation technique for improving software product quality and reducing development time and cost. They are a peer-review process that have shown to decrease costs, decrease development time, and increase quality through a detailed examination of work-in-progress with the objective of identifying defects. They occur during development, providing early feed back on product quality. During a software inspection, small groups of personnel study work products independently and then meet to examine the work in detail. This research looked at modeling the defects found during a code inspection. The Orthogonal Defect Classification (ODC) was used to categorize and make inferences that resulted in synthesized checklists that reflect the latest project experience and the rules most frequently broken during software development. We were then able to develop techniques that automatically used the checklists to search for defects in the source code. This automated defect detection technique will free up resources that can be used to look for more project specific issues.

Defects that occur during a project are usually retained in various formats and are dependent on the organization’s defect repository. The database of defects requires filtration in order to extract only those defects associated with the source code. We identified a software development project that was willing to work with this research. They provided their database of defects from which we extracted 630 defects that reflected issues within the source code. Manually extracting and organizing these software defects, however proved to be very time consuming.

The next phase of the research focused on:

1) Apply a defect model to a set of software defects,

2) Synthesize a checklist based on the analysis of the defect model, and

3) Use a markup language to represent the software defects.

We selected IBM’s method for modeling defects. Their approach to defect modeling is based on Orthogonal Defect Classification (ODC) and is well suited for our research. According to ODC, a defect model has two attributes:

1) Defect Type – maps a defect to the development process

2) Defect Trigger – maps a defect to an event that surfaced the defect

Following the same concept our defect model used the same attributes to describe a defect. The defect type attribute took on values that represent where the defect occurred in the source code and the defect trigger attribute has values that represent how the defect was detected.

The defect types that should have peaked during this phase of development were checking, assignment, relationship, and algorithm. Our results revealed that the distribution of algorithm defects were low and the distribution of relationship defect types was non-existent. This suggests that the project needs to verify that algorithm defect types are adequately covered by their unit test strategies. They also need to monitor the algorithm defect type during sub-sequent phases to guard against a sudden growth spurt, if this occurs it may suggest an independent inspection needs to be conducted. They would also benefit by adding or training analysts in these types of systems, real time and distributed. This assessment was made because there wasn’t any defects found of type relationship and the lateral compatibility trigger didn’t surface any defects. Seeing as how this system is a real-time and distributed system these data values raised some concern.

It is also possible that not enough attention was applied for analyzing project specific details of the code, which may have uncovered defects of type algorithm and relationship. This may be the result of not having enough time because the data showed a significant amount of effort focused on examining basic coding standards and practices.

Classifying the defects using ODC identified a concern. More than one person needs to classify the defects and a common data analysis approach to determine the agreement in classifications should be used to increase our confidence that the we have truly captured what rules were most frequently broken.

Based on the defect model, our next step was to synthesize a checklist. The code inspection process becomes more productive and the inspector finds more defects when a checklist is represented by two components 1) where to look for a defect and 2) how to detect a defect. To synthesize a checklist based on this premise required an assessment of our defect model. The defect model was used to supply the two components for our checklist. The defect type attribute identified where in the source code the defect occurred, “Where to look” and the defect trigger attribute identified how the defect was detected, “How to detect”. Based on the analysis of the defects we were able to synthesize a checklist, which contained 46 entries.

Synthesizing the checklist became too subjective. It involved assessing each defect type and determining all the possible places it could occur in the source code. This could be improved by developing some mapping techniques. For each defect type we could identify all the possible locations at which it can occur and for each defect trigger we could identify how you would find each defect type. This was just an example and requires further exploration. In addition, we need to examine the correlation between defect triggers and defect types. Does a certain defect trigger always reveal the same defect type?

We developed the Software Defect Markup Language (SDML) in order to lessen the amount of manual work that was required in extracting defect data, classifying the data, and performing analysis on the data. This provides a clean and systematic interface into SDML in order to extract and collate information regarding defects.

Once we had created the checklist, we were able to explore the application of it on source code. This required a unique environment to be built. An environment to enable an inspector to apply a checklist to a software product that would automatically search for defects must be able to adapt to the process. Specifically, the environment must be extensible to enable the checklist to be modified and reapplied seamlessly into the inspection process. The extensible markup language (XML) and extensible style sheet language (XSL) was used to automate the defect detecting process that occurs during an inspection. We used XML to model the source code and XSL to model the checklist. Using a web browser, or transformation engine, the XSL models were automatically applied to the XML models, which translates to the checklist being applied to the source code.

XSL was used to model a subset of the entries in the checklist. We showed that XSL could effectively model the checklist entry and automatically applied to source code. The source code was modeled using JavaML, which is derived from XML. The examples revealed the simplicity involved in modeling the checklist entries. Not only does this provide the necessary querying capabilities it supports distributed team members by sending the output to the web browser.

Further research needs to explore the implementation and use of the Software Defect Markup Language (SDML). Academia needs to examine first the model and second its effectiveness as a vehicle for defect data. There were also containers placed within SDML that could be used to capture templates, which could be used to automatically build style sheets based on the defect. This adds to the extensibility proposed by this research.

Experiments also need to be conducted that assess the time that actually gets freed as a result of using the automated defect detection techniques. Case studies could serve as an avenue for implementation. Comparison and effectiveness studies need to assess if the automated defect detection techniques have the same success as manual procedures. In addition to effectiveness metrics, the effort involved in transferring these techniques to the field needs to be revealed.

This experiment only explored a small portion of the code inspection process. We learned through literature that significant improvements to the inspection process were unlikely to come from just reorganizing the process, but rather would depend on the development of new defect detection techniques. This is what we focused on and we believe this combats several problems inherent with code inspections. First, there is a limited amount of time for inspectors to search for defects, so any automation will greatly enhance the process. Second, inspectors can only work with small amounts of code (less than 250 lines). Automating the search technique allows larger work products to be examined. Third, the effectiveness of the inspection is greatly affected by the inspector’s knowledge and experience. Regression analysis on defect repositories captures the knowledge experienced inspectors have left behind. This is an attempt to make the model more formal. Fourth, conducting an inspection with a different group of inspectors yields different results, so modeling the checklist and automating the detection technique makes the process repeatable. Fifth, different technologies require different checklists. Checklists focused on object oriented languages will not provide adequate coverage for imperative languages, which are action oriented and not object oriented. The environment we introduced can withstand modifications and reinsertion into the defect detection process.

7.0 Bibliography

Author
Title
Source

[1]
Yuri Chernak
A Statistical Approach to the Inspection Checklist Formal Synthesis and Improvement
IEEE Transactions On Software Engineering, Vol. 22, No. 12, December 1996

[2]
M.E. Fagan
Design and Code Inspections to Reduce Errors in Program Development
IBM Systems Journal., vol. 15, No. 3, March 1976

[3]
T. Gilb and D. Graham
Software Inspection
Reading, Mass.: Addison-Wesley, 1993

[4]
S. Strauss and R. Ebenau
Software Inspection Process
McGraw Hill, 1994

[5]
T. Menzies
Practical Machine Learning for Software Engineering and Knowledge Engineering
Handbook of Software Engineering and Knowledge Engineering, 2001

[6]
Hans van Vilet
Software Engineering Principles and Practices
John Wiley & Sons, 1993

[7]
Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong
Orthogonal Defect Classification - A Concept for In-Process Measurements
IEEE Transactions On Software Engineering, Vol. 18, No. 11, November 1992

[8]
IBM, Center for Software Engineering
Details on Orthogonal Defect Classification for Design and Code
http://www.research.ibm.com/softeng/ODC/DETODC.HTM

[9]
Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday
In-Process Evaluation for Software Inspection and Test
IEEE Transactions On Software Engineering, Vol. 19, No. 11, November 1993

[10]
David A. Wheeler, Bill Brykcznski, Reginald N. Meeson, Jr.
Software Inspection: An Industry Best Practice
IEEE Computer Society Press, 1996

[11]
World Wide Web Consortium
Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000
http://www.w3.org/TR/2000/REC-xml-20001006

[12]
A.F. Ackerman, L.S. Buchwald, and F.H. Lewski
Software Inspections: An Effective Verification Process
IEEE Software, Vol.6, No. 3, May 1989

[13]
Greg J. Badros
JavaML: A Markup Language for Java Source Code
Dept. of Computer Science and Engineering, University of Washington

[14]
James Clark
XT is an implementation in Java of XSL Transformations.
http://www.jclark.com/xml/xt.html

[15]
Ram Chillarege
Chapter 9:Orthogonal Defect Classification
Handbook of Software Reliability Engineering, McGraw-Hill, 1996

[16]
Kathryn A. Bassin, P. Santhanam
Use of Software Triggers to Evaluate Software Process Effectiveness and Capture Customer Usage Profiles
Center for Software Engineering, IBM T.J. Watson Research Center, Technical Report, 1997

[17]
J. Gray
A Census of Tandem System Availability between 1985 and 1990
IEEE Transactions on Software Reliability, vol. 39, pp. 409-418, Oct. 1990

[18]
Khaled El Emam, Isabella Wieczorek
The Repeatability of Code Defect Classifications
Proceedings of the Ninth International Symposium on Software Reliability Engineering, 1998

[19]
J.M. Perpich, D.E. Perry, A.A. Porter, L.G. Votta, M.W. Wade
Anywhere, Anytime Code Inspections: Using the Web to Remove Inspection Bottlenecks in Large-Scale Software Development
Proceedings of the 1997 Internation Conference on Software Engineering, 1997

[20]
David B. Bisant, James R. Lyle
A Two-Person Inspection Method to Improve Programming Productivity
IEEE Transactions on Software Engineering, Vol. 15, No. 10, October 1989

[21]
Lawrence G. Votta Jr.
Does Every Inspection Need a Meeting?
Proceedings of 1st ACM SIGSOFT Symposium on Software Development Engineering, ACM Press, New York, N.Y., 1993

[22]
Adam A. Porter, Harvey P. Siy, Carol A. Toman, Lawrence G. Votta
An Experiment to Assess the Cost-Benefits of Code Inspections in Large Scale Software Development
IEEE Transactions on Software Engineering, Vol. 23, No. 6, June 1997

[23]
F.O. Buck
Indicators of Quality Inspections
Technical Report 21.802, IBM Systems Products Division, Kingston, N.T., September 1981

[24]
G. Wenneson
Quality Assurance Software Inspections at NASA Ames: Metrics for Feedback and Modification
Proceedings of the 10th Annual Software Engineering Workshop (GSFC), December 1985

[25]
Capers Jones
Applied Software Measurement
McGraw-Hill, N.Y., 1991

[26]
Glen W. Russell
Experience with Inspection in Ultralarge-Scale Development
IEEE Software, Vol. 8, No. 1, Jan. 1991

[27]
Linda Rosenberg
Applying and Interpreting Object Oriented Metrics
Technical Report, Software Assurance Technology Center, 1998

[28]
Steve McConnell
Code Complete
Microsoft Press, 1993

[29]
Robert Sharble and Samuel Cohen
The Object Oriented Brewery: A Comparison of Two Object Oriented Development Methods
Software Engineering Notes, Vol 18, No 2,, April 1993, pp 60-73

[30]
Randy K. Lind and K. Vairavan
An Experimental Investigation of Software Metrics and Their Relationship to Software Development Effort
IEEE Transactions on Software Engineering SE-15, no. 5 (May), 1989:649-53

8.0 Appendices

8.1 Appendix A

A description of the ODC Defect Triggers

Triggers
Explanation

Design Conformance
The document reviewer or the code inspector detects the defect while comparing the design element or code segment being inspected with its specification in the preceding stage(s). Faults largely related to the completeness of the product being designed with respect to the requirements and overall goals set forth for the product.

Logic / Flow
The inspector uses knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete

Lateral Compatibility
The inspector with broad-based experience, detects an incompatibility between the function described by the design document or code, and other systems, products, services, components, or modules with which it must interface

Backward Compatibility
The inspector uses extensive product/component experience to identify an incompatibility between the function described by the design document or the code, than that of earlier versions of the same product or component or with n to n+1 (subsequent release) versions.

Concurrency
The inspector is considering the serialization necessary for controlling a shared resource when the defect is discovered. This would include serialization of multiple functions, threads, processes, or kernel contexts as well as obtaining and releasing locks

Internal Document
There is incorrect information, inconsistency, or incompleteness within internal documentation. It has to do with overall completeness of the design and ensures that there is consistency between the different parts of the proposed design or implementation. Also identifies maintenance issues

Language Dependency
The developer detects the defect while checking the language specific details of the implementation of a component or a function. Language standards, compilation concerns, and language specific efficiencies are examples or potential areas of concern

Side Effect
The inspector uses extensive experience or product knowledge to foresee some system, product, function, or component behavior which may result from the design or code under review. The side effects would be characterized as a result of common usage or configurations, but outside of the scope of desing or code under review is associated

Process
The inspector uses experience and best practices to identify issues within the development activities

Rare Situations
The inspector uses extensive experience or product knowledge to foresee some system behavior which is not considered or addressed by the documented design or code under review, and would typically be associated with unusual configurations or usage. These may have to do with unusual implementations, idiosyncrasies, or domain specific information that is not commonplace.

8.2 Appendix B

A description of the ODC Defect Types

ODC Defect Type
Description

Function / Class / Object
The error should require a formal design change, as it affects significant capability, end-user features, product interfaces, interface with hardware architectures, or global structures. The error occurred when implementing the state and capabilities of a real or an abstract entity

Assignment / Initialization
Value(s) assigned incorrectly or not assigned at all

Interface / OO Messages
Communication problems between modules, components, device drivers, objects, functions vi macros, call statements, control blocks, parameter lists

Checking
Errors caused by missing or incorrect validation of parameters or data in conditional statements

Timing / Serialization
Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong serialization technique was employed

Relationship
Problems related to associations among procedures, data structures and objects. Such associations may be conditional

Build / Package / Merge
Describe errors that occur due to mistakes in library systems, management of changes, or version control

Documentation
Errors that affect both publications and maintenance notes

Algorithm / Method
Efficiency or correctness problems that affect the task and can be fixed by (re) implementing an algorithm or local data structure without the need for requesting a design change. Problem in the procedure, template, or overloaded function that describes a service offered by an object

8.3 Appendix C

Software Defect Markup Language (SDML) 1.1 Document Type Definition (DTD)

<!--Software Defect Markup Language (SDML) Document Type Definition (DTD) -->

<!--Filename: SDML1_1.dtd -->

<!--Version : 1.1-->

<!--Author : Marcus S. Fisher -->

<!--Email : Marcus.Fisher@ivv.nasa.gov -->

<!--Date : January 26, 2001 -->

<!--Purpose : The purpose of this DTD is to provide a standard data -->

<!--Purpose : structure to govern the retention of software defect data -->

<!--Revision: 1.0 is the original version-->

<!--Revision: 1.1 saw the addition of the elements-->

<!-- date_found and time_found-->

<!-- type_entity is the defect type as defined by Orthogonal Defect Classification -->

<!ENTITY % type_entity "type (function_class_object | assignment_initialization | interface_oomessages | checking | timing | relationship | build | documentation | algorithm_method) #REQUIRED">

<!-- impact is what you judge the defect would have had upon the customer -->

<!-- if it had escaped to the field -->

<!ENTITY % impact_entity "impact (installability | serviceability | standard | integrity_security | migration | reliability | performance | documentation | requirement | maintenance | usability | capability) #REQUIRED">

<!--severity is what you judge the severity of the defect to be. One being the least severe-->

<!ENTITY % severity_entity "severity (one | two | three | four | five) #REQUIRED">

<!-- inspection_entity reveal defects when reviewing design or -->

<!-- comparing code against the documented design -->

<!ENTITY % inspection_entity "value (design_conformance | logic_flow | lateral | backward | concurrency | internal_document | language_dependency | side_effect | rare_situtations) #REQUIRED">

<!-- unit_test_entity is white box testing, testing out small units of code -->

<!ENTITY % unit_test_entity "value (simple_path | complex_path) #REQUIRED">

<!-- function_test_entity is black box testing, testing functionality -->

<!ENTITY % function_test_entity "value (test_coverage | test_variation | test_sequencing | test_interaction) #REQUIRED">

<!-- system_test_entity is testing the complete system, requiring all resources -->

<!ENTITY % system_test_entity "value (workload_stress | startup_restart | recovery_exception | hardware_configuration | software_configuration | blocked_test_mode) #REQUIRED">

<!-- metric_entity are those metrics that can be derived from CASE tools -->

<!ENTITY % metric_entity "(sloc?, vg?, comment_percentage?, weighted_methods?, response?, coupling?, depth?, number_children?)">

<!--drivers_entity are those drivers for criticality and risk -->

<!ENTITY % drivers_entity "(performance_ops, safety, devp_cost_schedule, complexity, maturity, requirements, testing)">

<!ENTITY % driver_value_entity "driver_value (catastrophic | critical | high | moderate | low) #REQUIRED">

<!ELEMENT module (csci)>

<!ELEMENT csci (defect+, metrics?)>

<!ATTLIST csci

name CDATA #REQUIRED>

<!ELEMENT defect (description, template, date_found, time_found, trigger, type_statistic?)>

<!ATTLIST defect

 %type_entity;

 %impact_entity;

 %severity_entity;>

<!ELEMENT description (#PCDATA)>

<!ELEMENT template (#PCDATA)>

<!-- date_found has the format of mmddyyyy-->

<!ELEMENT date_found (#PCDATA)>

<!-- time_found has the format hhmmssmmmmmm-->

<!-- hh is two digit hour of the day 0 through 23-->

<!-- mm is two digit minute of the hour 0 through 59-->

<!-- ss is two digit seconds in the minute 0 through 59-->

<!-- mmmmmm is six digit microseconds in the second 000000 through 999999-->

<!ELEMENT time_found (#PCDATA)>

<!ELEMENT trigger (inspection | unit_test | function_test | system_test)>

<!ELEMENT inspection EMPTY>

<!ATTLIST inspection

 %inspection_entity;>

<!ELEMENT unit_test EMPTY>

<!ATTLIST unit_test

 %unit_test_entity;>

<!ELEMENT function_test EMPTY>

<!ATTLIST function_test

 %function_test_entity;>

<!ELEMENT system_test EMPTY>

<!ATTLIST system_test

 %system_test_entity;>

<!-- type_statistic can be used to explain the statistics used on categorical data -->

<!ELEMENT type_statistic (#PCDATA)>

<!ELEMENT metrics (tool_driven?, criticality_risk?)>

<!ELEMENT tool_driven (%metric_entity;)>

<!--sloc is source lines of code -->

<!ELEMENT sloc (#PCDATA)>

<!--vg is cyclomatic complexity -->

<!ELEMENT vg (#PCDATA)>

<!ELEMENT comment_percentage (#PCDATA)>

<!--weighted methods per class is a count of all methods implemented in the class -->

<!--or calculated by summing the methods' complexities and generate one complexity -->

<!--per class-->

<!ELEMENT weighted_methods (#PCDATA)>

<!--response for a class is a count of all the methods that can be invoked by -->

<!--a message from a class -->

<!ELEMENT response (#PCDATA)>

<!--coupling between objects is a count of the number of other classes -->

<!-- to which a class is coupled -->

<!ELEMENT coupling (#PCDATA)>

<!--the depth in a tree is the depth of a class within the inheritance hierarchy -->

<!--is the number of steps from the class node tothe root node -->

<!ELEMENT depth (#PCDATA)>

<!--number of children is the number of immediate subclasses subordinate to a class -->

<!ELEMENT number_children (#PCDATA)>

<!ELEMENT criticality_risk %drivers_entity;>

<!ELEMENT performance_ops EMPTY>

<!ATTLIST performance_ops

 %driver_value_entity;>

<!ELEMENT safety EMPTY>

<!ATTLIST safety

 %driver_value_entity;>

<!ELEMENT devp_cost_schedule EMPTY>

<!ATTLIST devp_cost_schedule

 %driver_value_entity;>

<!ELEMENT complexity EMPTY>

<!ATTLIST complexity

 %driver_value_entity;>

<!ELEMENT maturity EMPTY>

<!ATTLIST maturity

 %driver_value_entity;>

<!ELEMENT requirements EMPTY>

<!ATTLIST requirements

 %driver_value_entity;>

<!ELEMENT testing EMPTY>

<!ATTLIST testing

 %driver_value_entity;>

8.4 Appendix D

JavaML Document Type Definition taken from Dr. Badros [13]

<!-- java-ml.dtd 0.95 -->

<!-- Copyright (C) 2000, Greg J. Badros <gjb@cs.washington.edu> -->

<!-- A DTD for JavaML, an XML representation of Java Source Code -->

<!-- http://www.cs.washington.edu/homes/gjb/papers/javaml/javaml.html -->

<!ENTITY % visibility-attribute "visibility (public|private|protected) #IMPLIED">

<!ENTITY % interface-visibility-attribute "visibility (public) #IMPLIED">

<!ENTITY % kind-attribute "kind (integer|long|float|double) #IMPLIED">

<!ENTITY % mod-final "final CDATA #IMPLIED">

<!ENTITY % mod-static "static CDATA #IMPLIED">

<!ENTITY % mod-volatile "volatile CDATA #IMPLIED">

<!ENTITY % mod-transient "transient CDATA #IMPLIED">

<!ENTITY % mod-native "native CDATA #IMPLIED">

<!ENTITY % mod-abstract "abstract CDATA #IMPLIED">

<!ENTITY % mod-synchronized "synchronized CDATA #IMPLIED">

<!ENTITY % location-info

"line CDATA #IMPLIED col CDATA #IMPLIED

 end-line CDATA #IMPLIED end-col CDATA #IMPLIED

 comment CDATA #IMPLIED">

<!ENTITY % expr-elems "send|new|new-array|var-ref|field-access|array-ref|paren|assignment-expr|conditional-expr|binary-expr|unary-expr|cast-expr|instanceof-test|literal-number|literal-string|literal-char|literal-boolean|literal-null|this|super">

<!ENTITY % stmt-elems "block|local-variable|try|throw|if|switch|loop|do-loop|return|continue|break|synchronized|%expr-elems;">

<!ELEMENT code-fragment ANY>

<!ELEMENT result ANY>

<!ELEMENT java-source-program (java-class-file+)>

<!ELEMENT java-class-file (package-decl?,import*,(class|interface)+) >

<!ATTLIST java-class-file

 name CDATA #IMPLIED

 version CDATA #IMPLIED>

<!ELEMENT import EMPTY>

<!ATTLIST import

 module CDATA #REQUIRED>

<!ELEMENT class (superclass?, implement*, (class|interface|constructor|method|field|static-initializer|instance-initializer)*) >

<!ATTLIST class

 name CDATA #REQUIRED

 %visibility-attribute;

 %mod-static;

 %mod-abstract;

 %mod-final;

 %mod-synchronized;

 %location-info;>

<!ELEMENT anonymous-class (superclass?, implement*, (constructor|method|field|instance-initializer)*) >

<!ATTLIST anonymous-class

 %mod-abstract;

 %mod-final;

 %mod-synchronized;

 %location-info;>

<!ELEMENT superclass EMPTY>

<!ATTLIST superclass

 name CDATA #REQUIRED>

<!ELEMENT interface (extend*, (method|field)*) >

<!ATTLIST interface

 name CDATA #REQUIRED

 %interface-visibility-attribute;

 %location-info;>

<!ELEMENT implement EMPTY>

<!ATTLIST implement

 interface CDATA #REQUIRED>

<!ELEMENT extend EMPTY>

<!ATTLIST extend

 interface CDATA #REQUIRED>

<!ELEMENT field (type,(array-initializer|%expr-elems;)?)>

<!ATTLIST field

 name CDATA #REQUIRED

 %visibility-attribute;

 %mod-final;

 %mod-static;

 %mod-volatile;

 %mod-transient;

 %location-info;>

<!ELEMENT constructor (formal-arguments,throws*,(super-call|this-call)?,(%stmt-elems;)?)>

<!ATTLIST constructor

 name CDATA #REQUIRED

 id ID #REQUIRED

 %visibility-attribute;

 %mod-final;

 %mod-static;

 %mod-synchronized;

 %mod-volatile;

 %mod-transient;

 %mod-native;

 %location-info;>

<!ELEMENT method (type,formal-arguments,throws*,(%stmt-elems;)?)>

<!ATTLIST method

 name CDATA #REQUIRED

 id ID #REQUIRED

 %visibility-attribute;

 %mod-abstract;

 %mod-final;

 %mod-static;

 %mod-synchronized;

 %mod-volatile;

 %mod-transient;

 %mod-native;

 %location-info;>

<!ELEMENT formal-arguments (formal-argument)*>

<!ELEMENT formal-argument (type)>

<!ATTLIST formal-argument

 name CDATA #REQUIRED

 id ID #REQUIRED

 %mod-final;>

<!ELEMENT send (target?,arguments)>

<!ATTLIST send

 message CDATA #REQUIRED

 idref IDREF #IMPLIED>

<!ELEMENT block (label*,(%stmt-elems;)*)>

<!ATTLIST block

 %location-info;>

<!ELEMENT label EMPTY>

<!ATTLIST label

 name CDATA #REQUIRED>

<!ELEMENT target (%expr-elems;)>

<!ELEMENT return (%expr-elems;)?>

<!ELEMENT throw (%expr-elems;)>

<!ELEMENT throws EMPTY>

<!ATTLIST throws

 exception CDATA #REQUIRED>

<!ELEMENT new (type,arguments,anonymous-class?)>

<!ELEMENT type EMPTY>

<!ATTLIST type

 primitive CDATA #IMPLIED

 name CDATA #REQUIRED

 dimensions CDATA #IMPLIED

 idref IDREF #IMPLIED>

<!ELEMENT new-array (type,dim-expr*,array-initializer?)>

<!ATTLIST new-array

 dimensions CDATA #REQUIRED>

<!ELEMENT dim-expr (%expr-elems;)>

<!ELEMENT local-variable (type,(static-initializer|array-initializer|%expr-elems;)?)>

<!ATTLIST local-variable

 name CDATA #REQUIRED

 id ID #REQUIRED

 continued CDATA #IMPLIED

 %mod-final;>

<!ELEMENT array-initializer (array-initializer|%expr-elems;)*>

<!ATTLIST array-initializer

 length CDATA #REQUIRED>

<!ELEMENT arguments (%expr-elems;)*>

<!ELEMENT literal-string EMPTY>

<!ATTLIST literal-string

 value CDATA #REQUIRED>

<!ELEMENT literal-char EMPTY>

<!ATTLIST literal-char

 value CDATA #REQUIRED>

<!ELEMENT literal-number EMPTY>

<!ATTLIST literal-number

 value CDATA #REQUIRED

 %kind-attribute;

 base CDATA "10">

<!ELEMENT var-ref EMPTY>

<!ATTLIST var-ref

 name CDATA #REQUIRED

 idref IDREF #IMPLIED>

<!ELEMENT field-access (%expr-elems;)>

<!ATTLIST field-access

 field CDATA #REQUIRED>

<!ELEMENT var-set EMPTY>

<!ATTLIST var-set

 name CDATA #REQUIRED>

<!ELEMENT field-set (%expr-elems;)>

<!ATTLIST field-set

 field CDATA #REQUIRED>

<!ELEMENT package-decl EMPTY>

<!ATTLIST package-decl

 name CDATA #REQUIRED>

<!ELEMENT assignment-expr (lvalue,(%expr-elems;))>

<!ATTLIST assignment-expr

 op CDATA #REQUIRED>

<!ELEMENT lvalue (var-set|field-set|%expr-elems;)>

<!ELEMENT instanceof-test ((%expr-elems;),type)>

<!ELEMENT binary-expr ((%expr-elems;),(%expr-elems;))>

<!ATTLIST binary-expr

 op CDATA #REQUIRED>

<!ELEMENT paren (%expr-elems;)>

<!ELEMENT unary-expr (%expr-elems;)>

<!ATTLIST unary-expr

 op CDATA #REQUIRED

 post (true|false) #IMPLIED>

<!ELEMENT cast-expr (type,(%expr-elems;))>

<!ELEMENT literal-boolean EMPTY>

<!ATTLIST literal-boolean

 value (true|false) #REQUIRED>

<!ELEMENT literal-null EMPTY>

<!ELEMENT synchronized (expr,block)>

<!ELEMENT expr (%expr-elems;)>

<!ELEMENT if (test,true-case,false-case?)>

<!ELEMENT test (%expr-elems;)>

<!ELEMENT true-case (%stmt-elems;)?>

<!ELEMENT false-case (%stmt-elems;)?>

<!ELEMENT array-ref (base,offset)>

<!ELEMENT base (%expr-elems;)>

<!ELEMENT offset (%expr-elems;)>

<!ELEMENT static-initializer (%stmt-elems;)*>

<!ELEMENT instance-initializer (%stmt-elems;)*>

<!ELEMENT super-call (arguments)>

<!ELEMENT this-call (arguments)>

<!ELEMENT super EMPTY>

<!ELEMENT this EMPTY>

<!ELEMENT loop (init*,test?,update*,(%stmt-elems;)?)>

<!ATTLIST loop

 kind (for|while) #IMPLIED

 %location-info;>

<!ELEMENT init (local-variable|%expr-elems;)*>

<!ELEMENT update (%expr-elems;)>

<!ELEMENT do-loop ((%stmt-elems;)?,test?)>

<!ELEMENT try ((%stmt-elems;),catch*,finally?)>

<!ELEMENT catch (formal-argument,(%stmt-elems;)?)>

<!ELEMENT finally (%stmt-elems;)>

<!ELEMENT continue EMPTY>

<!ATTLIST continue

 targetname CDATA #IMPLIED>

<!ELEMENT break EMPTY>

<!ATTLIST break

 targetname CDATA #IMPLIED>

<!ELEMENT conditional-expr ((%expr-elems;),(%expr-elems;),(%expr-elems;))>

<!ELEMENT switch ((%expr-elems;),switch-block+)>

<!ELEMENT switch-block ((case|default-case)+,(%stmt-elems;)*)>

<!ELEMENT case (%expr-elems;)>

<!ELEMENT default-case EMPTY>

8.5 Appendix E

A Code Inspection Checklist derived by analyzing the defect model. The last column of the checklist is an explanation for each entry of the checklist.

Defect Type
Where To Look
How To Detect
Item No.
Explanation

assignment / initialization
Pointers
Are they set to NULL after deleting the memory they point to?
1
To avoid the use of dangling pointers

Are computations actually pointer arithmetic?
2
Are they meaning to increment the address or the value

Variables
Are there variables not initialized?
3
Variables not initialized may cause collision

Is initialization performed in one place?
4
For readability and maintenance purposes

Are strings being initialized by hard coding a "\0"?
5
Initializing a string with "\0" inserts two null terminators

Are variables being assigned to MAGIC and/or hard-coded literals?
6
For readability and maintenance purposes, should use constants

Class
Do data members have assignment/access methods?
7
Good practice for assigning values to data members

documentation
Individual lines
Are lines longer than 79 characters?
8
For readability and maintenance purposes

Class
Are the classes structured as followed: class, functions, and then data members
9
For readability and maintenance purposes

Data Declarations
Do variables have comments associated with them the first time they are used?
10
For readability and maintenance purposes

Are units on the data declarations specified?
11
For readability, maintenance, & verification purposes

Are the ranges or limitations of values specified?
12
For readability, maintenance, & verification purposes

Are flags documented to the bit level?
13
For readability and maintenance purposes

Are global variables documented as such?
14
For readability and maintenance purposes

Are counters documented?
15
For readability and maintenance purposes

Do identifiers have clear names?
16
For readability and maintenance purposes

Methods
Do they have comments as a header detailing their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw?
17
For readability and maintenance purposes

Do the comments accurately describe the code?
18
For readability and maintenance purposes

Are there methods that do nothing (e.g. return this) without comments explaining why?
19
For readability, maintenance, & verification purposes

Control Structure
Is each control structure commented?
20
For readability, maintenance, & verification purposes

General
Is the comment percentage adequate?
21
A higher comment percentage (~20-30%) decreases the testing efforts, increases understandability, increases maintainability, and decreases development effort.

Does each file have a header?
22
For readability, maintenance, & verification purposes

Is error and message propagation clearly identified?
23
For readability, maintenance, & verification purposes

Checking
Data
Are native constructs, which are dependent on underlying operating system (e.g., size) being checked before use?
24
May cause future porting issues. Compilers may allocate different memory sizes per construct

Are there validity checks when casting between types?
25
Casting to a different format requires the initial value is valid and won't neglect data integrity

Are variables checked that they don't go outside their range?
26
An 8-bit unsigned int must remain within the range of 0 and 256

Constructs
Are there switch constructs with empty case statements?
27
Bad coding, maybe there is a flaw in the logic or logic left out that won't be caught

Are there switch constructs with no default clauses?
28
Bad coding

Are there switch constructs with no break statements?
29
Without break statements, execution continues until the end of the switch block

Does the code check the index of vectors or arrays before use to ensure they stay within their bounds?
30
Outside the range may cause collision

Does the code check that there is valid data in a vector or array reference before use?
31
The index may contain garbage

Loops
Are variables checked to ensure they don't exceed what they are assigned to?
32
Before the loop is entered the code needs to ensure the control variables can terminate the loop

Comparison
Do conditional use "=" instead of "=="?
33
assignment versus comparison

Do constants appear on the left side of comparison operators?
34
to guard against using the assignment operator

Pointers
Are pointers checked before they get dereferenced?
35
Must ensure they are not pointing to garbage

Methods
Are return values checked before use?
36
Must ensure they don't contain garbage and are within the range expected

Do methods check their parameters before use?
37
Must ensure they don't contain garbage and are within the range expected

Is the status of routine execution returned?
38
Good programming to return whether or not the method termiated as expected

Algorithm
Methods
Is main() in a file by itself?
39
Good programming

Is their redundant code that is a candidate for becoming a subroutine?
40
Good programming

Are there uses of system level functions, which may causes issues in porting or timing?
41
May cause future porting issues, timing problems, and impossible error propagation if contained within constructors

Function
Global variables
Can global variables cause collisions?
42
Use of global variables may cause collision with other objects that are dependant upon them

Files
Are there files that are extremely large?
43
For readability, maintenance, & verification purposes

Methods
Are there methods that are easily over a hundred lines long?
44
For readability, maintenance, & verification purposes

Timing
Threads
Do multithreaded code use thread safe constructs?
45
Could cause collision

Interface
Methods
Do method names in the body coincide with the methods defined in the header files?
46
For readability, maintenance, & verification purposes

8.6 Appendix F

An example of a SDML document generated from the defect model. The name for the csci has been changed to protect the project that the defects are associated with.

<?xml version="1.0" encoding="UTF-8"?>

<?xml:stylesheet type="text/xsl" href="DisplayDefects.xsl"?>

<!DOCTYPE module SYSTEM "SDML1_1.dtd">

<module>

 <csci name="C">

 <defect type="documentation" impact="maintenance" severity="three">

 <description>Commenting is very unclear</description>

 <template>documentation_method_accuracy</template>

 <date_found>01012001</date_found>

 <time_found>120000123456</time_found>

 <trigger>

 <inspection value="internal_document"/>

 </trigger>

 </defect>

 <defect type="checking" impact="reliability" severity="three">

 <description>variables are not checked before use</description>

 <template>checking_data_valid</template>

 <date_found>01012001</date_found>

 <time_found>120100123456</time_found>

 <trigger>

 <inspection value="logic_flow"/>

 </trigger>

 </defect>

 <metrics>

 <tool_driven>

 <metric>

 <sloc>3000</sloc>

 <vg>20</vg>

 </metric>

 </tool_driven>

 <criticality_risk>

 <performance_ops driver_value="catastrophic"/>

 <safety driver_value="catastrophic"/>

 <devp_cost_schedule driver_value="critical"/>

 <complexity driver_value="moderate"/>

 <maturity driver_value="moderate"/>

 <requirements driver_value="high"/>

 <testing driver_value="moderate"/>

 </criticality_risk>

 </metrics>

 </csci>

</module>

8.7 Appendix G

Java Source code used to generate an XML model

/*

 * @(#)Hangman.java
1.5 03 Apr 1996 10:56:25

 *

 * Copyright (c) 1994-1996 Sun Microsystems, Inc. All Rights Reserved.

 *

 * Permission to use, copy, modify, and distribute this software

 * and its documentation for NON-COMMERCIAL or COMMERCIAL purposes and

 * without fee is hereby granted.

 * Please refer to the file http://java.sun.com/copy_trademarks.html

 * for further important copyright and trademark information and to

 * http://java.sun.com/licensing.html for further important licensing

 * information for the Java (tm) Technology.

 *

 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF

 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR

 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

 *

 * THIS SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE OR RESALE AS ON-LINE

 * CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE

 * PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT

 * NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE

 * SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE

 * SOFTWARE COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE

 * PHYSICAL OR ENVIRONMENTAL DAMAGE ("HIGH RISK ACTIVITIES"). SUN

 * SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR

 * HIGH RISK ACTIVITIES.

 *

 * @author Patrick Chan

 * modified to use MediaTracker by

 * @author Herb Jellinek

 * modified for 1.1 by

 * @author Chris Bucchere

 *

 */

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.io.*;

import java.net.*;

public class Hangman

extends java.applet.Applet

implements Runnable, MouseListener, KeyListener {

 /* This is the maximum number of incorrect guesses. */

 final int maxTries = 5;

 /* This is the maximum length of a secret word. */

 final int maxWordLen = 20;

 /* This buffer holds the letters in the secret word. */

 char secretWord[];

 /* This is the length of the secret word. */

 int secretWordLen;

 /* This buffer holds the letters which the user typed

 but don't appear in the secret word. */

 char wrongLetters[];

 /* This is the current number of incorrect guesses. */

 int wrongLettersCount;

 /* This buffer holds letters that the user has successfully

 guessed. */

 char word[];

 /* Number of correct letters in 'word'. */

 int wordLen;

 /* This is the font used to paint correctly guessed letters. */

 Font wordFont;

 FontMetrics wordFontMetrics;

 /* This is the MediaTracker that looks after loading the images. */

 MediaTracker tracker;

 /* These are the various classes of images we load */

 static final int DANCECLASS = 0;

 static final int HANGCLASS = 1;

 /* This is the sequence of images for Duke hanging on the gallows. */

 Image hangImages[];

 final int hangImagesWidth = 39;

 final int hangImagesHeight = 58;

 // Dancing Duke related variables

 /* This thread makes Duke dance. */

 Thread danceThread;

 /* These are the images that make up the dance animation. */

 Image danceImages[];

 private int danceImageWidths[] = { 70, 85, 87, 90, 87, 85, 70 };

 /* This is the maximum width and height of all the dance images. */

 int danceHeight = 68;

 /* This variable holds the number of valid images in danceImages. */

 int danceImagesLen = 0;

 /* These offsets refer to the dance images. The dance images

 are not of the same size so we need to add these offset

 in order to make the images "line" up. */

 private int danceImageOffsets[] = { 8, 0, 0, 8, 18, 21, 27 };

 /* This represents the sequence to display the dance images

 in order to make Duke "dance". */

 private int danceSequence[] = { 3, 4, 5, 6, 6, 5, 6, 6, 5, 4, 3,

 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2 };

 /* This is the current sequence number. -1 implies

 that Duke hasn't begun to dance. */

 int danceSequenceNum = -1;

 /* This variable is used to adjust Duke's x-position while

 he's dancing. */

 int danceX = 0;

 /* This variable specifies the currently x-direction of

 Duke's dance. 1=>right and -1=>left. */

 int danceDirection = 1;

 /* This is the stream for the dance music. */

 AudioClip danceMusic;

 /**

 * Initialize the applet. Resize and load images.

 */

 public void init() {

 int i;

 // create tracker

 tracker = new MediaTracker(this);

 // load in dance animation

 danceMusic = getAudioClip(getDocumentBase(), "audio/dance.au");

 danceImages = new Image[40];

 for (i = 1; i < 8; i++) {

 Image im = getImage(getDocumentBase(), "images/dancing-duke/T" + i + ".gif");

 tracker.addImage(im, DANCECLASS);

 danceImages[danceImagesLen++] = im;

 }

 // load in hangman image sequnce

 hangImages = new Image[maxTries];

 for (i=0; i<maxTries; i++) {

 Image im = getImage(getDocumentBase(), "images/hanging-duke/h"+(i+1)+".gif");

 tracker.addImage(im, HANGCLASS);

 hangImages[i] = im;

 }

 // initialize the word buffers.

 wrongLettersCount = 0;

 wrongLetters = new char[maxTries];

 secretWordLen = 0;

 secretWord = new char[maxWordLen];

 word = new char[maxWordLen];

 wordFont = new java.awt.Font("Courier", Font.BOLD, 24);

 wordFontMetrics = getFontMetrics(wordFont);

 resize((maxWordLen+1) * wordFontMetrics.charWidth('M') + maxWordLen * 3,

 hangImagesHeight * 2 + wordFontMetrics.getHeight());

 addMouseListener(this);

 addKeyListener(this);

 }

 /**

 * Paint the screen.

 */

 public void paint(Graphics g) {

 int imageW = hangImagesWidth;

 int imageH = hangImagesHeight;

 int baseH = 10;

 int baseW = 30;

 Font font;

 FontMetrics fontMetrics;

 int i, x, y;

 // draw gallows pole

 g.drawLine(baseW/2, 0, baseW/2, 2*imageH - baseH/2);

 g.drawLine(baseW/2, 0, baseW+imageW/2, 0);

 // draw gallows rope

 g.drawLine(baseW+imageW/2, 0, baseW+imageW/2, imageH/3);

 // draw gallows base

 g.fillRect(0, 2*imageH-baseH, baseW, baseH);

 // draw list of wrong letters

 font = new java.awt.Font("Courier", Font.PLAIN, 15);

 fontMetrics = getFontMetrics(font);

 x = imageW + baseW;

 y = fontMetrics.getHeight();

 g.setFont(font);

 g.setColor(Color.red);

 for (i=0; i<wrongLettersCount; i++) {

 g.drawChars(wrongLetters, i, 1, x, y);

 x += fontMetrics.charWidth(wrongLetters[i])

+ fontMetrics.charWidth(' ');

 }

 if (secretWordLen > 0) {

 // draw underlines for secret word

 int Mwidth = wordFontMetrics.charWidth('M');

 int Mheight = wordFontMetrics.getHeight();

 g.setFont(wordFont);

 g.setColor(Color.black);

 x = 0;

 y = getSize().height - 1;

 for (i=0; i<secretWordLen; i++) {

g.drawLine(x, y, x + Mwidth, y);

x += Mwidth + 3;

 }

 // draw known letters in secret word

 x = 0;

 y = getSize().height - 3;

 g.setColor(Color.blue);

 for (i=0; i<secretWordLen; i++) {

if (word[i] != 0) {

 g.drawChars(word, i, 1, x, y);

}

x += Mwidth + 3;

 }

 if (wordLen < secretWordLen && wrongLettersCount > 0) {

// draw Duke on gallows

g.drawImage(hangImages[wrongLettersCount-1],

 baseW, imageH/3, this);

 }

 }

 }

 public void update(Graphics g) {

 if (wordLen == 0) {

 g.clearRect(0, 0, getSize().width, getSize().height);

 paint(g);

 } else if (wordLen == secretWordLen) {

 if (danceSequenceNum < 0) {

g.clearRect(0, 0, getSize().width, getSize().height);

paint(g);

danceSequenceNum = 0;

 }

 updateDancingDuke(g);

 } else {

 paint(g);

 }

 }

 void updateDancingDuke(Graphics g) {

 int baseW = 30;

 int imageH = hangImagesHeight;

 int danceImageNum = danceSequence[danceSequenceNum];

 // first, clear Duke's current image

 g.clearRect(danceX+baseW, imageH*2 - danceHeight,

danceImageOffsets[danceImageNum]+danceImageWidths[danceImageNum],

danceHeight);

 // update dance position

 danceX += danceDirection;

 if (danceX < 0) {

 danceX = danceDirection = (int)Math.floor(Math.random() * 12) + 5;

 } else if (danceX + baseW > getSize().width / 2) {

 //danceDirection = -(int)Math.floor(Math.random() * 12) - 5;

 danceDirection *= -1;

 } else if (Math.random() > .9f) {

 danceDirection *= -1;

 }

 // update dance sequence

 danceSequenceNum++;

 if (danceSequenceNum >= danceSequence.length) {

 danceSequenceNum = 0;

 }

 // now paint Duke's new image

 danceImageNum = danceSequence[danceSequenceNum];

 if ((danceImageNum < danceImagesLen) && (danceImages[danceImageNum] != null)) {

 g.drawImage(danceImages[danceImageNum],

 danceX+baseW+danceImageOffsets[danceImageNum],

 imageH*2 - danceHeight, this);

 }

 }

 /**

 * Starts a new game. Chooses a new secret word

 * and clears all the buffers

 */

 public void newGame() {

 int i;

 // stop animation thread.

 danceThread = null;

 // pick secret word

 String s = wordlist[(int)Math.floor(Math.random() * wordlist.length)];

 secretWordLen = Math.min(s.length(), maxWordLen);

 for (i=0; i<secretWordLen; i++) {

 secretWord[i] = s.charAt(i);

 }

 // clear word buffers

 for (i=0; i<maxWordLen; i++) {

 word[i] = 0;

 }

 wordLen = 0;

 for (i=0; i<maxTries; i++) {

 wrongLetters[i] = 0;

 }

 wrongLettersCount = 0;

 repaint();

 }

 /**

 * Start the applet.

 */

 public void start() {

 requestFocus();

 try {

 tracker.waitForID(HANGCLASS);

 } catch (InterruptedException e) {}

 tracker.checkAll(true);

 // Start a new game only if user has won or lost; otherwise

 // retain the same game.

 if (secretWordLen == wordLen || wrongLettersCount == maxTries) {

 newGame();

 }

 }

 /**

 * Stop the applet. Stop the danceThread.

 */

 public void stop() {

 danceThread = null;

 }

 /**

 * Run Duke's dancing animation. This method is called by class Thread.

 * @see java.lang.Thread

 */

 public void run() {

 try {

 tracker.waitForID(DANCECLASS);

 } catch (InterruptedException e) {

 }

 Thread.currentThread().setPriority(Thread.MIN_PRIORITY);

 // start the dancing music.

 danceMusic.loop();

 // increment the sequence count and invoke the paint method.

 while (getSize().width > 0 && getSize().height > 0 && danceThread != null) {

 repaint();

 try {Thread.sleep(100);} catch (InterruptedException e){}

 }

 // The dance is done so stop the music.

 danceMusic.stop();

 }

 /**

 * Starts Duke's dancing animation.

 */

 private void startDukeDancing () {

 if (danceThread == null) {

 danceThread = new Thread(this);

 danceThread.start();

 }

 }

 // Added by Kevin A. Smith 10/25/95

 public String getAppletInfo() {

 return "Author: Patrick Chan\nVersion 1.5";

 }

 /* This is the hangman's limited word list. */

 String wordlist[] = {

 "abstraction",

 "ambiguous",

 "arithmetic",

 "backslash",

 "bitmap",

 "circumstance",

 "combination",

 "consequently",

 "consortium",

 "decrementing",

 "dependency",

 "disambiguate",

 "dynamic",

 "encapsulation",

 "equivalent",

 "expression",

 "facilitate",

 "fragment",

 "hexadecimal",

 "implementation",

 "indistinguishable",

 "inheritance",

 "internet",

 "java",

 "localization",

 "microprocessor",

 "navigation",

 "optimization",

 "parameter",

 "patrick",

 "pickle",

 "polymorphic",

 "rigorously",

 "simultaneously",

 "specification",

 "structure",

 "lexical",

 "likewise",

 "management",

 "manipulate",

 "mathematics",

 "hotjava",

 "vertex",

 "unsigned",

 "traditional"};

 /* key tracking methods */

 public void keyPressed(KeyEvent e) {

 }

 public void keyReleased(KeyEvent e) {

 int i;

 boolean found = false;

 char key = e.getKeyChar();

 // start new game if user has already won or lost.

 if (secretWordLen == wordLen || wrongLettersCount == maxTries) {

 newGame();

 e.consume();

 return;

 }

 // check if valid letter

 if (key < 'a' || key > 'z') {

 play(getDocumentBase(), "audio/beep.au");

 e.consume();

 return;

 }

 // check if already in secret word

 for (i=0; i<secretWordLen; i++) {

 if (key == word[i]) {

found = true;

play(getDocumentBase(), "audio/ding.au");

e.consume();

return;

 }

 }

 // check if already in wrongLetters

 if (!found) {

 for (i=0; i<maxTries; i++) {

if (key == wrongLetters[i]) {

 found = true;

 play(getDocumentBase(), "audio/ding.au");

 e.consume();

 return;

}

 }

 }

 // is letter in secret word? If so, add it.

 if (!found) {

 for (i=0; i<secretWordLen; i++) {

if (key == secretWord[i]) {

 word[i] = (char)key;

 wordLen++;

 found = true;

}

 }

 if (found) {

if (wordLen == secretWordLen) {

 play(getDocumentBase(), "audio/whoopy.au");

 startDukeDancing();

} else {

 play(getDocumentBase(), "audio/ah.au");

}

 }

 }

 // wrong letter; add to wrongLetters

 if (!found) {

 if (wrongLettersCount < wrongLetters.length) {

wrongLetters[wrongLettersCount++] = (char)key;

if (wrongLettersCount < maxTries) {

 play(getDocumentBase(), "audio/ooh.au");

} else {

 // show the answer

 for (i=0; i<secretWordLen; i++) {

 word[i] = secretWord[i];

 }

 play(getDocumentBase(), "audio/scream.au");

}

 }

 }

 if (wordLen == secretWordLen) {

 danceSequenceNum = -1;

 }

 repaint();

 e.consume();

 return;

 }

 public void keyTyped(KeyEvent e) {

 }

 /* mouse tracking methods */

 public void mouseClicked(MouseEvent e) {

 }

 public void mouseReleased(MouseEvent e) {

 }

 /**

 * Grab the focus and restart the game.

 */

 public void mousePressed(MouseEvent e) {

 int i;

 // grab focus to get keyDown events

 requestFocus();

 if (secretWordLen > 0 &&

(secretWordLen == wordLen || wrongLettersCount == maxTries)) {

 newGame();

 } else {

 play(getDocumentBase(), "audio/beep.au");

 }

 e.consume();

 }

 public void mouseEntered(MouseEvent e) {

 }

 public void mouseExited(MouseEvent e) {

 }

}

8.8 Appendix H

JavaML model of the source code depicted in Appendix G

The resulting file is over thirty pages long so it is not feasible to insert it here. However, the file can be downloaded from the following URL (http://www.cs.washington.edu/homes/gjb/JavaML/)

8.9 Appendix I

Style sheet that identifies those variables in the program, which are not initialized when declared

<!—File Name: VarInitialize.xsl -->

<!--Author: Marcus S. Fisher -->

<!--Date: October 10, 2000 -->

<!--Purpose: This style sheet relies on Java source code to be -->

<!-- represented by JavaML 0.95 -->

<!-- This style sheet identifies Class data members that-->

<!-- have not been initialized at declaration. -->

<!-- In addition, it identifies all local variables that are -->

<!-- not initialized at declaration. -->

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="java-source-program">

<HTML>

 <BODY>

 <H2><CENTER>Initialization of Class Data members</CENTER></H2>

 <H4><CENTER>***Important***</CENTER></H4>

 <H4><CENTER>This only reports when initialization does not occur</CENTER></H4>

 <H4><CENTER>when the variable is defined</CENTER></H4>

 <CENTER><TABLE BORDER="2">

 <TR>

 <TD><CENTER>LINE NUMBER</CENTER></TD>

 <TD><CENTER>IDENTIFIER</CENTER></TD>

 <TD><CENTER>TYPE</CENTER></TD>

 <TD><CENTER>INITIALIZED TO:</CENTER></TD>

 </TR>

 <xsl:apply-templates select="java-class-file"/>

 </TABLE></CENTER>

 <H2><CENTER>Initialization of Local Variables</CENTER></H2>

 <H4><CENTER>Line numbers refer to the Block that the Variable belongs to</CENTER></H4>

 <CENTER><TABLE BORDER="2">

 <TR>

 <TD><CENTER>LINE NUMBER</CENTER></TD>

 <TD><CENTER>IDENTIFIER</CENTER></TD>

 <TD><CENTER>TYPE</CENTER></TD>

 <TD><CENTER>INITIALIZED TO:</CENTER></TD>

 </TR>

 <xsl:apply-templates select="//local-variable"/>

 </TABLE></CENTER>

 </BODY>

</HTML>

</xsl:template>

<xsl:template match="java-class-file">

 <xsl:apply-templates select="//field"/>

</xsl:template>

<xsl:template match="field">

 <xsl:choose>

 <xsl:when test="child::array-initializer">

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD>Initialized: Length=

 <xsl:value-of select="array-initializer/@length"/></TD>

 </TR>

 </xsl:when>

 <xsl:when test="child::literal-number">

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD><xsl:value-of select="literal-number/@value"/></TD>

 </TR>

 </xsl:when>

 <xsl:when test="child::literal-string">

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD><xsl:value-of select="literal-string/@value"/></TD>

 </TR>

 </xsl:when>

 <xsl:when test="child::literal-char">

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD><xsl:value-of select="literal-char/@value"/></TD>

 </TR>

 </xsl:when>

 <xsl:when test="child::literal-boolean">

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD><xsl:value-of select="literal-boolean/@value"/></TD>

 </TR>

 </xsl:when>

 <xsl:when test="child::literal-null">

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD>NULL</TD>

 </TR>

 </xsl:when>

 <xsl:when test="child::unary-expr">

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD>

 <xsl:value-of select="unary-expr/@op"/>

 <xsl:value-of select="unary-expr/literal-number/@value"/>

 </TD>

 </TR>

 </xsl:when>

 <xsl:otherwise>

 <TR>

 <TD><xsl:value-of select="@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD>

 <xsl:if test="@static='true'">static,</xsl:if>

 <xsl:if test="@final='true'">final,</xsl:if>

 <xsl:value-of select="type/@name"/>

 </TD>

 <TD>Not Initialized</TD>

 </TR>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="local-variable">

 <TR>

 <TD><xsl:value-of select="parent::*/@line"/></TD>

 <TD><xsl:value-of select="@name"/></TD>

 <TD><xsl:value-of select="type/@name"/></TD>

 <TD>

 <xsl:choose>

 <xsl:when test="child::var-ref">

 <xsl:value-of select="var-ref/@name"/>

 </xsl:when>

 <xsl:when test="child::literal-number | child::literal-string | child::literal-char | child::literal-boolean">

 <xsl:value-of select="child::*/@value"/>

 </xsl:when>

 <xsl:when test="child::literal-null">

 NULL

 </xsl:when>

 <xsl:when test="child::new">

 <xsl:value-of select="type/@name"/>

 </xsl:when>

 <xsl:when test="child::unary-expr">

 <xsl:value-of select="unary-expr/@op"/>

 <xsl:value-of select="unary-expr/literal-number/@value"/>

 </xsl:when>

 <xsl:when test="child::array-ref">

 <xsl:value-of select="array-ref/base/var-ref/@name"/>[

 <xsl:value-of select="array-ref/offset/var-ref/@name"/>]

 </xsl:when>

 <xsl:otherwise>

 Not Initialized

 </xsl:otherwise>

 </xsl:choose>

 </TD>

 </TR>

</xsl:template>

</xsl:stylesheet>

8.10 Appendix J

Style sheet that identifies the class variable and where in the source code it is declared and used

<!--File Name: InitializeUse.xsl -->

<!--Author: Marcus S. Fisher -->

<!--Date: January 3, 2001 -->

<!--Purpose: This style sheet relies on Java source code to be -->

<!-- represented by JavaML 0.95 -->

<!-- This style sheet displays the life cycle of Class data members-->

<!-- It shows the sequence of variable declaration-->

<!-- assignment of values to the variable, and variable references-->

<!-- These sequences can be used to ensure variables are not used-->

<!-- before they are initialized with a value. -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="java-source-program">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="java-class-file">

 <xsl:element name="A">

 <xsl:attribute name="HREF">

 <xsl:text>#CLASS</xsl:text>

 </xsl:attribute>

 <H3>Class Members:</H3>

 </xsl:element>

 <xsl:apply-templates select="//field" mode="index"/>

 <xsl:apply-templates select="class"/>

</xsl:template>

<xsl:template match="field" mode="index">

 <xsl:element name="A">

 <xsl:attribute name="HREF">

 <xsl:text>#</xsl:text>

 <xsl:choose>

 <xsl:when test="contains(@name,'[]')">

 <xsl:value-of select="substring-before(@name,'[')"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="@name"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:attribute>

 <xsl:choose>

 <xsl:when test="contains(@name,'[]')">

 <xsl:value-of select="substring-before(@name,'[')"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="@name"/>

 </xsl:otherwise>

 </xsl:choose>

</BR>

 </xsl:element>

</xsl:template>

<xsl:template match="class">

 <CENTER><H3>Class Data Members</H3></CENTER>
</BR>

 <xsl:for-each select="field">

 <xsl:variable name="VAL">

 <xsl:choose>

 <xsl:when test="contains(@name,'[]')">

 <xsl:value-of select="substring-before(@name,'[')"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="@name"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <H5>Identifier:

 <xsl:element name="A">

 <xsl:attribute name="NAME">

 <xsl:text>#</xsl:text><xsl:value-of select="$VAL"/>

 </xsl:attribute>

 <xsl:value-of select="$VAL"/>

 </xsl:element>

 </H5>

</BR>

 <xsl:choose>

 <xsl:when test="child::array-initializer | child::literal-number | child::literal-string | child::literal-char | child::literal-boolean | child::literal-null | child::unary-expr">

 <xsl:text> Initialized at declaration </xsl:text>

</BR>

 </xsl:when>

 <xsl:when test="//var-set/@name = $VAL">

 <xsl:for-each select="//*[@name = $VAL]">

 <xsl:if test="self::var-set">

 <xsl:text> Setting the Variable in method: </xsl:text>

 <xsl:value-of select="ancestor::method/@name"/>

</BR>

 </xsl:if>

 <xsl:if test="self::var-ref">

 <xsl:text> Referencing the Variable in method: </xsl:text>

 <xsl:value-of select="ancestor::method/@name"/>

</BR>

 </xsl:if>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> Not able to track the variable through the code </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:text>Return To </xsl:text>

 <xsl:element name="A">

 <xsl:attribute name="HREF">

 <xsl:text>#top</xsl:text>

 </xsl:attribute>

 Class Member Index

 </xsl:element>

 <HR></HR>

 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

8.11 Appendix K

Style sheet that explores the comment usage

<!--File Name: CommentUsage.xsl -->

<!--Author: Marcus S. Fisher -->

<!--Date: December 20, 2000 -->

<!--Purpose: This style sheet relies on Java source code to be -->

<!-- represented by JavaML 0.95 -->

<!-- This style sheet enables an analyst to explore the comments within-->

<!-- the source code. It presents the classes, interfaces, methods-->

<!-- fields, and blocks and identifies the comments associated with.-->

<!-- The purpose is to allow an analyst to examine the comments for.-->

<!-- accuracy, efficiency, and clarity.-->

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="java-source-program">

<HTML>

 <BODY>

 <xsl:apply-templates select="java-class-file"/>

 </BODY>

</HTML>

</xsl:template>

<xsl:template match="java-class-file">

 <xsl:variable name="num_comments">

 <xsl:value-of select="sum(//@comment[string-length()>0])"/>

 </xsl:variable>

 <xsl:variable name="num_loc">

 <xsl:value-of select="class/@end-line"/>

 </xsl:variable>

 <CENTER><H4>

 There are :

 <xsl:value-of select="$num_comments"/>

 : instances of comments used in the program

</BR>

 There are :

 <xsl:value-of select="$num_loc"/>

 : number of lines of code

</BR>

 Comment Percentage (Comment Instances divided by Lines Of Code):

 <xsl:value-of select="round(($num_comments div $num_loc)*100)"/>

 <xsl:text>%</xsl:text>

</BR>

 <xsl:variable name="num_items">

 <xsl:value-of select="count(//field | //method | //constructor | //block | //class | //interface)"/>

 </xsl:variable>

 There are :

 <xsl:value-of select="$num_items"/>

 : items (class, interface, constructor, method, field, or blocks) that can be associated with a comment

</BR>

 Comment Percentage (Comment Instances divided by Number of Items):

 <xsl:value-of select="round(($num_comments div $num_items)*100)"/>

 <xsl:text>%</xsl:text>

</BR>

 Rather than focusing on the number of comments, focus on whether each comment is accurate, efficient, and clear!

 </H4></CENTER>

 <HR></HR>

 <xsl:apply-templates select="class"/>

</xsl:template>

<xsl:template match="class">

 <xsl:value-of select="@comment"/>

</BR>

 <xsl:if test="@visibility"><xsl:value-of select="@visibility"/></xsl:if>

 <xsl:text> </xsl:text>

 <xsl:if test="@abstract"><xsl:value-of select="@abstract"/></xsl:if>

 <xsl:text> </xsl:text>

 <xsl:if test="@static"><xsl:value-of select="@static"/></xsl:if>

 <xsl:text> </xsl:text>

 <xsl:if test="@final"><xsl:value-of select="@final"/></xsl:if>

 <xsl:text> </xsl:text>

 <xsl:if test="@synchronized"><xsl:value-of select="@synchronized"/></xsl:if>

 <xsl:text> class </xsl:text>

 <xsl:value-of select="@name"/>

 <xsl:text> </xsl:text>

 <xsl:if test="child::superclass">

 <xsl:text> extends </xsl:text>

 <xsl:value-of select="child::superclass/@name"/>

 <xsl:text> </xsl:text>

 </xsl:if>

 <xsl:if test="child::implement">

 <xsl:text> extends </xsl:text>

 <xsl:for-each select="implement">

 <xsl:value-of select="@interface"/>

 <xsl:if test="not(position()=last())">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:if>

 <HR></HR>

 <CENTER><H4>Class Variables</H4></CENTER>

 <CENTER><TABLE BORDER="2">

 <TR>

 <TD><CENTER>LINE NO</CENTER></TD>

 <TD><CENTER>UNITS</CENTER></TD>

 <TD><CENTER>RANGE</CENTER></TD>

 <TD><CENTER>CLEAR NAME</CENTER></TD>

 <TD><CENTER>VARIABLE</CENTER></TD>

 <TD><CENTER>COMMENT</CENTER></TD>

 </TR>

 <xsl:for-each select="field">

 <TR>

 <TD><CENTER><xsl:value-of select="@line"/></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER>

 <xsl:if test="@visibility"><xsl:value-of select="@visibility"/></xsl:if>

 <xsl:text> </xsl:text>

 <xsl:if test="@static">static</xsl:if>

 <xsl:text> </xsl:text>

 <xsl:if test="@final">final</xsl:if>

 <xsl:text> </xsl:text>

 <xsl:value-of select="@name"/>

 </CENTER></TD>

 <TD><CENTER><xsl:value-of select="@comment"/></CENTER></TD>

 </TR>

 </xsl:for-each>

 </TABLE></CENTER>

 <CENTER><H4>Class Methods</H4></CENTER>

 <xsl:for-each select="method">

 <CENTER><TABLE BORDER="2">

 <TR>

 <TD><CENTER>LINE NO</CENTER></TD>

 <TD><CENTER>SIZE (LOC)</CENTER></TD>

 <TD><CENTER>ERROR PROPOGATION?</CENTER></TD>

 <TD><CENTER>BEHAVIOR?</CENTER></TD>

 <TD><CENTER>PARAMETERS?</CENTER></TD>

 <TD><CENTER>RETURN VALUES?</CENTER></TD>

 <TD><CENTER>PRE POST COND?</CENTER></TD>

 <TD><CENTER>NAME</CENTER></TD>

 <TD><CENTER>COMMENT</CENTER></TD>

 </TR>

 <TR>

 <TD><CENTER><xsl:value-of select="@line"/></CENTER></TD>

 <TD><CENTER><xsl:value-of select="@end-line - @line"/></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER><xsl:text>Y N</xsl:text></CENTER></TD>

 <TD><CENTER><xsl:value-of select="@name"/></CENTER></TD>

 <TD><CENTER><xsl:value-of select="@comment"/></CENTER></TD>

 </TR>

 </TABLE></CENTER>

 <!--Error Propogation-->

 <H4>Exceptions Thrown:</H4>

 <xsl:for-each select="throws">

 <xsl:value-of select="@exception"/>

</BR>

 </xsl:for-each>

</BR>

 <!--Behavior-->

 <H4>Characteristics:</H4>

 There are <xsl:value-of select="count(descendant::local-variable)"/> local variables in this method
</BR>

 There are <xsl:value-of select="count(descendant::if)"/> if statements in this method
</BR>

 There are <xsl:value-of select="count(descendant::loop)"/> loops in this method
</BR>

 There are <xsl:value-of select="count(descendant::send)"/> calls in this method
</BR>

 <!--Parameters-->

 <H4>Parameters:</H4>

 <xsl:for-each select="formal-arguments/formal-argument">

 <xsl:value-of select="type/@name"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="@name"/>

 <xsl:value-of select="@final"/>

</BR>

 </xsl:for-each>

 <!--Return Values-->

 <H4>Return Type = <xsl:value-of select="type/@name"/> </H4>

 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

8.12 Appendix L

Style sheet that determines if conditionals use “=” instead of “==”

<!--File Name: MisuseIf.xsl -->

<!--Author: Marcus S. Fisher -->

<!--Date: December 20, 2000 -->

<!--Purpose: This style sheet relies on Java source code to be -->

<!-- represented by JavaML 0.95 -->

<!-- This style sheet identifies if constructs that use "="-->

<!-- instead of "==". -->

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="java-source-program">

<HTML>

 <BODY>

 <H2><CENTER>If Conditions That Use "=" Instead of "=="</CENTER></H2>

 <xsl:apply-templates select="java-class-file"/>

 </BODY>

</HTML>

</xsl:template>

<xsl:template match="java-class-file">

 <xsl:apply-templates select="//if"/>

</xsl:template>

<xsl:template match="if">

 <xsl:text> Line No. </xsl:text>

 <xsl:value-of select="true-case/block/@line"/>

 <xsl:text> </xsl:text>

 <xsl:if test="test[assignment-expr]">

 Misuse of assigment operator, should use ==

 </xsl:if>

 <xsl:if test="not(test[assignment-expr])">

 Proper use of operators

 </xsl:if>

</BR>

</xsl:template>

</xsl:stylesheet>

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

1
46
This research has been funded by the OSMA Software Assurance Research Program, which is managed by the NASA IV&V Facility

[image: image15.wmf]Percent of Function Defects versus Development

Period

0

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

3

3.5

Period

Percent (%)

[image: image16.wmf]Frequency of Defect Types

0

5

10

15

20

25

30

35

Documents

Function

Interface

Algorithm

Timing/Serialize

Defect Type

Number of Defects

[image: image17.wmf]Defect Triggers versus Defect Type

0

10

20

30

40

50

60

Backward Compatibility

Design Conformance

Document

Logic/Flow

Rare Situation

Defect Trigger

Number of Defects

Documents

Function

Interface

Algorithm

Timing/Serialize

[image: image18.png]| Bio B Wow Favostes Tools Help [+ |
J e -9 AN -
[

Both meavd Stop Refiesh Home | Search Favortes

A diress [&) C:\My Documents\Science\SaftwareEngieery] 6o || Links)

Return To Class Member Index

Identifier: wordLen

Referencing the Variable in method: paint
Referencing the Variable in method: update Il
Referencing the Variable in method: update

Setting the Variable in method: newGame
Referencing the Variable in method: start
Referencing the Variable in method: keyReleased
Referencing the Variable in method: keyReleased
Referencing the Variable in method: keyReleased
Referencing the Variable in method: keyReleased
Referencing the Variable in method: mouscPressed
Return To Class Member Index

N

[&1Done [Sty Gompoter

[image: image19.png]| Bio B Wow Favostes Tools Help [+ |

Q B

Search Favores Histoy

Wl P
A diress [&) C:\My Documents\Science\SoftwareE ngineering\MastersResearchProblemPiepotSouceCade\Co] 6o || Links)

Both meavd Stop _ Refiesh _Home

J«- .9 Al
I

There are : 62 : instances of comments used in the program F
There are : 558 : number of lines of code
Comment Percentage (Comment Instances divided by Lines Of Code): 11%
There are : 107 items (class, interface, constructor, method, field, or blocks) that can he
assaciated with a comment
Comment Percentage (Comment Instances divided hy Number of Items): 58%
Rather than focusing on the mumber of comments, focus on whether each comment is accurate,
efficient, and clear!

%% @(# Hangman javal.5 03 Apr 1996 10:56:25 * * Copyright (c) 1994-1996 Sun Microsystems, Inc.
Al Rights Reserved. * * Permission to use, copy, modfy, and distribute this software * and its
documentation for NON-COMMERCIAL or COMMERCIAL purposes and * without fee s hereby
granted. * Please refer to the il hitp:fjava. sun.com/copy_irademarks himl * for further important copyright
and trademark information and to * hitpfjava. sun. comflicensing html for further important censing *
information for the Java (im) Technology. * * SUN MAKES NO REPRESENTATIONS OR.

]
[E10mme

[[[EJ iy Compoter

[image: image20.png]) AN T RS
Guk | pous | Sop Refesh Home | Seach Fawotes Hioy | Mal Pt
| Address [C:y Documents\Scence'SaftwareEngineetingMastersResearchProblerPeporSourceCade! CammentUsage Himl 2] | Go || Links >
Class Variables I |
I
LINE CLEAR
NO |UNITS RANGE MAME VARIABLE COMMENT
50))) final maxTries #* This is the mazimum number of incorrect guesses. */
53))) final maxWordLen #* This is the mazimum length of a secret word. *
56))) secretWord[] #* This buffer holds the letters in the secret word. */
59))) secretWordLen #* This is the length of the secret word. */
#* This buffer holds the letters which the user typed but
6 | YN | YN N verongletters(] don't appear in the secret word. *f
66 | YN | YN YN | wrongLettersCount | /* This is the current number of incorrect guesses. */
70 T T T word[] #* This buffer holds letters that the user has successfully
guessed. *
73 YN YN YN wordLen #* Number of correct letters in 'word'. */
R]
&1 Done [[[y Computer

[image: image21.png]W
J] AN T RS
[

Both meavd Siop Refiesh Home | Search Favartes Histoy | Mal Pt

A diress [&) C:\My Documents\Science!SaftwareE ngineering MastersResearch\ProblemPiepartSouceCode! Commenilsa x| @G0 || Links
|

Return Type = void

PRE
LINE | SIZE ERROR RETURN
WO |L0C) PROPOGATION? PEHAVIOR? PARAMETERS? |7 ey CPOOI\IS'E7 MAME |COMMENT | |

[draw Duke

247 | 14 YN YN YN YN | YN |update
on gallows

Exceptions Thrown:

Characteristics:
There are Olocal variables in this method
There are 3if statements in this method
There are Oloops in this method

There are 10calls in this method
Parameters:

Graphics g

Return Type = void A

[&1Done [| [EJiy Compoter

[image: image22.png]-9

meavd Stop _ Refresh

Q 3

A diress [&) C:\My Documerts\Science!SaftwareE ngineering MastersResearchProblemfizpart <] G0 || Links

If Conditions That Use "="" Instead of "

214 Proper use of operators
232 Proper use of operators
238 Proper use of operators
248 Proper use of operafors
251 Proper use of operafors
252 Proper use of operators
275 Proper use of operators
277 Proper use of operators
280 Proper use of operafors
286 Proper use of operafors
292 Proper use of operafors

iy Computer

N

_1040021761.xls
Chart1

		timing		timing		timing		timing		timing

		checking		checking		checking		checking		checking

		documentation		documentation		documentation		documentation		documentation

		assignment		assignment		assignment		assignment		assignment

		interface		interface		interface		interface		interface

		algorithm		algorithm		algorithm		algorithm		algorithm

		function		function		function		function		function

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Type

Frequency

Defect Type vs Defect Trigger

5

0

0

0

0

1

2

70

53

0

0

87

62

12

0

0

4

7

262

0

0

1

3

0

0

0

0

44

9

0

0

0

3

4

1

CLCS Issues

		Tim No.		Activity		Phase/Review		Frequency		Description		Module

		1251		SW.CODE		PHASE.SW.DESIGN		42		Deviations from the coding standards (line was greater than 79 characters)		Data Distribution CSCI (Data Distribution)

								1		Deviations from the coding standards (e.g., variables did not have clear names)

								1		Deviations from the coding standards (e.g., not enough commenting)

								1		Deviations from the coding standards (e.g.,switch contructs did not have default statements)

		1252		SW.CODE		PHASE.SW.CODE		1		Lines were greater than 79 characters		Data Distribution CSCI (Data Distribution)

								1		Variable identifiers not clearly named

								1		brackets in the wrong place

								1		not enough comments

								1		switch statements do not contain default statements

		1255		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values		System Services CSCI (IPC CORBA CSC)

		1260		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Lack of Java programming standard		All System Software

		1268		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		108		Uninitialized variables, empty case statements, lines greater than 80 columns		Data Distribution CSCI (Data Health)

		1269		SW.CODE.FAULT_ERROR_HANDLING		REVIEW.SW.CODE.WALKTHROUGH		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		set pointer to null after delete

								1		lack of comments

		1273		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		not enough comments		Data Distribution CSCI (Data Health)

								1		variables were not initialized

								1		variables were not well commented

								1		Functions were not preceded with comments explaining their functionality

		1274		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Data Health)

								1		Switch statements did not contain default statements

								1		Case statements did not contain Break statements

								1		Else statements were empty

								1		Delete statements were used improperly without using New

								1		Include guards were omitted

		1279		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Comments need to identify the variables used		Not Defined

								1		Column alignment was off and makes reading code very difficult

								1		Several lines were greater than 80 columns

								1		Invalid identifiers were used

		1280		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Functions were not preceded with comments explaining their functionality		Data Distribution CSCI (Constraint Mgmt)

								1		variables were not initialized

								1		variables were not well commented

		1282		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		110		coding violations w.r.t. Code Wizzard		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1283		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Constraint Mgmt)

								1		Switch statements did not contain default statements

								1		Invalid filename identifiers

								1		Unclear messages

		1286		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Coment sections preceding functions were inaccurate		Data Distribution CSCI (Constraint Mgt)

								1		Header files contained inaccurate and incomplete parameter descriptions

								1		Method names in the body were inconsistent from header files

								1		Insufficient commenting

		1287		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Error codes not properly identified		Data Distribution CSCI (Constraint Mgt)

								1		Improper identification of return values

								1		Switch statements consisted of empty Case statements

								1		Instances of empty else statements

								1		Strcpy used instead of Strncpy

		1290		SW.CODE.CONTROL_FLOWS		PHASE.SW.UNIT_TEST		1		Use of = in conditional statements instead of ==		Cmd Suppt CSCI (Cmd Mgmt CSC)

		1298		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		15		Pointer initialized to 0		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								2		Replace numbers with constants

		1299		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		7		Virtual functions must have virtual destructors		Cmd Suppt CSCI (Cmd Mgmt CSC)

								2		Public interfaces should not contain data members

								3		Public member functions must always return const handles to data members

								4		Do not directly access global data from a constructor

								17		Prefer C++ style casts

								1		Pass objects by reference instead of by value

								1		Return objects by reference instead of by value

		1300		SW.CODE		PHASE.SW.UNIT_TEST		2		Define a copy constructor and operator= for classes with dynamically allocated memory		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)

								4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second

								4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class

								27		Prefer C++ style casts

								1		Virtual functions must have virtual destructors

		1345		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		2		Revisions need comments which identify author, date, and description		Data Distribution CSCI (Constraint Mgt)

								2		Methods require comments depicting their purpose

								1		Delete debug code

								1		Make main a separate file

		1346		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Missing file headers		Data Distribution CSCI (Constraint Mgt)

								1		else portions of the if statements are not indented

								3		No commenting

								3		List parameters, returns, and exceptions in headers

								1		Need copy constructor and assignment operator

								1		Comments need to identify the variables used

								1		Need deletes for all new methods

		1357		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Private data members require comments		Data Distribution CSCI (Constraint Mgt)

								2		Nothing is being returned

								1		Counters I and j are not commented

		1358		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Directory paths must not be hardcoded		Data Distribution CSCI (Constraint Mgt)

								2		Add copy constructor and assignment operator for pointer declared as private data member

								1		Add a default case for the switch statement

								1		Return int not a pointer

								14		Parameters and counters require comments

								1		variable is declared as global, could cause collision

								1		Code for checking boundary conditions is missing

								1		Constraint parameter is passed with method

								1		main method needs to be placed in separate file

								8		Delete debug code and dead code

		1360		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Initialize all variables		Data Distribution CSCI (Constraint Mgt)

								1		Constants need to appear on the left side of comparison operators

								1		Main should be in a separate file

								1		Using strcpy instead of strncpy

		1384		SW.CODE.SUPPORT_MAINTAINABILITY		PHASE.SYS.TEST		1		Method had a complexity of 30 versus the rule of thumb 10		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*

		1413		SW.CODE		Systems Test		1		Mutex locking is not being used around object creation methods, which may result in memory leaks		Cmd Suppt CSCI (All CSCs)

		1459		Code Analysis		Code & Unit Test		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software		CLCS System (CLCS)

		1464		Code Analysis		Code & Unit Test		1		Status of method execution is not returned		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?

								1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen

								1		Identify methods that are non-thread safe (e.g., those using a static buffer)

								1		Pointer arithmetic is highly discouraged

								1		Variables without descriptive names or no comments associated with them are highly discouraged

								3		The meaning of the comments are unclear

								1		Algorithm allows the pointer to extend past the array's upper bound

		1465		Code Analysis		Code & Unit Test		1		No commenting		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string

								1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized

		1466		Code Analysis		Code & Unit Test		1		Classes need to have insertion or assignment methods for their data members		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

		1467		Code Analysis		Code & Unit Test		1		Standards for class structure is not followed (Class, function, data members)		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Standard naming conventions are not followed

								1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)

								2		variables need to be initialized

								1		there is no check to see if variable exceed another before the for loop is entered

								1		Use strtod() to check for valid C/C++ format number

		1468		Code Analysis		Code & Unit Test		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file		Cmd Suppt CSCI (All CSCs)

		1470		Code Analysis		Code & Unit Test		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Postconditions and exceptions are not always stated in the comments

		1471		Code Analysis		Code & Unit Test		3		Code does not follow what the comments say		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								2		Variables are not checked for valid data before critical use

								2		Methods that do nothing (e.g., return this) should state they do nothing and why

		1472		Code Analysis		Code & Unit Test		6		Post-conditions are required, lack of comments in general		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?

								9		Checks to determine pointers actually point to valid data before they are used

								1		Does not check if element 0 of the array is defined before its use

								3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation

								4		Redundant code is a good candiate for a subroutine

								1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers

								6		Initialize variables

		1473		Code Analysis		Code & Unit Test		1		Files are extremely large and functions are easily hundreds of lines long		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Proprietary system calls provided by the operating system requires commenting and tracking

								1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type

								1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)

								1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))

								1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code

								1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code

								1		Masking literals need to be named to constants (e.g., 0x800000000)

		1478		Interface Analysis		Code & Unit Test		3		Initialize methods have no error checking to guarantee the variables have been properly initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								9		Arguments to methods do not have comments associated with them concerning their valid values

		1483		Code Analysis		Code & Unit Test		2		Dereferencing pointers without checking them first		Cmd Suppt CSCI (Cmd Auth CSC)

								1		No checking method returns for failure status

								1		Commenting states specific error messages can be generated, however the code does not reflect this

								2		Comments do not reflect the code

								1		C++ automatically converts enums to integers, which allows for a wide range of values

								1		It is unclear what meaning "<" can have for a bit vector

								1		variables not being initialized, especially constants

								1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer

		1484		Code Analysis		Code & Unit Test		1		Read and write priveledges on files need to be examined		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Preconditions are not stated in the comments of methods

								1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed

								2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance

								1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined

		1486		Code Analysis		Code & Unit Test		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines		CMD Suppt CSCI (Cmd Auth CSC)

		1489		Code Analysis		Code & Unit Test		1		Member variables not initialized in the Constructor		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Commenting is confusing

								2		Return warnings upon successful termination

								1		Comments conflict with the code

								1		Using static variables for error values leaves multi-threaded applications with no reliable error checking

								1		Errors should be past back through the argument list

								1		Define where System Messages are to be propogated

								1		Multi-threaded code must use thread safe constructs

		1490		Code Analysis		Code & Unit Test		3		Commenting is confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Assertions need to be added to ensure all variables used in this routine are properly initialized

								1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set

								1		Enums should be integer constants to make their meaning clearer

								3		Dereferencing pointers without checking them first

								1		The destructor for this calss needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.

								1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations

		1491		Code Analysis		Code & Unit Test		4		Comments are confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		An enum is used where integer constants are implied

								2		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Vectors are used without checking the bounds nor if there are values in the vector

								1		String classes are used in conjunction with C style string functions

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

								1		Constants nees to have comments

		1492		Code Analysis		Code & Unit Test		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

		1494		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		No postconditions are stated for methods		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		No preconditions are stated for methods

								1		Comments are confusing

								4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)

								2		Variable naming is confusing

		1495		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		3		Comments are unclear		Cmd Suppt CSCI (Cmd Mgmt CSC)

								3		Variables need to be checked for proper values

		1496		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are used outside of their scope		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Method are declared but never used, hence dead code

								3		Comments contradict the code

		1497		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		6		Variables are not initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1498		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1501		SW.CODE		Code & Unit Test		1		Variables are not checked for valid data		Data Distribution CSCI (Data Fusion)

								630

The IV&V Activity
being performed
when the issue was
identified

The phase or review in which the issue was identified

The number of times the issue occurred

Filtered Issues

		Trigger		Type		Severity		Frequency		General Description		Template		Module

		language Dependency		documentation		3		42		line was greater than 79 characters				K

		language Dependency		documentation		3		1		variables did not have clear names				K

		language Dependency		documentation		3		1		not enough commenting				K

		language Dependency		checking		3		1		switch contructs did not have default statements				K

		language Dependency		documentation		3		1		Lines were greater than 79 characters				K

		language Dependency		documentation		3		1		Variable identifiers not clearly named				K

		language Dependency		documentation		3		1		brackets in the wrong place				K

		language Dependency		documentation		3		1		not enough comments				K

		language Dependency		checking		3		1		switch statements do not contain default statements				K

		Logic / Flow		algorithm		3		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values				O

		language Dependency		documentation		3		1		Lack of Java programming standard				A

		Logic / Flow		assignment		3		108		Uninitialized variables, empty case statements, lines greater than 80 columns				M

		Logic / Flow		algorithm		3		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor				F

		Logic / Flow		assignment		3		2		set pointer to null after delete				F

		Logic / Flow		documentation		3		1		lack of comments				F

		Internal Document		documentation		3		1		not enough comments				M

		Internal Document		assignment		3		1		variables were not initialized				M

		Internal Document		documentation		3		1		variables were not well commented				M

		Internal Document		documentation		3		1		Functions were not preceded with comments explaining their functionality				M

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				M

		language Dependency		checking		3		1		Switch statements did not contain default statements				M

		language Dependency		checking		3		1		Case statements did not contain Break statements				M

		language Dependency		checking		3		1		Else statements were empty				M

		language Dependency		algorithm		3		1		Delete statements were used improperly without using New				M

		language Dependency		checking		3		1		Include guards were omitted				M

		language Dependency		documentation		3		1		Comments need to identify the variables used				N

		language Dependency		documentation		3		1		Column alignment was off and makes reading code very difficult				N

		language Dependency		documentation		3		1		line was greater than 79 characters				N

		language Dependency		documentation		3		1		Invalid identifiers were used				N

		Internal Document		documentation		2		1		Functions were not preceded with comments explaining their functionality				J

		Internal Document		assignment		2		1		variables were not initialized				J

		Internal Document		documentation		2		1		variables were not well commented				J

		Logic / Flow		assignment		3		110		coding violations w.r.t. Code Wizzard				F

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		3		1		Switch statements did not contain default statements				J

		language Dependency		documentation		3		1		Invalid filename identifiers				J

		language Dependency		documentation		3		1		Unclear messages				J

		Internal Document		documentation		2		1		Coment sections preceding functions were inaccurate				J

		Internal Document		documentation		2		1		Header files contained inaccurate and incomplete parameter descriptions				J

		Internal Document		interface		2		1		Method names in the body were inconsistent from header files				J

		Internal Document		documentation		2		1		Insufficient commenting				J

		language Dependency		documentation		2		1		Error codes not properly identified				J

		Internal Document		documentation		2		1		Improper identification of return values				J

		language Dependency		checking		2		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		2		1		Instances of empty else statements				J

		language Dependency		algorithm		2		1		Strcpy used instead of Strncpy				J

		language Dependency		checking		1		1		Use of = in conditional statements instead of ==				H

		Logic / Flow		assignment		3		15		Pointer initialized to 0				I

		language Dependency		assignment		3		2		Replace numbers with constants				I

		language Dependency		algorithm		3		7		Virtual functions must have virtual destructors				H

		language Dependency		function		3		2		Public interfaces should not contain data members				H

		language Dependency		interface		3		3		Public member functions must always return const handles to data members				H

		language Dependency		algorithm		3		4		Do not directly access global data from a constructor				H

		language Dependency		checking		3		17		Prefer C++ style casts				H

		language Dependency		algorithm		3		1		Pass objects by reference instead of by value				H

		language Dependency		algorithm		3		1		Return objects by reference instead of by value				H

		language Dependency		algorithm		3		2		Define a copy constructor and operator= for classes with dynamically allocated memory				I

		language Dependency		algorithm		3		8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)				I

		language Dependency		algorithm		3		4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second				I

		language Dependency		algorithm		3		4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class				I

		language Dependency		checking		3		27		Prefer C++ style casts				I

		language Dependency		algorithm		3		1		Virtual functions must have virtual destructors				I

		Internal Document		documentation		3		2		Revisions need comments which identify author, date, and description				J

		Internal Document		documentation		3		2		Methods require comments depicting their purpose				J

		language Dependency		checking		3		1		Delete debug code				J

		language Dependency		algorithm		3		1		Make main a separate file				J

		Internal Document		documentation		3		1		Missing file headers				J

		language Dependency		documentation		3		1		else portions of the if statements are not indented				J

		Internal Document		documentation		3		3		No commenting				J

		Internal Document		documentation		3		3		List parameters, returns, and exceptions in headers				J

		language Dependency		algorithm		3		1		Need copy constructor and assignment operator				J

		Internal Document		documentation		3		1		Comments need to identify the variables used				J

		language Dependency		algorithm		3		1		Need deletes for all new methods				J

		Internal Document		documentation		3		1		Private data members require comments				J

		language Dependency		checking		3		2		Nothing is being returned				J

		Internal Document		documentation		3		1		Counters I and j are not commented				J

		Internal Document		assignment		3		1		Directory paths must not be hardcoded				J

		language Dependency		algorithm		3		2		Add copy constructor and assignment operator for pointer declared as private data member				J

		language Dependency		checking		3		1		Add a default case for the switch statement				J

		language Dependency		algorithm		3		1		Return int not a pointer				J

		Internal Document		documentation		3		14		Parameters and counters require comments				J

		Logic / Flow		function		3		1		variable is declared as global, could cause collision				J

		Logic / Flow		checking		3		1		Code for checking boundary conditions is missing				J

		language Dependency		documentation		3		1		Constraint parameter is passed with method				J

		language Dependency		algorithm		3		1		main method needs to be placed in separate file				J

		language Dependency		checking		3		8		Delete debug code and dead code				J

		language Dependency		assignment		3		1		Initialize all variables				J

		language Dependency		checking		3		1		Constants need to appear on the left side of comparison operators				J

		language Dependency		algorithm		3		1		Main should be in a separate file				J

		language Dependency		algorithm		3		1		Using strcpy instead of strncpy				J

		Rare Situation		function		3		1		Method had a complexity of 30 versus the rule of thumb 10				H

		Logic / Flow		algorithm		3		1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*				H

		Concurrency		timing		4		1		Mutex locking is not being used around object creation methods, which may result in memory leaks				D

		language Dependency		documentation		3		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software				B

		Logic / Flow		checking		2		1		Status of method execution is not returned				G

		Internal Document		assignment		2		1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?				G

		Internal Document		documentation		2		1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen				G

		Concurrency		timing		2		1		Identify methods that are non-thread safe (e.g., those using a static buffer)				G

		Logic / Flow		checking		2		1		Pointer arithmetic is highly discouraged				G

		Logic / Flow		documentation		2		1		Variables without descriptive names or no comments associated with them are highly discouraged				G

		Internal Document		documentation		2		3		The meaning of the comments are unclear				G

		Logic / Flow		checking		2		1		Algorithm allows the pointer to extend past the array's upper bound				G

		Internal Document		documentation		4		1		No commenting				G

		Logic / Flow		assignment		4		1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string				G

		Logic / Flow		assignment		4		1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized				G

		language Dependency		assignment		3		1		Classes need to have insertion or assignment methods for their data members				G

		language Dependency		documentation		2		1		Standards for class structure is not followed (Class, function, data members)				G

		language Dependency		documentation		2		1		Standard naming conventions are not followed				G

		Logic / Flow		assignment		2		1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)				G

		Logic / Flow		assignment		2		2		variables need to be initialized				G

		Logic / Flow		checking		2		1		there is no check to see if variable exceed another before the for loop is entered				G

		Logic / Flow		checking		2		1		Use strtod() to check for valid C/C++ format number				G

		language Dependency		documentation		3		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file				D

		language Dependency		assignment		4		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				G

		Internal Document		documentation		4		1		Postconditions and exceptions are not always stated in the comments				G

		Internal Document		documentation		2		3		Code does not follow what the comments say				G

		Logic / Flow		checking		2		2		Variables are not checked for valid data before critical use				G

		Logic / Flow		documentation		2		2		Methods that do nothing (e.g., return this) should state they do nothing and why				G

		Internal Document		documentation		2		6		Post-conditions are required, lack of comments in general				G

		Logic / Flow		documentation		2		3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?				G

		Logic / Flow		checking		2		9		Checks to determine pointers actually point to valid data before they are used				G

		Logic / Flow		checking		2		1		Does not check if element 0 of the array is defined before its use				G

		Internal Document		documentation		2		3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation				G

		Logic / Flow		algorithm		2		4		Redundant code is a good candiate for a subroutine				G

		Logic / Flow		checking		2		1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers				G

		Logic / Flow		assignment		2		6		Initialize variables				G

		language Dependency		function		2		1		Files are extremely large and functions are easily hundreds of lines long				G

		Internal Document		documentation		2		1		Proprietary system calls provided by the operating system requires commenting and tracking				G

		Logic / Flow		algorithm		2		1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type				G

		Logic / Flow		checking		2		1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)				G

		Logic / Flow		checking		2		1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))				G

		Internal Document		documentation		2		1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code				G

		Logic / Flow		checking		2		1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code				G

		Logic / Flow		assignment		2		1		Masking literals need to be named to constants (e.g., 0x800000000)				G

		Logic / Flow		checking		3		3		Initialize methods have no error checking to guarantee the variables have been properly initialized				F

		Internal Document		documentation		3		9		Arguments to methods do not have comments associated with them concerning their valid values				F

		Logic / Flow		checking		2		2		Dereferencing pointers without checking them first				E

		Logic / Flow		checking		2		1		No checking method returns for failure status				E

		Logic / Flow		documentation		2		1		Commenting states specific error messages can be generated, however the code does not reflect this				E

		Logic / Flow		documentation		2		2		Comments do not reflect the code				E

		Logic / Flow		checking		2		1		C++ automatically converts enums to integers, which allows for a wide range of values				E

		Logic / Flow		documentation		2		1		It is unclear what meaning "<" can have for a bit vector				E

		Logic / Flow		assignment		2		1		variables not being initialized, especially constants				E

		Logic / Flow		checking		2		1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer				E

		Concurrency		checking		3		1		Read and write priveledges on files need to be examined				F

		Internal Document		documentation		3		1		Preconditions are not stated in the comments of methods				F

		Concurrency		timing		3		1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed				F

		Logic / Flow		assignment		3		2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance				F

		Logic / Flow		function		3		1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined				F

		Internal Document		checking		2		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines				E

		Logic / Flow		assignment		3		1		Member variables not initialized in the Constructor				F

		Internal Document		documentation		3		1		Commenting is confusing				F

		Logic / Flow		checking		3		2		Return warnings upon successful termination				F

		Internal Document		documentation		3		1		Comments conflict with the code				F

		Concurrency		timing		3		1		Using static variables for error values leaves multi-threaded applications with no reliable error checking				F

		Logic / Flow		algorithm		3		1		Errors should be past back through the argument list				F

		Logic / Flow		function		3		1		Define where System Messages are to be propogated				F

		Concurrency		timing		3		1		Multi-threaded code must use thread safe constructs				F

		Internal Document		documentation		2		3		Commenting is confusing				F

		Logic / Flow		assignment		2		2		Assertions need to be added to ensure all variables used in this routine are properly initialized				F

		Internal Document		checking		2		1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set				F

		Logic / Flow		assignment		2		1		Enums should be integer constants to make their meaning clearer				F

		Logic / Flow		checking		2		3		Dereferencing pointers without checking them first				F

		language Dependency		checking		2		1		The destructor for this class needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.				F

		language Dependency		algorithm		2		1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations				F

		Internal Document		documentation		3		4		Comments are confusing				F

		Logic / Flow		checking		3		1		An enum is used where integer constants are implied				F

		Logic / Flow		checking		3		2		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		checking		3		1		Vectors are used without checking the bounds nor if there are values in the vector				F

		Logic / Flow		function		3		1		String classes are used in conjunction with C style string functions				F

		Logic / Flow		assignment		3		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Logic / Flow		documentation		3		1		Constants need to have comments				F

		Logic / Flow		checking		2		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)				F

		Logic / Flow		checking		2		1		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		assignment		2		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Internal Document		documentation		3		1		No postconditions are stated for methods				H

		Internal Document		documentation		3		1		No preconditions are stated for methods				H

		Internal Document		documentation		3		1		Comments are confusing				H

		Logic / Flow		checking		3		4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)				H

		Internal Document		documentation		3		2		Variable naming is confusing				H

		Internal Document		documentation		3		3		Comments are unclear				C

		Logic / Flow		checking		3		3		Variables need to be checked for proper values				C

		Logic / Flow		checking		4		1		Variables are used outside of their scope				F

		Logic / Flow		checking		4		2		Method are declared but never used, hence dead code				F

		Internal Document		documentation		4		3		Comments contradict the code				F

		Logic / Flow		assignment		2		6		Variables are not initialized				F

		Logic / Flow		checking		1		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns				F

		Logic / Flow		checking		3		1		Variables are not checked for valid data				L

								630

The number of times the issue occurred

Defect Type Chart

		Type		Frequency

		assignment		273

		documentation		161

		checking		126

		algorithm		53

		function		8

		timing		5

		interface		4

		Relationship		0

		Build		0

The number of times the issue occurred

Defect Type Chart

		0

		0

		0

		0

		0

		0

		0

		0

		0

Frequency

Defect Type

Number of Defects

Frequency of Defects

Defect Trigger Chart

		Trigger		Frequency		Percent

		Logic / Flow		340		53.97

		language Dependency		189		30.00

		Internal Document		94		14.92

		Concurrency		6		0.95

		Rare Situation		1		0.16

		Important Note:		The trigger classification can not be deemed one hundred percent reliable.

				The activity that surfaced the defect was not recorded by the defect identification team, so this required

				the authors to attempt to identify which activity was being performed when the defect was found

		Analysis:		Logic / Flow was responsible for identifying 54 percent of the overall defects found

				A few examples of this trigger type are control flow analysis, global entity-cross referencing, object use analysis

				exception propogation analysis, and call dependency analysis

				Language Dependency was responsible for finding 30 precent of the overall defects found

				This trigger type describes activities that deal with analyzing the source code with respect to a specific standard

				and focuses on checking language specific details and compilation concerns

				Internal Document was responsible for finding 15 precent of the overall defects found

				This trigger type searches for incorrect information, inconsistency, or incompleteness within the code and its

				documentation (including comments). This activity is also responsible for assessing how maintainable the code

				will be in its current form

The number of times the issue occurred

Defect Trigger Chart

		

Frequency

Defect Trigger

Frequency

Frequency of Defect Triggers

VS Charts

		

				Concurrency		Internal Document		Language Dependency		Logic/Flow		Rare Situation

		timing		5		0		0		0		0		5

		checking		1		2		70		53		0		126

		documentation		0		87		62		12		0		161

		assignment		0		4		7		262		0		273

		interface		0		1		3		0		0		4

		algorithm		0		0		44		9		0		53

		function		0		0		3		4		1		8

				6		94		189		340		1		630

VS Charts

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

timing

checking

documentation

assignment

interface

algorithm

function

Defect Trigger

Frequency

Defect Trigger vs Defect Type

IV&V Triggers

		

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Type

Frequency

Defect Type vs Defect Trigger

Severity Chart

		IV&V Analysis Level Definitions

		Phase		Activity		Basic		Limited		Focused		Comprehensive		Trigger

		Requirements Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements		x		x		x		x		Conformance

				Validate ability of requirements to meet system needs		x		x		x		x		Conformance

				Verify traceability to and from parent requirements		x		x		x		x		Conformance

				Analyze data/adaptation requirement		x		x		x		x

				Analyze testability, qualification requirements		x		x		x		x

				Analyze data flow, control flow, moding and sequencing		x		x		x		x

				Assess development metrics		x		x		x		x

				Analyze development risks/mitigation plans		x		x		x		x

				Analyze timing and sizing requirements		x		x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform engineering analysis of key algorithms						x		x

				Review/use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Design Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x

				Validate ability of design to meet system needs				x		x		x

				Verify traceability to and from requirements				x		x		x

				Analyze database design				x		x		x

				Analyze design testability, qualification requirements				x		x		x

				Analyze design data flow, control flow, moding, sequencing				x		x		x

				Analyze control logic, error/exception handling design				x		x		x

				Assess design development metrics				x		x		x

				Analyze development risks/mitigation plans				x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform design analysis of select critical algorithms						x		x

				Review /use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Code Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x		Design Conformance

				Verify Traceability to and from design				x		x		x		Design Conformance

				Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)				x		x		x		Design Conformance

				Verify supportability and maintainability				x		x		x

				Assess code static metrics				x		x		x

				Verify CSU & CSC level logical structure and control flow				x		x		x		logic

				Verify internal data structures and data flow/usage						x		x		logic

				Verify error and exception handling						x		x		logic

				Verify code & external I/O data consistency						x		x		logic

				Review code compilation results & syntax checking						x		x

				Verify correct adaptation data & ability to reconfigure						x		x

				Verify correct operating system & run time libraries						x		x

				For select algorithms, verify correctness and stability under full range of potential input conditions								x

				Verify code data compliance with data dictionary								x

				Verify compliance with coding standards								x		language

		Software Test Analysis		Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions		x		x		x		x

				Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs		x		x		x		x

				Verify test cases traceability and coverage of software requirements, operational needs, and capabilities		x		x		x		x

				Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives		x		x		x		x

				Analyze correct dispositioning of software test anomalies		x		x		x		x

				Validate software test results compliance with test acceptance criteria		x		x		x		x

				Verify trace and successful completion of all software test case objectives		x		x		x		x

				Verify ability of software test environment plans and designs to meet software testing objectives				x		x		x

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes				x		x		x

				Analyze STD procedures for test setup, execution, and data collection						x		x

				Monitor execution of software testing						x		x

				Analyze select CSC test plans, procedures, and results to verify adequate logic path coverage, testing of full range of input conditions, error and exception handling, key algorithm stability, and performance in compliance with the design.								x

				Perform life cycle IV&V on software test environment components								x

		System Test Analysis		Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs

				Verify test case traceability and coverage of system requirements, operational needs, and capabilities

				Analyze correct dispositioning of software test anomalies

				Validate ST results compliance with test acceptance criteria

				Verify trace and successful completion of all ST case objectives

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes

System test analysis activities are applied independent of IV&V Analysis Levels

Defect Type

		Severity		Frequency

		One		2

		Two		109

		Three		505

		Four		14

		Five		0

		Severity		Description

		One		Prevent the accomplishment of an essential capability

				Jeapordize safety, security, or other requirements designated critical

		Two		Adversely affect the accomplishment of an essential capability and no work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, and no work-around solution is known

		Three		Adversely affect the accomplishment of an essential capability but a work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, but a work-around solution is known

		Four		Result in user/operator inconveniences but does not affect a required operational or mission essential capability

				Result in inconvenience for development or maintenance personnel, but does not affect accomplishment of these responsiblities

		Five		Any other affect

The number of times the issue occurred

Defect Type

		

Frequency

Severity

Frequency

Defect Severity

ODC Triggers

		Orthogonal Defect Classification

		The selection of the defect type captures the nature of the change

		Defect Type		Description		Examples

		Function / Class / Object		The error should require a formal design change, as it affects significant capability, end-user features, product interfaces, interface with hardware architectures, or global structures. The error occurred when implementing the state and capabilities of		A database did not include a field, although the requirements specified it

						A database included a field but it was to small to contain possible values

						A class was omitted during system design

						An object was not instantiated before being accessed by other objects of the system

		Assignment / Initialization		Value(s) assigned incorrectly or not assigned at all; but note that a fix involving multiple assignment corrections may be of type Algorithm		Internal variable or variable within a control block did not have correct value, or did not have any value at all

						Initialization of parameters

						Resetting of variable's value

						The instance variable capturing a characteristic of an object is omitted

						The instance variables that capture the state of an object are not correctly initialized

		Interface / OO Messages		Communication problems between modules, components, device drivers, objects, functions vi macros, call statements, control blocks, parameter lists		A database implements both insertion and deletion functions, but the deletion interface was not made callable

						The interface specifies a pointer to a number, but the implementation is expecting a pointer to a character

						The OO message incorrectly specifies the name of the service

						The number and/or types of parameters of the OO message do not conform with the signature of the requested service

		Checking		Errors caused by missing or incorrect validation of parameters or data in conditional statements. It might be expected that a consequence of checking for a value would require additional code such as a do while loop or branch. If the missing or incorrec		Value greater than 100 is not valid, but the check to make sure that the value was less than 100 was missing

						The conditional loop should have stopped on the ninth iteration, but it kept looping while the counter was <=10

						Is there checking or debugging code that is left in the function that shouldn't be

		Timing/Serialization		Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong serialization technique was employed		Serialization is missing when making updates to a shared control block

						A hierarchical locking scheme is in use, but the defective code failed to acquire the locks in the prescribed sequence

		Relationship		Problems related to associations among procedures, data structures and objects. Such associations may be conditional		The structure of code/data in one place assumes a certain structure of code/data in another. Without appropriate consideration of their relationship, program will not execute or it executes incorrectly

						The inheritance relationship between two classes is missing or incorrectly specified

						The limit on the number of objects that may be instantiated from a given class is incorrect and causes performance degradation of thsystem

		Build/Package/Merge		Describe errors that occur due to mistakes in library systems, management of changes, or version control

		Documentation		Errors that affect both publications and maintenance notes		Function does not have sufficient commenting or it does not describe the code accurately

						Are variables described when declared

						Variable naming conventions do not follow the standard or are not descriptive

		Algorithm / Method		Efficiency or correctness problems that affect the task and can be fixed by (re)implementing an algorithm or local data structure without the need for requesting a design change. Problem in the procedure, template, or overloaded function that describes a		The low-level designcalled for the use of an algorithm that improves throuput over the link by delaying transmission of some messages, but implementation transmitted all messages as soon as they arrived. The algorithm that delayed transmission was missin

						The algorithm for searching a chain of control blocks was corrected to use a linear-linked list instead of a circular-linked list

						The number and/or types of parameters of a method or an operation are incorrectly specified. A method or an operation is not made public in the specification of a class

IV&V Methodology

				Triggers		Explanation		Examples

		Inspection		Design Conformance		The document reviewer or the code inspector detects the defect while comparing the design element or code segment being inspected with its specification in the preceding stage(s). Faults largely related to the completeness of the product being designed wi		The code didn't implement the case when no data exists

								On one screen, all font is bold while in another it is not

				Logic / Flow		The inspector uses knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete		Memory in this subroutine needs to be allocated before storing these values

								A value assignment is spelled incorrectly

				Lateral Compatibility		The inspector with broad-based experience, detects an incompatibility between the function described by the design document or code, and other systems, products, services, components, or modules with which it must interface		A graphics application was not able to read a gif file put out by some other application package it is supposed to work with

				Backward Compatibility		The inspector uses extensive product/component experience to identify an incompatibility between the function described by the design document or the code, than that of earlier versions of the same product or component or with n to n+1 (subsequent release		The install option in the current product hard codes the drive for the install whereas the previous version just used the current drive

								The previous version defaulted to 0 decimal places for numeric data but the current defaults to 2 decimal places

				Concurrency		The inspector is considering the serialization necessary for controlling a shared resource when the defect is discovered. This would include serialization of multiple functions, threads, processes, or kernel contexts as well as obtaining and releasing lo		Routine A didn't release the lock before calling routine B which requests the lock

								This variable incorrectly reset to 0 by routine A after routine B had already incremented it

				Internal Document		There is incorrect information, inconsistency, or incompleteness within internal documentation. It has to do with overall completeness of the design and ensures that there is consistency between the different parts of the proposed design or implementatio		The prologue for subroutine A lists only 3 parameters when there are actually 4

				Language Dependency		The developer detects the defect while checking the language specific detatils of the implementation of a component or a function. Language standards, compilation concerns, and language specific efficiencies are examples or potential areas of concern		The inspector is checking C code and sees a "=" that should be "=="

				Side Effect		The inspector uses extensive experience or product knowledge to foresee some system, product, function, or component behavior which may result from the design or code under review. The side effects would be characterized as a result of common usage or co		While looking at a pointer that accesses data by byte, the inspector realizes in another part of the code, the bytes could be in reverse order, so that the pointer won't be accessing them correctly

				Process		The inspector uses experience and best practices to identify issues within the development activities		The developing organization has not institutionalized a standard development practice

								The developing organization has not identified any tools or have not identified the appropriate tools to aid in the development of the system

				Rare Situations		The inspector uses extensive experience or product knowledge to foresee some system behavior which is not considered or addressed by the documented design or code under review, and would typically be associated with unusual configurations or usage. These		Requirements state that a network can handle 250 machines. A bug occurs when a customer has 1000 machines. This is not workload stress because the requirements state that only 250 machines are currently able to be accomadated

		Unit Test		Simple Path		In white/Gray Box Testing, the test case that found the defect was executing a simple code path related to a single function		Tried executing the "default" path of a case statement but since it didn't exist, the test failed

				Complex Path		In White/Gray Box Testing, the test case that found the defect was executing some contrived combinations of code paths related to multiple functions		Path failed because one function released memory that subsequently was used in another function

								Path failed because a global variable is being accessed and incremented in multiple functions

		Function Test		Test Coverage		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function, using no parameters or a single set of parameters		The tester tried to delete a city from the database but it couldn't be deleted

				Test Variation		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function but using a variety of inputs and parameters		When the tester tried to add one more character than the maximum allowable, the software hung

				Test Sequencing		During black box testing, the test case that found the defect executed multiple functions in a very specific sequence		The test case first added a record, then deleted it, and then tried to add it again but got the message that you cannot add a record that already exists

				Test Interaction		During black box testing, the test case that found the defect initiated an interaction among two or more bodies of code. This is more involved than a simple serial sequence of the executions		Cant add data to fields after the record has been created

		System Test		Workload Volume/Stress		The system is operating at or near some resource limit		When the system is idle for 10 minutes it hangs

				Recovery/Exception		The system is being tested with the intent of invoking an exception handler or some type of recovery code		Unexpected errors get converted to to other types of errors instead of the expected one

				Startup/Restart		The system was being initialized or restarted		After pulling the plug on the cpu, the system was unable to restart until certain files were cleaned up

				Hardware Configuration		The system is being tested to ensure functions execute correctly under specific hardware configurations

				Software Configuration		The system is being tested to ensure functions execute correctly under specific software configurations

				Blocked Test Execution		The product is operating well within resource limits and the defect surfaced without any particular strategy		Wanted to check for workload stress by printing 1000 jobs. However, when Print was selected, nothing happened

Template

		IV&V: A Life Cycle Engineering Process for Quality Software

		Robert O. Lewis, 1992, John Wiley & Sons, Inc.

		Code Verification Activities

		Phase		Activity		Notes		ODC Trigger

		Documentation Review		Verify consistency between the code and the software design document (SDD)		Are the documents and the code meeting the intended purpose?		Design Conformance

						Is the technical content consistent, complete, clear, correct, and testable?

						The goal is to find discrepancies between the SDD and the Code

		Process Review		Verify the specified standards and practices are being followed		These are specified in the Software Development Plan (SDP)		Process

						Must look at a system level as well as individual units

						Assess the developer's metrics program

						Verify developer's processes meet applicable standards

				Verify the developer is using specified coding tools		Simple check to ensure the appropriate tools are being used

				Verify versions of the compiler, operating system, and utilities		IV&V looks for any inconsistencies and stays coordinated with the developer's configuration management organization		Language Dependency

				Review software library and release/version control		Monitor the developer's control and release procedures, adherence to scheduled events, completeness of the product and consistency with which the release occurs		Process

		Code Review		Verify the logical structure and syntax with static analysis		control flow analysis		Logic / Flow

						standards analysis (coding standards)		Language Dependency

						global entity cross-reference: representation clause, entity cross-reference, type/object cross-reference, type dependency, exception cross-reference, generic instantiation		Logic / Flow

						Object use analysis		Logic / Flow

						exception propogation analysis		Logic / Flow

						call dependency analysis: invocation cross-reference, invocation bands, compilation unit dependency		Logic / Flow

						verify the code is maintainable		Backward Compatibility

						source code data collection and assess metrics		Rare Situation

				Verify terms between data dictionary and code		compare the entries in the data dictionary to the element names appearing both in the code and in the interface, global, and local data definitions in the SDD		Internal Document

						This activity ensures consistency among the three items that share the data definitions

				Verify sample input and output data		During development, it is customary for the developer to generate sample input data that are representative to the actual input data. Coincidentally, the system generates output data that have a correlation to these particular inputs.		Rare Situation

						IV&V checks to make sure the developer is adequately identifying and archiving I/O data and that the correct input data are specified for particular tests

				Verify algorithms per the software design document (SDD)		Ensure the consistency between the algorithms in the code and those defined in the SDD to determine if they are accurately and completely implemented		Design Conformance

						Verify any timing contraints required		Concurrency

CLCS Modules

		The Defect Type you wish to search for		Where to look		How to detect		Explanation

		Documentation		Readability		Line length exceeding 79 characters

						Brackets and indentations in the wrong place

						Class structure (class, functions, and then data members)

				Data Declarations		Variables must have comments the first time they are used

						Are the units on the data declarations commented

						Are the ranges or limitations of values defined for the variables

						Are flags documented to the bit level

						Has each global variable been commented where declared

						Are counters and MAGIC numbers commented

						Identifiers must have clear names

				Methods		Methods must have comment headers explaining their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw

						Comments must accurately describe the code

						Variables local to the method must follow the conditions stated in Data Declarations

						Methods that do nothing (e.g., return this) need to be commented that they do nothing and the reason

				Control Structures		Is each control structure commented

				General		Comment percentage		See the worksheet entitled OO Metrics for Comment Percentage remarks

						Does each file have a header

						Error and message propogation must be clearly identified

						Revisions need comments that identify the author, date, and description of the revision

						Complex code requires comments		See the worksheet entitled OO Metrics for Comment Percentage remarks

		Assignment		Pointers		Set to NULL or 0 (zero) after deleting memory it points to

						Avoid Pointer arithmetic

				Variables		Initialize variables

						All initialization needs to be done in one place

						Initializing strings by hardcoding in "\0" will place 2 null terminators

						MAGIC and hardcoded literals need to be assigned to a constant

				Operators		"&=" should not be used with booleans		May yield a correct results but it may be slower than logical operators

				Class		Must have assignment methods for their data members

		Checking		include guards are omitted

				Delete debugging code

				Code dependent on specific operating system specs (e.g., size of int) may cause future porting issues

				Constructs		switch constructs with empty case statements

						switch constructs with no default clauses

						switch constructs with no break statements

						if statements contain empty else clauses

						Vectors and arrays must check their bounds

						vectors and arrays must check their index being referenced does in fact contain valid data

						Before loops are entered the code does not check if variable exceeds another

				Comparison		if conditionals using "=" instead of "=="

						constants must appear on left side of comparison operators

				Pointers		must check they point to something before they get dreferenced

				Data		variables declared as 8-bit unsigned int must check they don't go out of range (0<=var<=256)

						Where strings get converted to other formats (e.g., integers) you must check that the string first contains a valid conversion type

						Variables that are used outside their scope

				Methods		return values must be checked

						must check their parameters

						must assert() all variables used

						get rid of methods that are never used (dead code)

						Status of routine execution is not returned

				Interfaces		Public member functions must always return const handles to data members

		Algorithm		The use of certain functions

				Main must be a separate file

				Virtual functions must have virtual destructors

				Define a copy constructor and operator= for private data members of a class

				Redundant code is a good candiate for a subroutine

		Function		Variables		Global variables can cause collision

				Files		Extremely large

				Methods		Extremely large, they are easily hundreds of lines long

		Timing		Threads		Multithreaded code must use thread safe constructs

Highlites mean I will provide a stylesheet as an example.

OO Properties "Riel"

		Module		Issues		Identifier		Metrics

								KSLOC		Complexity		Perf / Op		Safety		Devp Cost / Sched		Maturity		Reqts Def / Stability		Testability

		All System Software		1		A

		CLCS System (CLCS)		1		B

		Cmd Suppt CSCI (Cmd Mgmt CSC)		6		C		4.00

		Cmd Suppt CSCI (All CSCs)		2		D

		Cmd Suppt CSCI (Cmd Auth CSC)		11		E

		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)		180		F		2.50

		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)		73		G		10.00

		Cmd Suppt CSCI (Cmd Mgmt CSC)		47		H

		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)		63		I		2.00

		Data Distribution CSCI (Constraint Mgmt)		72		J		15.40

		Data Distribution CSCI (Data Distribution)		50		K		66.00

		Data Distribution CSCI (Data Fusion)		1		L		12.00

		Data Distribution CSCI (Data Health)		118		M		19.00

		Not Defined		4		N

		System Services CSCI (IPC CORBA CSC)		1		O

								130.90

OO Metrics

		Heuristics Summary

		The following heuristics are taken from Object-Oriented Design Heuristics by Arthur J. Riel

		Chapter		Topic		Heuristic

		2		Classes & Objects		All data should be hidden within its class

						Users of a class must be dependent on its public interface, but a class should not be depndent on its users

						Minimize the number of messages in the protocol of the class

						Implement a minimal public interface which all classes understand (e.g., operations such as COPY (deep versus shallow), equality testing, pretty printing, parsing from ASCII description, et cetera)

						Do not put implementation details such as common-code private functions into the public interface of a class

						Classes should only exhibit nil or export coupling with other classes (e.g., a class should only use operations in the public interface of another class or have nothing to do with that class

						A class should capture one and only one key abstarction

						Keep related data and behavior in one place

						Spin off non-related information into another class (e.g., non-communicating behavior)

						Be sure the abstraction that you model are classes and not simply the roles objects play

Effective Coding

		TOOM Metric		Description

		cyclomatic complexity		Used to evaluate the application of the algorithm. The number generated represents the total number of independent test paths (= edges – nodes + 2). The lower the complexity results in a decrease in testing and an increase in understandability of the

		lines of code		LOC: counts all lines; NCNB: counts all lines not comments and not blank; Executable Statements: counts all executable statements; Comments: counts all the comments

		comment percentage		Calculated by taking the total number of on-line and stand-alone comments and divide by the total lines of code less the number of blank lines. A high percentage gives an increase of understandability and maintainability		Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes highly maintainable. Specifically, they say a higher comment percentage (~20-30%) decreasing the testing efforts, increases understanda		Projects sometime adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be		One study found that areas of source code with large numbers of comments also tended to have the most defects and to consume the most development effort. The authors hypothesized that programmers tended to comment difficult code heavily. "An Experimental		Since comments assist developers and maintainers, higher comment percentages increase understandability and maintainability. "The Object Oriented Brewery: A Comparison of Two Object Oriented Development Methods", Robert Sharble and Samuel Cohen, Software

		weighted methods per class		A count of all methods implemented in the class or calculated by summing the methods’ complexities and generates one complexity for the class. The number of methods and their complexity give an idea of how much time and effort will be required to develop

		response for a class		A count of all the methods that can be invoked by a message from a class

		coupling between objects		A count of the number of other classes to which a class is coupled

		depth in a tree		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root of the tree

		number of children		The number of immediate subclasses subordinate to a class in a hierarchy

		McCabe Metrics		Description

		Cyclomatic Complexity (v(G))		The maximum number of linearly independent paths through a module of code. It measures the amount of testing necessary to reasonably guard against errors. To compute follow these steps:
a) Draw the module’s flowgraph
b) Compute v(G) using one of three m

		Actual Complexity (ac(G))		The actual number of independent paths tested during the test phase. The number of distinct, realizable paths; paths that can be traversed with real data.
Usage: if ac(G) < v(G) → v(G) may be able to be reduced to v-ac; it also tells when the minimum nu

		Module Design Complexity (iv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to calls to other modules. To compute just remove all conditions that do not involve calls to other modules and then compute v(G) on this new flowgraph

		Essential Complexity (ev(G))		A measure of the degree to which the module contains unstructured constructs. It is equal to the cyclomatic complexity of the reduced flowgraph. Removing all structured constructs does the reduction.Usage: Quantifies the degree of structuredness, reveal

		Pathological Complexity (pv(G))		A measure of the degree to which the module contains extremely unstructured constructs. The measure of a reduced flowgraph where all unstructured constructs except multiple entries into loops are treated as straight-line code. Pv(G) is the module’s stru

		Design Complexity (S0)		Measures the amount of interaction between modules. S0 of a design G, is a measure of the decision structure that controls the invocation of modules within the design. It is a quantification of the testing effort of all calls in the design. S0 = Σ iv(Gj

		Integration Complexity (S1)		Measures the amount of integration testing necessary to guard against errors. Each S1 tests validates the integration of several modules. It is computed by S1 = S0 – n + 1 (where n is the number of modules in the design and S0 is the design complexity o

		Object Integration Complexity (OS1)		Quantifies the number of tests necessary to fully integrate an object or class into an OO system

		Global Data Complexity (gdv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to global/parameter data. Decision predicates are reduced that do not impact data that is either global or is passed as parameters to the module. Specific Data Complexity sdv(G)

		Line Count		Lines of code, lines of comment, lines of mixed code and comment, lines left blank

		Halstead Metrics		Description

		Program Length		The total number of operator occurrences and the total number of operand occurrences

		Program Volume		The minimum number of bits required for coding the program

		Program Level and Difficulty		Measure the program’s ability to be comprehended

		Intelligent Content		Shows the complexity of a given algorithm independent of the language used to express the algorithm

		Programming Effort		Estimated mental effort required developing the program

		Error Estimate		Calculates the number of errors in a program

		Programming Time		The estimated amount of time to implement an algorithm

Tool for Object Oriented Metrics

Requires further research to determine an accurate correlation

Universal Coding Standards

		Scott Meyers, Effective C++, Second Edition 1998, Addison Wesley Longman, Inc.

		Category		Item		Description

		Shifting from C to C++		2		Prefer iostream.h to stdio.h

				3		Use new and delete instead of malloc and free

		Memory Management		5		Use the same form in corresponding calls to new and delete

				6		Call delete on pointer members in destructors

				7		Check the return value of new

				8		Adhere to convention when writing new

				9		Avoid hiding the global new

				10		Write delete if you write new

		Constructors, Destructors, & Assignment Operators		11		Define a copy constructor and assignment operator for classes with dynamically allocated memory.

				12		Prefer initialization to assignment in constructors

				13		List members in an initialization list in the order in which they are declared

				14		Make destructors virtual in base classes

				15		Have operator= return a reference to *this

				16		Assign to all data members in operator=

				17		Check for assignment to self in operator=

		Classes and Functions: Design & Declaration		19		Differentiate among member functions, global functions, and friend functions

				20		Avoid data members in the public interface

				22		Pass and return objects by reference instead of by value

				23		Don't try to return a reference when you must return an object

				25		Avoid overloading on a pointer and a numerical type

		Classes and Functions: Implementation		29		Avoid returning "handles" to internal data from const member functions

				30		Avoid member functions that return pointers or references to members less accessible than themselves

				31		Never return a reference to a local object or a dereferenced pointer initialized by new within the function

		Inheritance and OO Design		37		Never redefine an inherited non-virtual function

				38		Never redefine an inherited default parameter value

				39		Avoid casts down the inheritance hierarchy

		Scott Meyers, More Effective C++, 1996, Addison Wesley Longman, Inc.

		Category		Item		Description

		Basics		2		Prefer C++-style casts

		Operators		5		Be wary of user-defined conversion functions

				6		Distinguish between prefix and postfix forms of increment and decrement operators

				7		Never overload &&, ||, or ,

		Efficiency		22		Consider using op= instead of stand-alone op

				24		Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI

		Techniques		26		Limiting the number of objects of a class

		Meyers-Klaus Items

		Category		Item		Description

		Constructors/Destructors		13		Avoid calling virtual functions from constructors and destructors

		Assignment

		Implementation		23		Avoid using "..." in function parameter list

User Items

		

		Item		Description

		2		Do not declare protected data members

		3		Do not declare the constructor or destructor to be inline

		4		Declare at least one constructor to prevent the compiler from doing so

		5		Pointers to functions should use a typedef

		6		Never convert a const to a non-const

		7		Do not use the ?: operator

		8		Each class must declare the public, protected, and private sections in that order

		9		In the public section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		10		In the protected section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		11		In the private section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		12		If a function has no parameters, use () instead of (void)

		13		If, else, while, and do statements shall be followed by a block, even if it is empty

		14		If a block is a single statement, enclose it in braces

		15		Whenever a global variable or function is used, use the :: operator

		16		Do not use public data members

		17		If a function has any virtual functions it shall have a virtual destructor

		18		Public member functions shall return const handles to member data

		19		A class that has pointer members shall have an operator= and a copy constructor

		20		If a subclass implements a virtual function, use the virtual keyword

		21		Member functions shall not be defined in the class definition

		22		Ellipses shall not be used

		23		Functions shall explicitly declare their return types

		24		A pointer to a class shall not be converted to a pointer of a second class unless it inherits from the second

		25		A pointer to an abstract class shall not be converted to a pointer that inherits from that class

		26		Do not use the friend mechanism

		27		When working with float or double values, use < and ==> instead of ==

		28		Do not overload functions within a template class

		29		Do not define structs that contain member functions

		30		Do not directly access global data from a constructor

		31		Do not use multiple inheritance

		32		Initialize all variables

		33		All pointers should be initialized to zero

		34		Always terminate a case statement with break

		35		Always provide a default branch for switch statements

		36		Do not use the goto statement

		37		Provide only one return statement in a function

Standards

		User Items

		Item		Description

		1		Assign to all member variables in operator= functions

		2		Declare an assignment operator for each class with pointer member variables

		3		Make destructors virtual for all base classes

		4		Avoid breaks in for loops

		5		Do not cast pointers to non-pointers

		6		Do not cast an unsigned pointer to an unsigned int

		7		Do not compare chars to constants out of char range

		8		Declare reference parameters as const reference whenever possible

		9		Write operator delete if you write operator new

		10		Do not call delete on a non-pointer

		11		Avoid do statements

		12		Do not use an enum keyword to declare a variable in C++

		13		Do not check floats for equality; check for greater than or less than

		14		Do not assign to loop control variables in the body of a for loop

		15		Do not assign the dividend of 2 ints to a float

		16		Avoid assignment in if statement condition

		17		Give each if statements an else clause

		18		Initialize all pointer variables

		19		Use capital "L" instead of lowercase "l" to indicate long

		20		Avoid switch statements with many cases

		21		Number of blocks of code per function

		22		Number of global variable references per member function

		23		Number of function calls per function

		24		Number of base classes

		25		Number of data members per class

		26		Number of methods per class

		27		Number of parameters per method

		28		Number of private data members per class

		29		Number of private methods per class

		30		Number of protected data members per class

		31		Number of protected methods per class

		32		Number of public data members per class

		33		Number of public methods per class

		34		Begin boolean type variable names with `b'

		35		Begin class names with an uppercase letter

		36		Begin constant variable names with `c'

		37		Begin class data member names with `its'

		38		Begin double type variable names with `d'

		39		Begin enumerated type names with an uppercase letter that is prefixed by the software element and suffixed by `_t_'

		40		Begin float type variable names with `f'

		41		Begin function names with an uppercase letter

		42		Begin global variable names with `the'

		43		Begin integer names with `i'

		44		Begin `is' function names with bool values

		45		Begin long integer value names with `li'

		46		Prefix variable type pointer names with `p'

		47		Begin short integer variable names with `si'

		48		Begin signed character variable names with `c'

		49		Begin terminated characters' string variable names with `sz'

		50		Begin struct type names with an uppercase letter that is prefixed by software element and suffixed by `_t'

		51		Begin unsigned character type names with `uc'

		52		Begin unsigned integer type variables with `ui'

		53		Begin variable names with a lowercase letter

		54		Return reference to *this in operator= functions

		55		Pass built-in types by value unless you are modifying them

		56		Avoid member variables in the public interface

		57		Do not use a struct keyword to declare a variable in C++

		58		Do not throw from within a destructor

		59		Avoid unnecessary casts

		60		Avoid unnecessary "==true"s

		61		Avoid unused local variables

		62		Avoid unused parameters

		63		Avoid unused private member variables

		No Java Standard: This can cause a significant impact to the system. Code developed for a large scale project must be maintainable, portable, and follow consistent programming style

_1045137089.xls
Chart2

		0

		1

		2

		3

Percent of Defects

Period

Percent (%)

Percent of Function Defects versus Development Period

13

25

28

52

References

		No.		Author		Title		Source

		1		Yuri Chernak		A Statistical Approach to the Inspection Checklist Formal Synthesis and Improvement		IEEE Transactions On Software Engineering, Vol. 22, No. 12, December 1996

		2		M.E. Fagan		Design and Code Inspections to Reduce Errors in Program Development		IBM Systems Journal., vol. 15, No. 3, March 1976

		3		T. Gilb and D. Graham		Software Inspection		Reading, Mass.: Addison-Wesley, 1993

		4		S. Strauss and R. Ebenau		Software Inspection Process		McGraw Hill, 1994

		5		T. Menzies		Practical Machine Learning for Software Engineering and Knowledge Engineering		Handbook of Software Engineering and Knowledge Engineering, 2001

		6		Hans van Vilet		Software Engineering Principles and Practices		John Wiley & Sons, 1993

		7		Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong		Orthogonal Defect Classification - A Concept for In-Process Measurements		IEEE Transactions On Software Engineering, Vol. 18, No. 11, November 1992

		8		IBM, Center for Software Engineering		Details on Orthogonal Defect Classification for Design and Code		http://www.research.ibm.com/softeng/ODC/DETODC.HTM

		9		Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday		In-Process Evaluation for Software Inspection and Test		IEEE Transactions On Software Engineering, Vol. 19, No. 11, November 1993

		10		David A. Wheeler, Bill Brykcznski, Reginald N. Meeson, Jr.		Software Inspection: An Industry Best Practice		IEEE Computer Society Press, 1996

		11		World Wide Web Consortium		Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000		http://www.w3.org/TR/2000/REC-xml-20001006

		12		A.F. Ackerman, L.S. Buchwald, and F.H. Lewski		Software Inspections: An Effective Verification Process		IEEE Software, Vol.6, No. 3, May 1989

		13		Greg J. Badros		JavaML: A Markup Language for Java Source Code		Dept. of Computer Science and Engineering, University of Washington

		14		James Clark		XT is an implementation in Java of XSL Transformations.		http://www.jclark.com/xml/xt.html

		15		Ram Chillarege		Chapter 9:Orthogonal Defect Classification		Handbook of Software Reliability Engineering, McGraw-Hill, 1996

SDML

		

		Element		Frequency		Description		Attribute(s)		Attribute Description

		module

		csci				The CSCI that the defect was found in		name		The name of the CSCI

		defect		+				type		ODC defect type

								impact		The impact the defect has

								severity		The severity the defect has

		description				A description of the defect represented in english sentence(s)

		template				Will be used to automatically generate XSL style sheets

		trigger				Container for the ODC defect trigger

		inspection				Inspection defect triggers		value		The defect trigger that surfaces defects when reviewing design or comparing code against the documented design

		unit_test				Unit test defect triggers		value		The defect trigger associated with white box testing

		function_test				Function test defect triggers		value		The defect trigger associated with black box testing

		system_test				System test defect triggers		value		The defect trigger associated with testing the complete system

		type_statistic		?		Can be used to explain the statistics used on categorical data

		metrics		?		Contains those metrics associated with the CSCI

		tool_driven		?		Container for those metrics derived from CASE tools

		metric				Container for the metrics that follow

		sloc		?		Source Lines Of Code

		vg		?		Cyclomatic Complexity

		comment_percentage		?		Percentage of comments in source code

		weighted_methods		?		A count of all methods implemented in the class

		response		?		A count of all the methods that can be invoked by a message from a class

		coupling		?		A count of the number of other classes to which a class is coupled

		depth		?		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root node

		number_children		?		The number of immediate subclasses subordinate to a class

		criticality_risk		?		Container for the criticality and risk scores of the CSCI. Defined in CARA

		performance_ops				Associates the criticality of the CSCI with respect to performance and operational constraints		driver_value		catastrophic | critical | high | moderate | low

		safety				Associates the criticality of the CSCI with respect to safety contraints		driver_value		catastrophic | critical | high | moderate | low

		devp_cost_schedule				Associates the criticality of the CSCI with respect to the development's cost and schedule		driver_value		catastrophic | critical | high | moderate | low

		complexity				Associates the risk associated with the CSCI with respect to its complexity		driver_value		catastrophic | critical | high | moderate | low

		maturity				Associates the risk associated with the CSCI with respect to the maturity of the technology		driver_value		catastrophic | critical | high | moderate | low

		requirements				Associates the risk associated with the CSCI with respect to the stability of the requirements		driver_value		catastrophic | critical | high | moderate | low

		testability				Associates the risk associated with testing the CSCI		driver_value		catastrophic | critical | high | moderate | low

Figures & Tables

		Tables				Figures				Appendices

		Number		Title		Number		Title		Letter		Title

		1		Code Inspection Activities Mapped to ODC Defect Triggers		2		Defect Type Distributions		A		A Description of the ODC Defect Triggers

		2		Example association of a defect with a defect type and trigger		3		Defect Trigger Distribution		B		A Description of the ODC Defect Types

		3		Example checklist derived by analyzing the attributes of a defect		4		Distribution of Defect Types versus Defect Triggers		C		Software Defect Markup Language (SDML) 1.0 Document Type Definition (DTD)

		4		High Level Description of a SDML Document		5		Distribution of Defect Triggers versus Defect Types		D		JavaML Document Type Definition (DTD) taken from Dr. Badros [13]

						6		Output of applying the style sheet in figure 5 to the JavaML model in Appendix H		E		A Code Inspection Checklist derived by analyzing the defect model

						1		Cumulative Defects vs. Time		F		An example of an SDML document generated from the defect model

										G		Java Source code used to generate an XML model

										H		JavaML model of the source code depicted in Appendix G

										I		Style sheet that identifies those variables in the program, which are not initialized when declared

Outline

		Controlling Outline for MS Computer Science

		Section		Title		Topics				Completed

		1.0		Introduction		Motivation for performing this research

						Explain what will be/has been done during this research

		2.0		Related Work		Define and describe different types of inspections

						Discuss studies of their effectiveness

						Describe ODC

						Describe XML and XSL

		3.0		Methodology

		3.1		Roadmap		Identify the overall goal of the research

						Present the procedures, their objectives and what section they are addressed in

		3.2		Procedures

		3.2.1		Data Gathering		Data must be relevant to code inspections

		3.2.2		Data Classification

		3.2.2.1		Applying ODC		What we need in a defect model

						Why we chose ODC

						How to use ODC (refer to related work)

		3.2.2.2		Synthesize checklists from ODC results		Defect trigger shows what to look for

						Defect type shows where to find it

		3.2.2.3		Generate SDML documents		Identify why it is important to have SDML

						Present the SDML structure

		3.2.3		Process Automation		What are the objectives of this procedure

						What does the environment need to do

						Why use XML and XSL

						What is XML and XSL (refer to related work)

						How do you model source code using XML

						How do you model a checklist using XSL

						How do you apply XSL to XML

		4.0		Results

		4.1		Data Gathering

		4.2		Data Classification		Results from applying ODC (explain very well)

						Show other results from industry

						Show the resultant checklist and how it was derived

						Show examples of the genrated SDML files

		4.3		Process Automation		Modeling source code using XML (use other code)

						Modeling the checklist using XSL

								Variables not initiailized (VarInitialize.xsl)

								Show when and where the variables are used (InitializeUse.xsl)

								Commenting Analysis (CommentUsage.xsl)

								Conditionals using "=" instead of "==" (MisuseIf.xsl)

								Browse the source code by the method name entered (BrowseMethod.xsl)

								JavaScript to dynamically test sections of code (DynamicTest.xsl)

						Applying XSL to XML (using XT)

		5.0		Lessons Learned		How easy it is to write style sheets

						What are some observed benefits

		6.0		Conclusion

		7.0		Bibliography

		8.0		Appendices

Figure 1

		

		Period		Cumulative Defects		Time (days)

		1		150		600

		2		200		800

		3		500		1000

		4		70		1200

				Period 1		Period 2		Period 3		Period 4

		Cumulative Defects		150		200		500		725

		Time (days)		600		800		1000		1200

		Period		0		1		2		3

		Time (days)		600		800		1000		1200

		Cumulative Defects		150		200		500		725

		Period		0		1		2		3

		Percent of Defects		13		25		28		52

Figure 1

		

Cumulative Defects

Days

Cumulative Defects

Cumulative Defects versus Time

		

Percent of Defects

Period

Percent (%)

Percent of Function Defects versus Development Period

_1045226067.xls
Chart1

		Documents

		Function

		Interface

		Algorithm

		Timing/Serialize

Defect Type

Number of Defects

Frequency of Defect Types

31

24

22

6

3

ODC2

		

		Timing/Serialize		Backward Compatibility

		Algorithm		Backward Compatibility

		Function		Backward Compatibility

		Interface		Backward Compatibility

		Function		Backward Compatibility

		Algorithm		Design Conformance

		Interface		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Documents		Design Conformance

		Function		Design Conformance

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Interface		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Algorithm		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Function		Operational Semantics

		Documents		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Algorithm		Operational Semantics

		Algorithm		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Timing/Serialize		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Timing/Serialize		Operational Semantics

		Algorithm		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Function		Operational Semantics

		Function		Operational Semantics

		Function		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Function		Rare Situation

		Function		Rare Situation

		Documents		Rare Situation

		Documents		Rare Situation

		Function		Rare Situation

ODC2Chart

		Documents		31

		Function		24

		Interface		22

		Algorithm		6

		Timing/Serialize		3

ODC2Chart

		

Defect Type

Number of Defects

Frequency of Defect Types

Versus

		

				Backward Compatibility		Design Conformance		Document		Logic/Flow		Rare Situation

		Documents		0		1		13		15		2		31

		Function		2		7		0		12		3		24

		Interface		1		1		0		20		0		22

		Algorithm		1		1		0		4		0		6

		Timing/Serialize		1		0		0		2		0		3

				5		10		13		53		5

Versus

		

Documents

Function

Interface

Algorithm

Timing/Serialize

Defect Trigger

Number of Defects

Defect Triggers versus Defect Type

ODC3

		Defect Data Taken from Handbook of Software Reliability Engineering, (File "ODC3.dat")

		Open Date		Phase Found		Defect Type		Missing/Inccorrect		Defect Source		Impact		Trigger		Phase Injected		Severity		Priority		Close Date		Location		Sequence

		9/10/92		CODE		Function		INCORRECT		PTM/DCR_error		Capability				CODE		MAJOR		LOW		9/10/92		CODE		1

		11/6/92		UT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		11/6/92		UTNI		2

		11/6/92		UT		Checking		MISSING		New_Funct/Rewritten		Capability				CODE		MAJOR		MED		11/6/92		UTNI		3

		11/8/92		CODE		Algorithm		INCORRECT		New_Funct/Rewritten		Capability		Logic Flow		CODE		MAJOR		LOW		11/8/92		CODE		4

		3/22/93		CODE		Documents		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		LOW		3/22/93		CODE		5

		3/16/93		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		3/16/93		PCMLD		6

		3/16/93		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		3/16/93		PCMLD		7

		3/16/93		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		3/16/93		PCMLD		8

		1/18/93		PLD		Interface		MISSING				Capability				PLD		MAJOR		MED		1/18/93		PCMLD		9

		2/25/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		2/25/93		CODE		10

		2/25/93		CODE		Interface		INCORRECT				Reliability/Avail		Recovery/Exception		MLD		MAJOR		MED		2/25/93		CODE		11

		3/16/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		MAJOR		LOW		3/16/93		CODE		12

		3/16/93		CODE		Interface		MISSING		Reused_Code		Reliability/Avail				CODE		MAJOR		LOW		3/16/93		CODE		13

		3/16/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		MAJOR		LOW		3/16/93		CODE		14

		3/16/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		MAJOR		LOW		3/16/93		CODE		15

		1/22/93		MLD		Function		MISSING				Performance		Recovery/Exception		MLD		MAJOR		MED		1/22/93		PCMLD		16

		1/22/93		MLD		Interface		INCORRECT				Capability				MLD		MAJOR		LOW		1/22/93		PCMLD		17

		12/17/92		CLD		Function		MISSING				Reliability/Avail		Workload Volume/Stress		CLD		MAJOR		HIGH		12/17/92		PCMLD		18

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		3/17/93		CODE		19

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		3/17/93		CODE		20

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		MED		3/17/93		CODE		21

		3/17/93		CODE		Function		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		MED		3/17/93		CODE		22

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		3/17/93		CODE		23

		4/27/93		CODE		Interface		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		4/27/93		CODE		24

		4/27/93		CODE		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		4/27/93		CODE		25

		4/27/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		4/27/93		CODE		26

		4/27/93		CODE		Checking		MISSING		Rollup/Parallel_Development		Reliability/Avail				MLD		MAJOR		LOW		4/27/93		CODE		27

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		3/17/93		CODE		28

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		MED		3/17/93		CODE		29

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		3/17/93		CODE		30

		3/17/93		CODE		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		MED		3/17/93		CODE		31

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		LOW		3/17/93		CODE		32

		5/3/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		33

		5/3/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		34

		5/3/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		35

		5/3/93		CODE		Function		MISSING		Rollup/Parallel_Development		Reliability/Avail				MLD		MAJOR		LOW		5/3/93		CODE		36

		5/3/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		37

		5/3/93		CODE		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		MED		5/3/93		CODE		38

		5/3/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		39

		5/3/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		MED		5/3/93		CODE		40

		3/16/93		MLD		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				MLD		MAJOR		LOW		3/16/93		PCMLD		41

		3/16/93		MLD		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				MLD		MAJOR		LOW		3/16/93		PCMLD		42

		3/18/93		MLD		Function		MISSING		New_Funct/Rewritten		Capability				MLD		MAJOR		MED		3/18/93		PCMLD		43

		3/18/93		MLD		Documents		MISSING		New_Funct/Rewritten		Documentation				MLD		MAJOR		LOW		3/18/93		PCMLD		44

		4/13/93		UT		Function		INCORRECT				Usability				CODE		MAJOR		LOW		4/7/93		UTNI		45

		4/13/93		UT		Function		INCORRECT				Standards				CLD		MAJOR		MED		4/7/93		UTNI		46

		4/13/93		UT		Function		INCORRECT				Usability		Workload Volume/Stress		CODE		MAJOR		MED		4/7/93		UTNI		47

		4/13/93		UT		Function		INCORRECT				Usability				CODE		MAJOR		LOW		4/7/93		UTNI		48

		4/13/93		UT		Function		INCORRECT				Reliability/Avail				CODE		MAJOR		LOW		4/7/93		UTNI		49

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		50

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		51

		5/4/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		52

		5/4/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		53

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		54

		5/4/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		55

		5/4/93		UT		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		MLD		MAJOR		MED		5/4/93		UTNI		56

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		57

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		MED		5/4/93		UTNI		58

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		59

		5/4/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		MLD		MAJOR		LOW		5/4/93		UTNI		60

		5/4/93		UT		Function		INCORRECT				Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		61

		5/4/93		UT		Checking		MISSING				Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		62

		3/1/93		CODE		Interface		INCORRECT				Capability				MLD		MAJOR		LOW		3/1/93		CODE		63

		3/1/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Recovery/Exception		CODE		MAJOR		LOW		3/1/93		CODE		64

		2/16/93		MLD		Function		MISSING				Reliability/Avail		Recovery/Exception		MLD		MAJOR		LOW		2/16/93		PCMLD		65

		12/16/92		CLD		Documents		INCORRECT				Capability				CLD		MAJOR		LOW		12/16/92		PCMLD		66

		12/16/92		CLD		Documents		INCORRECT				Capability				CLD		MAJOR		LOW		12/16/92		PCMLD		67

		3/16/93		CODE		Algorithm		INCORRECT		New_Funct/Rewritten		Standards				CODE		MAJOR		LOW		3/16/93		CODE		68

		1/20/93		MLD		Function		INCORRECT				Capability				MLD		MAJOR		HIGH		1/20/93		PCMLD		69

		1/20/93		MLD		Function		INCORRECT				Capability				MLD		MAJOR		LOW		1/20/93		PCMLD		70

		3/31/93		MLD		Interface		MISSING				Reliability/Avail				CLD		MAJOR		LOW		3/31/93		PCMLD		71

		3/31/93		MLD		Function		MISSING				Usability		Design NonConformance		CLD		MAJOR		LOW		3/31/93		PCMLD		72

		3/31/93		MLD		Algorithm		MISSING				Reliability/Avail				MLD		MAJOR		LOW		3/31/93		PCMLD		73

		3/31/93		MLD		Checking		INCORRECT				Reliability/Avail		Design NonConformance		MLD		MAJOR		LOW		3/31/93		PCMLD		74

		3/31/93		MLD		Assignment/Initialization		MISSING				Reliability/Avail		Design NonConformance		MLD		MAJOR		LOW		3/31/93		PCMLD		75

		12/17/92		CLD		Function		MISSING				Reliability/Avail		Design NonConformance		CLD		MAJOR		HIGH		12/17/92		PCMLD		76

		2/19/93		PLD		Documents		INCORRECT				Documentation		Recovery/Exception		PLD		MAJOR		LOW		2/19/93		PCMLD		77

		2/19/93		PLD		Function		INCORRECT				Integrity/Security		Documentation Content		PLD		MAJOR		LOW		2/19/93		PCMLD		78

		2/19/93		PLD		Function		INCORRECT				Reliability/Avail				PLD		MAJOR		MED		2/19/93		PCMLD		79

		11/2/92		PLD		Function		MISSING				Usability				PLD		MAJOR		HIGH		11/2/92		PCMLD		80

		11/4/92		PLD		Function		MISSING				Performance				PLD		MAJOR		LOW		11/4/92		PCMLD		81

		11/4/92		PLD		Function		MISSING				Capability				PLD		MAJOR		MED		11/4/92		PCMLD		82

		11/4/92		PLD		Function		MISSING				Reliability/Avail				PLD		MAJOR		MED		11/4/92		PCMLD		83

		11/12/92		PLD		Documents		MISSING				Documentation		Design NonConformance		PLD		MAJOR		MED		11/12/92		PCMLD		84

		11/12/92		PLD		Function		MISSING				Migration		Design NonConformance		PLD		MAJOR		LOW		11/12/92		PCMLD		85

		11/12/92		PLD		Function		MISSING				Documentation		Logic Flow		PLD		MAJOR		LOW		11/12/92		PCMLD		86

		11/12/92		PLD		Function		MISSING				Maintain/Service		Logic Flow		PLD		MAJOR		LOW		11/12/92		PCMLD		87

		11/12/92		PLD		Documents		INCORRECT				Maintain/Service		Logic Flow		PLD		MAJOR		LOW		11/12/92		PCMLD		88

		11/16/92		PLD		Function		INCORRECT				Reliability/Avail				PLD		MAJOR		HIGH		11/16/92		PCMLD		89

		11/16/92		PLD		Assignment/Initialization		INCORRECT				Usability				PLD		MAJOR		LOW		11/16/92		PCMLD		90

		11/16/92		PLD		Function		MISSING				Performance				PLD		MAJOR		LOW		11/16/92		PCMLD		91

		11/16/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		LOW		11/16/92		PCMLD		92

		11/17/92		PLD		Function		MISSING				Performance				PLD		MAJOR		HIGH		11/17/92		PCMLD		93

		11/17/92		PLD		Interface		MISSING				Usability				PLD		MAJOR		LOW		11/17/92		PCMLD		94

		10/30/92		PLD		Interface		INCORRECT				Reliability/Avail				PLD		MAJOR		LOW		10/30/92		PCMLD		95

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		LOW		10/30/92		PCMLD		96

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		LOW		10/30/92		PCMLD		97

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		MED		10/30/92		PCMLD		98

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		MED		10/30/92		PCMLD		99

		10/30/92		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		10/30/92		PCMLD		100

		2/1/93		CLD		Function		MISSING				Reliability/Avail		Bkwd/Lateral Compatibility		PLD		MAJOR		MED		2/1/93		PCMLD		101

		2/1/93		CLD		Timing/Serialization		MISSING				Reliability/Avail				PLD		MAJOR		LOW		2/1/93		PCMLD		102

		2/1/93		CLD		Interface		INCORRECT				Reliability/Avail		Design NonConformance		CLD		MAJOR		HIGH		2/1/93		PCMLD		103

		2/1/93		CLD		Function		MISSING				Maintain/Service		Recovery/Exception		CLD		MAJOR		HIGH		2/1/93		PCMLD		104

		2/1/93		CLD		Function		MISSING				Usability				PLD		MAJOR		MED		2/1/93		PCMLD		105

		3/22/93		MLD		Function		MISSING				Capability		Design NonConformance		MLD		MAJOR		MED		3/22/93		PCMLD		106

		3/22/93		MLD		Checking		INCORRECT				Capability		Logic Flow		MLD		MAJOR		LOW		3/22/93		PCMLD		107

		3/22/93		MLD		Function		MISSING				Reliability/Avail		Logic Flow		MLD		MAJOR		LOW		3/22/93		PCMLD		108

		3/22/93		MLD		Function		MISSING				Migration		Bkwd/Lateral Compatibility		MLD		MAJOR		LOW		3/22/93		PCMLD		109

		3/24/93		MLD		Function		INCORRECT				Capability		Logic Flow		MLD		MAJOR		HIGH		3/24/93		PCMLD		110

		3/24/93		MLD		Function		MISSING				Reliability/Avail		Logic Flow		MLD		MAJOR		MED		3/24/93		PCMLD		111

		3/24/93		MLD		Function		INCORRECT				Capability		Design NonConformance		MLD		MAJOR		LOW		3/24/93		PCMLD		112

		3/24/93		MLD		Function		MISSING				Performance		Design NonConformance		PLD		MAJOR		MED		3/24/93		PCMLD		113

		3/24/93		MLD		Function		MISSING				Reliability/Avail		Design NonConformance		MLD		MAJOR		LOW		3/24/93		PCMLD		114

		2/17/93		MLD		Function		MISSING				Usability				CLD		MAJOR		LOW		2/17/93		PCMLD		115

		2/17/93		MLD		Function		INCORRECT				Capability				CLD		MAJOR		LOW		2/17/93		PCMLD		116

		2/17/93		MLD		Function		INCORRECT				Reliability/Avail				CLD		MAJOR		LOW		2/17/93		PCMLD		117

		2/17/93		MLD		Function		MISSING				Reliability/Avail				CLD		MAJOR		MED		2/17/93		PCMLD		118

		2/17/93		MLD		Function		INCORRECT				Reliability/Avail				CLD		MAJOR		LOW		2/17/93		PCMLD		119

		2/17/93		MLD		Function		MISSING				Usability				PLD		MAJOR		MED		2/17/93		PCMLD		120

		2/17/93		MLD		Function		MISSING				Usability				CLD		MAJOR		MED		2/17/93		PCMLD		121

		2/17/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/17/93		PCMLD		122

		2/17/93		MLD		Algorithm		INCORRECT				Capability				CLD		MAJOR		LOW		2/17/93		PCMLD		123

		2/18/93		MLD		Algorithm		MISSING				Capability				MLD		MAJOR		MED		2/18/93		PCMLD		124

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		MED		2/18/93		PCMLD		125

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		126

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		127

		2/18/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/18/93		PCMLD		128

		2/18/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/18/93		PCMLD		129

		2/18/93		MLD		Function		MISSING				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		130

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		131

		2/18/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/18/93		PCMLD		132

		4/2/93		CODE		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Design NonConformance		CODE		MAJOR		LOW		4/2/93		CODE		133

		4/2/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Design NonConformance		CODE		MAJOR		LOW		4/2/93		CODE		134

		4/2/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Design NonConformance		CODE		MAJOR		LOW		4/2/93		CODE		135

		11/22/92		UT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		11/22/92		UTNI		136

		12/1/92		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		1				12/10/92		BUILD		137

		12/3/92		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				MLD		4				12/8/92		FUNCCOMP		138

		12/3/92		FCT		Function		MISSING		New_Funct/Rewritten		Integrity/Security				PLD		3				12/4/92		FUNCCOMP		139

		12/3/92		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CLD		3				12/18/92				140

		2/23/93		FCT		Function		INCORRECT		Prior_Release		Capability				MLD		2				2/23/93				141

		2/23/93		FCT		Function				PTM/DCR_error		Capability						2				2/24/93				142

		2/23/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				2/23/93				143

		2/23/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		3				4/1/93				144

		3/22/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				3/22/93		FUNCCOMP		145

		4/8/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				BASE		2				4/8/93		FUNCCOMP		146

		4/20/93		BLD		Build/Package/Merge		INCORRECT				Installability				CODE		2				4/20/93		BUILD		147

		4/22/93		BLD		Assignment/Initialization		INCORRECT		Prior_Release		Capability				CODE		2				4/22/93		BUILD		148

		4/23/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				7/1/93		PCMLD		149

		4/23/93		BLD		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				4/23/93		BUILD		150

		4/23/93		BLD		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				4/23/93		BUILD		151

		5/3/93		ST		Function		MISSING		Prior_Release		Capability				BASE		3				5/10/93		SYSTEM		152

		5/13/93		UT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				MLD		2				5/19/93		UNIT		153

		5/13/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				5/19/93		UNIT		154

		5/13/93		UT		Interface		INCORRECT		Prior_Release		Capability				CODE		2				6/14/93		UNIT		155

		5/17/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				MLD		2				5/19/93		UNIT		156

		5/19/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				5/19/93				157

		5/19/93		UT		Interface				New_Funct/Rewritten		Capability				CODE		2				5/19/93		UNIT		158

		5/20/93		UT		Assignment/Initialization				New_Funct/Rewritten		Capability				CODE		1				5/21/93		UNIT		159

		5/20/93		UT		Algorithm				New_Funct/Rewritten		Capability				CODE		3				5/21/93		UNIT		160

		5/24/93		UT		Assignment/Initialization				New_Funct/Rewritten		Capability				CODE		3				5/24/93		UNIT		161

		5/24/93		UT		Function		INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		3				5/24/93		UNIT		162

		5/24/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				5/24/93		UNIT		163

		5/26/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/14/94		UNIT		164

		5/27/93		UT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				9/29/93				165

		6/2/93		BLD		Interface		INCORRECT		New_Funct/Rewritten		Capability				PLD		1				6/3/93		BUILD		166

		6/2/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				6/2/93		BUILD		167

		6/2/93		UT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				BASE		3				6/3/93		BUILD		168

		6/3/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				6/3/93		FUNCCOMP		169

		6/3/93		BLD		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				6/3/93		BUILD		170

		6/3/93		BLD		Documents		INCORRECT		New_Funct/Rewritten		Standards				CODE		4				6/3/93		BUILD		171

		6/10/93		FCT		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Capability				CODE		1				6/11/93		UNIT		172

		6/11/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				6/28/93		FUNCCOMP		173

		6/14/93		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				CODE		1				6/14/93		BUILD		174

		6/15/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				6/15/93		BUILD		175

		6/15/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				6/15/93		CODE		176

		6/16/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				6/18/93		FUNCCOMP		177

		6/16/93		FCT		Build/Package/Merge		MISSING		New_Funct/Rewritten		Usability				CODE		1				6/16/93		FUNCCOMP		178

		6/16/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				6/16/93		UNIT		179

		6/21/93		ST		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				6/29/93				180

		6/23/93		FCT		Checking		MISSING		New_Funct/Rewritten		Capability				CODE		4				1/31/94		FUNCCOMP		181

		6/23/93		FCT		Function		MISSING		New_Funct/Rewritten		Capability				PLD		3				2/18/94		FUNCCOMP		182

		6/28/93		FCT		Function		INCORRECT		Prior_Release		Capability				CODE		2				8/11/93		FUNCCOMP		183

		6/28/93		FCT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				7/16/93		FUNCCOMP		184

		7/1/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				7/19/93		FUNCCOMP		185

		7/2/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				11/10/93		FUNCCOMP		186

		7/15/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				7/16/93		FUNCCOMP		187

		7/15/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				7/16/93		FUNCCOMP		188

		7/15/93		FCT				INCORRECT		New_Funct/Rewritten		Usability				CODE		3				8/13/93		FUNCCOMP		189

		7/20/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		2				7/20/93				190

		7/20/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		2				7/20/93		UNIT		191

		7/21/93		UT		Timing/Serialization		MISSING		New_Funct/Rewritten		Reliability/Avail				MLD		2				7/21/93		CODE		192

		7/23/93		UT		Assignment/Initialization		INCORRECT		PTM/DCR_error		Capability				CODE		2				7/26/93		UNIT		193

		7/23/93		FCT		Function		MISSING		Rollup/Parallel_Development		Reliability/Avail				CODE		3				7/23/93		FUNCCOMP		194

		7/24/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				7/26/93		FUNCCOMP		195

		7/27/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/13/93		FUNCCOMP		196

		7/29/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten						CODE		3				2/14/94		FUNCCOMP		197

		7/29/93		FCT		Build/Package/Merge		MISSING		Rollup/Parallel_Development		Capability				CODE		2				7/29/93		FUNCCOMP		198

		7/29/93		UT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				1/24/94		FUNCCOMP		199

		7/30/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				8/4/93		FUNCCOMP		200

		8/2/93		ST		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				MLD		3				8/2/93		SYSTEM		201

		8/2/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				8/3/93		FUNCCOMP		202

		8/4/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		2				8/4/93		UNIT		203

		8/4/93		FCT		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Capability				CODE		2				8/4/93		FUNCCOMP		204

		8/4/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				1/23/94		FUNCCOMP		205

		8/4/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				MLD		3				3/10/94		FUNCCOMP		206

		8/5/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				MLD		2				9/27/93		FUNCCOMP		207

		8/10/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				9/8/93		SYSTEM		208

		8/10/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				MLD		3				8/12/93		FUNCCOMP		209

		8/13/93		FCT				INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/13/93		FUNCCOMP		210

		8/19/93		FCT		Checking		MISSING		New_Funct/Rewritten		Usability				MLD		4				8/24/93		FUNCCOMP		211

		8/23/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		3				9/27/93		FUNCCOMP		212

		8/25/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		4				11/10/93				213

		8/26/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		3				8/26/93		BUILD		214

		8/27/93		BLD		Build/Package/Merge		INCORRECT		Vendor/Imported		Installability				CODE		1				8/27/93		BUILD		215

		8/28/93		BLD		Assignment/Initialization		MISSING		Vendor/Imported		Capability				CODE		3				8/30/93		UNIT		216

		8/28/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				8/28/93		CODE		217

		8/30/93		BLD		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/30/93		BUILD		218

		8/31/93		UT		Function		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				8/31/93		UNIT		219

		8/31/93		BLD		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/31/93		BUILD		220

		8/31/93		BLD		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/31/93		BUILD		221

		8/31/93		UT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				8/31/93		UNIT		222

		9/1/93		BLD		Build/Package/Merge		INCORRECT		Vendor/Imported		Reliability/Avail				CODE		1				9/1/93		BUILD		223

		9/1/93		FCT		Checking		INCORRECT		Vendor/Imported		Capability				CODE		2				9/2/93		FUNCCOMP		224

		9/2/93		FCT		Interface		INCORRECT		Vendor/Imported		Usability				CODE		2				9/2/93		FUNCCOMP		225

		9/2/93		ST		Timing/Serialization		MISSING		New_Funct/Rewritten		Usability				CLD		2				11/17/93		SYSTEM		226

		9/2/93		BLD		Algorithm		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		1				9/3/93		FUNCCOMP		227

		9/6/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				2/14/94		FUNCCOMP		228

		9/7/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				9/7/93		UNIT		229

		9/7/93		FCT		Function		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				9/8/93		UNIT		230

		9/7/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				9/8/93				231

		9/9/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		2				9/9/93		UNIT		232

		9/9/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Performance				CODE		3				9/21/93		UNIT		233

		9/20/93		UT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		4				10/21/93		UNIT		234

		9/21/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				PLD		2				9/23/93		FUNCCOMP		235

		9/21/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				9/22/93		FUNCCOMP		236

		9/22/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Integrity/Security				CLD		2				11/11/93		FUNCCOMP		237

		9/22/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				CLD		3				1/3/94		UNIT		238

		9/23/93		FCT		Function		MISSING		New_Funct/Rewritten		Usability				MLD		3				9/27/93		UNIT		239

		9/23/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				11/10/93		FUNCCOMP		240

		10/1/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/19/94		UNIT		241

		10/4/93		BLD		Build/Package/Merge		INCORRECT				Reliability/Avail				CODE		3				10/4/93		BUILD		242

		10/4/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				10/18/93		FUNCCOMP		243

		10/4/93		FCT		Function		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		3				1/3/94		FUNCCOMP		244

		10/4/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service				CLD		3				1/3/94		FUNCCOMP		245

		10/6/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CLD		3				11/11/93		FUNCCOMP		246

		10/6/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		1				10/6/93		BUILD		247

		10/6/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/3/94		FUNCCOMP		248

		10/7/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				11/17/93		FUNCCOMP		249

		10/8/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/3/94		FUNCCOMP		250

		10/8/93		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/21/94		FUNCCOMP		251

		10/9/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				10/11/93		FUNCCOMP		252

		10/12/93		BLD		Documents		MISSING		Prior_Release		Documentation				CODE		4				10/12/93		BUILD		253

		10/12/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		4				1/3/94		FUNCCOMP		254

		10/14/93		FCT				INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/11/93		FUNCCOMP		255

		10/14/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/17/93		FUNCCOMP		256

		10/15/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				10/27/93		FUNCCOMP		257

		10/17/93		FCT		Interface		MISSING		New_Funct/Rewritten		Capability				CODE		3				11/19/93		FUNCCOMP		258

		10/19/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CLD		4				11/12/93		FUNCCOMP		259

		10/21/93		FCT		Interface		MISSING		New_Funct/Rewritten		Capability				CODE		3				11/29/93		CODE		260

		10/21/93		FCT				INCORRECT		New_Funct/Rewritten		Capability				CODE		3				11/18/93		FUNCCOMP		261

		10/25/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/20/94		UNIT		262

		10/26/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				PLD		3				10/26/93		UNIT		263

		10/26/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Maintain/Service				MLD		4				11/10/93		FUNCCOMP		264

		10/26/93		ST		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				10/29/93		SYSTEM		265

		10/27/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		4				10/27/93		UNIT		266

		10/27/93		UT		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Reliability/Avail				CODE		4				10/27/93		UNIT		267

		10/27/93		FCT		Checking		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		3				1/13/94		FUNCCOMP		268

		10/27/93		ST		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				11/30/93		SYSTEM		269

		10/28/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				10/29/93		FUNCCOMP		270

		10/29/93		ST		Function		MISSING		New_Funct/Rewritten		Maintain/Service				CLD		4				1/15/94		SYSTEM		271

		11/1/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				MLD		2				11/1/93				272

		11/1/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				12/2/93		FUNCCOMP		273

		11/4/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				11/24/93		FUNCCOMP		274

		11/5/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Integrity/Security				CODE		2				1/11/94		FUNCCOMP		275

		11/5/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				11/19/93		FUNCCOMP		276

		11/9/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/28/94		FUNCCOMP		277

		11/9/93		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				BASE		3				1/20/94		BUILD		278

		11/9/93		UT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				11/9/93		CODE		279

		11/11/93		ST		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		3				11/18/93		SYSTEM		280

		11/12/93		BLD		Build/Package/Merge		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		4				11/12/93		BUILD		281

		11/15/93		ST		Timing/Serialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				12/9/93		FUNCCOMP		282

		11/16/93		FCT		Interface		INCORRECT		Prior_Release		Reliability/Avail				BASE		3				3/2/94		FUNCCOMP		283

		11/18/93		FCT				INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/19/93		FUNCCOMP		284

		11/18/93		GA		Function		INCORRECT		Prior_Release		Capability				OBJ		4				3/22/94		OTHER		285

		11/18/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/19/93		UNIT		286

		11/19/93		FCT				INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/11/94		UNIT		287

		11/19/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		4				11/19/93		FUNCCOMP		288

		11/19/93		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				1/3/94		FUNCCOMP		289

		11/22/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Standards				CODE		3				1/5/94				290

		11/23/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service				MLD		3				11/23/93		FUNCCOMP		291

		11/30/93		ST		Timing/Serialization		INCORRECT		PTM/DCR_error		Maintain/Service				CODE		4				12/14/93		FUNCCOMP		292

		11/30/93		FCT		Build/Package/Merge		MISSING		Rollup/Parallel_Development		Capability				CODE		2				11/30/93		BUILD		293

		11/30/93		ST		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		3				12/6/93				294

		12/2/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				12/7/93		CODE		295

		12/4/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		2				12/8/93		FUNCCOMP		296

		12/6/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				1/19/94		FUNCCOMP		297

		12/6/93		FCT				INCORRECT		Rollup/Parallel_Development		Capability				CODE		3				12/9/93		FUNCCOMP		298

		12/6/93		BLD		Build/Package/Merge		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				12/7/93		BUILD		299

		12/7/93		FCT		Assignment/Initialization		INCORRECT		Rollup/Parallel_Development		Capability				CODE		3				12/9/93				300

		12/7/93		UT				MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				12/7/93		UNIT		301

		12/7/93		FCT		Interface		INCORRECT		Rollup/Parallel_Development		Reliability/Avail				CODE		2				12/8/93		FUNCCOMP		302

		12/8/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				PLD		4				12/13/93		FUNCCOMP		303

		12/8/93		ST		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Capability				CODE		2				12/8/93		FLDEIO		304

		12/9/93		UT		Build/Package/Merge		MISSING		New_Funct/Rewritten		Capability				CODE		3				1/3/94		CODE		305

		12/9/93		FCT		Timing/Serialization		INCORRECT		Prior_Release		Capability		Test Coverage/Variation		BASE		3				2/28/94		UNIT		306

		12/9/93		FCT		Checking		MISSING		New_Funct/Rewritten		Performance				CLD		4				1/3/94		FUNCCOMP		307

		12/9/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Standards				CODE		3				12/13/93		FUNCCOMP		308

		12/10/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				12/13/93		BUILD		309

		12/13/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				12/14/93		FUNCCOMP		310

		12/13/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				PLD		3				12/22/93		UNIT		311

		12/13/93		FCT				INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/20/94		FUNCCOMP		312

		12/13/93		FCT		Documents		INCORRECT		New_Funct/Rewritten		Capability				CODE		4				1/20/94		FUNCCOMP		313

		12/13/93		ST		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/31/94		FUNCCOMP		314

		12/14/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				12/14/93		FUNCCOMP		315

		12/17/93		UT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				12/22/93		UNIT		316

		12/22/93		UT		Function		INCORRECT		Reused_Code		Capability				CLD		3				1/3/94		UNIT		317

		1/13/94		ST		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				CODE		3				1/13/94				318

		12/22/93		ST		Assignment/Initialization		INCORRECT		Prior_Release		Reliability/Avail				BASE		2				1/7/94				319

		12/22/93		ST		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/14/94		SYSTEM		320

		12/23/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/24/94		FUNCCOMP		321

		12/29/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/11/94		FUNCCOMP		322

		12/30/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		4				1/13/94		FUNCCOMP		323

		1/3/94		ST		Build/Package/Merge		INCORRECT		Prior_Release		Installability				BASE		2				3/23/94		OTHER		324

		1/3/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/7/94		FUNCCOMP		325

		1/5/94		FCT		Checking		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		4				3/24/94		FUNCCOMP		326

		1/5/94		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/22/94		FUNCCOMP		327

		1/5/94		FCT		Build/Package/Merge		INCORRECT		Prior_Release		Capability				BASE		2				1/18/94		FUNCCOMP		328

		1/5/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/6/94		FUNCCOMP		329

		1/5/94		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/14/94		FUNCCOMP		330

		1/5/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/6/94		FUNCCOMP		331

		1/5/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/24/94		FUNCCOMP		332

		1/5/94		GA		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				3/15/94		FUNCCOMP		333

		1/6/94		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		2				1/11/94		BUILD		334

		1/6/94		FCT		Documents		INCORRECT		Prior_Release		Usability				CODE		4				1/11/94		FUNCCOMP		335

		1/6/94		BLD		Build/Package/Merge		MISSING		Prior_Release		Installability				BASE		2				1/13/94		BUILD		336

		1/10/94		ST		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/13/94		FLDEIO		337

		1/10/94		BLD		Build/Package/Merge		INCORRECT		Prior_Release		Installability				BASE		2				1/13/94		BUILD		338

		1/10/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				1/17/94		FUNCCOMP		339

		1/11/94		FCT		Checking		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		3				1/20/94		FUNCCOMP		340

		1/12/94		ST		Documents		INCORRECT		New_Funct/Rewritten		Standards				CODE		4				1/23/94		BUILD		341

		1/12/94		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				1/20/94		UNIT		342

		1/13/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				MLD		3				1/21/94		CODE		343

		1/13/94		FCT		Interface		INCORRECT		Reused_Code		Reliability/Avail				CODE		3				1/20/94		FUNCCOMP		344

		1/14/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				MLD		3				3/10/94		FUNCCOMP		345

		1/14/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				1/20/94		FUNCCOMP		346

		1/17/94		FCT				INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		2				1/20/94		FUNCCOMP		347

		1/17/94		FCT		Timing/Serialization		INCORRECT		PTM/DCR_error		Reliability/Avail				CODE		2				1/21/94		UNIT		348

		1/18/94		FCT		Checking		MISSING		New_Funct/Rewritten		Capability				CODE		4				1/18/94		FUNCCOMP		349

		1/18/94		FCT		Timing/Serialization		INCORRECT		PTM/DCR_error		Reliability/Avail				CODE		3				1/21/94		FUNCCOMP		350

		1/19/94		GA		Checking		MISSING		Prior_Release		Capability				BASE		4				3/23/94		OTHER		351

		1/20/94		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/20/94		FUNCCOMP		352

		1/21/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		2				1/21/94		FUNCCOMP		353

		1/24/94		FCT		Documents		INCORRECT		New_Funct/Rewritten		Documentation				CODE		3				3/17/94		OTHER		354

		1/24/94		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Reliability/Avail				OBJ		3				1/24/94		OTHER		355

		1/24/94		ST		Build/Package/Merge		INCORRECT		Prior_Release		Standards				CODE		3				1/24/94		BUILD		356

		1/24/94		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				CODE		2				1/24/94		BUILD		357

		1/26/94		BLD		Build/Package/Merge		INCORRECT		Reused_Code		Integrity/Security				CLD		1				1/26/94		BUILD		358

		1/26/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/14/94		CODE		359

		1/31/94		GA		Function		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/17/94		FUNCCOMP		360

		1/31/94		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				3/11/94		FUNCCOMP		361

		2/1/94		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/25/94		FUNCCOMP		362

		2/1/94		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				BASE		3				3/10/94		FUNCCOMP		363

		2/2/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Documentation				PLD		4				2/18/94		OTHER		364

		2/3/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/10/94		FUNCCOMP		365

		2/4/94		GA		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/15/94		FUNCCOMP		366

		2/7/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/2/94		FUNCCOMP		367

		2/8/94		FCT		Interface		INCORRECT		PTM/DCR_error		Reliability/Avail				CODE		2				2/21/94		FUNCCOMP		368

		2/10/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				3/24/94		FUNCCOMP		369

		2/11/94		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/4/94		UNIT		370

		2/12/94		ST		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Performance				CLD		2				3/14/94		SYSTEM		371

		2/16/94		UT				INCORRECT		New_Funct/Rewritten		Reliability/Avail		Test Coverage/Variation		CODE		4				2/17/94		FUNCCOMP		372

		2/14/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability				CODE		3				3/4/94		FUNCCOMP		373

		2/14/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability				CODE		3				2/21/94		FUNCCOMP		374

		2/14/94		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		CODE		3				2/15/94		FUNCCOMP		375

		3/8/94		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Rare Situation/Side Effects		CODE		3				3/9/94		FUNCCOMP		376

		2/14/94		FCT		Assignment/Initialization		MISSING		Prior_Release		Usability		Test Coverage/Variation		CODE		3				3/11/94		FUNCCOMP		377

		2/17/94		GA		Interface		INCORRECT		New_Funct/Rewritten		Usability		Test Sequencing/Interaction		CODE		4				3/3/94		OTHER		378

		2/18/94		UT		Interface		INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		PLD		3				2/25/94		FUNCCOMP		379

		2/18/94		UT				INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		MLD		3				3/1/94		FUNCCOMP		380

		2/23/94		GA		Build/Package/Merge		MISSING		New_Funct/Rewritten		Documentation		Startup/Restart		CODE		3				3/3/94		OTHER		381

		2/25/94		FCT		Function		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/8/94		FUNCCOMP		382

		2/28/94		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				3/4/94		OTHER		383

		2/28/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability		Test Coverage/Variation		MLD		3				3/1/94		FUNCCOMP		384

		3/18/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service		Test Coverage/Variation		CODE		4				3/28/94		FUNCCOMP		385

		3/2/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability		Test Coverage/Variation		CODE		3				3/11/94		FUNCCOMP		386

		3/7/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/14/94		FUNCCOMP		387

		3/7/94		UT				INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		MLD		3				3/9/94		FUNCCOMP		388

		3/10/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				MLD		4				3/24/94		FUNCCOMP		389

		3/14/94		ST		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Performance		Recovery/Exception		CLD		2				3/15/94		SYSTEM		390

		3/15/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		4				3/16/94		FUNCCOMP		391

		3/16/94		ST		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Concurrency		CLD		3				3/16/94		FLDEIO		392

		3/17/94		GA		Function		INCORRECT		Prior_Release		Capability		Test Coverage/Variation		BASE		3				3/17/94		UNIT		393

		3/21/94		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/25/94		FUNCCOMP		394

		11/17/92		OBJ		Function		MISSING				Usability		Design NonConformance		OBJ		MAJOR		MED		11/17/92		PCMLD		395

		5/4/93		CODE		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		MED		5/4/93		CODE		396

		5/4/93		CODE		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		MED		5/4/93		CODE		397

		5/4/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability				CODE		MAJOR		LOW		5/4/93		CODE		398

		4/30/93		MLD		Assignment/Initialization		INCORRECT		Rollup/Parallel_Development		Usability				CODE		MAJOR		LOW		4/30/93		PCMLD		399

		4/30/93		MLD		Function		MISSING		Rollup/Parallel_Development		Documentation				MLD		MAJOR		LOW		4/30/93		PCMLD		400

ODC3Chart

		Function		14

		Assignment/Initialization		10

		Interface		6

		Checking		5

		Algorithm		2

		Function		1

		Documents		1

ODC3Chart

		

_1045226103.xls
Chart2

		Backward Compatibility		Backward Compatibility		Backward Compatibility		Backward Compatibility		Backward Compatibility

		Design Conformance		Design Conformance		Design Conformance		Design Conformance		Design Conformance

		Document		Document		Document		Document		Document

		Logic/Flow		Logic/Flow		Logic/Flow		Logic/Flow		Logic/Flow

		Rare Situation		Rare Situation		Rare Situation		Rare Situation		Rare Situation

Documents

Function

Interface

Algorithm

Timing/Serialize

Defect Trigger

Number of Defects

Defect Triggers versus Defect Type

0

2

1

1

1

1

7

1

1

0

13

0

0

0

0

15

12

20

4

2

2

3

0

0

0

ODC2

		

		Timing/Serialize		Backward Compatibility

		Algorithm		Backward Compatibility

		Function		Backward Compatibility

		Interface		Backward Compatibility

		Function		Backward Compatibility

		Algorithm		Design Conformance

		Interface		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Function		Design Conformance

		Documents		Design Conformance

		Function		Design Conformance

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Documents		Document Consistency

		Interface		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Algorithm		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Function		Operational Semantics

		Documents		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Function		Operational Semantics

		Interface		Operational Semantics

		Function		Operational Semantics

		Algorithm		Operational Semantics

		Algorithm		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Interface		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Timing/Serialize		Operational Semantics

		Interface		Operational Semantics

		Documents		Operational Semantics

		Timing/Serialize		Operational Semantics

		Algorithm		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Function		Operational Semantics

		Function		Operational Semantics

		Function		Operational Semantics

		Documents		Operational Semantics

		Documents		Operational Semantics

		Function		Rare Situation

		Function		Rare Situation

		Documents		Rare Situation

		Documents		Rare Situation

		Function		Rare Situation

ODC2Chart

		Documents		31

		Function		24

		Interface		22

		Algorithm		6

		Timing/Serialize		3

ODC2Chart

		

Defect Type

Number of Defects

Frequency of Defect Types

Versus

		

				Backward Compatibility		Design Conformance		Document		Logic/Flow		Rare Situation

		Documents		0		1		13		15		2		31

		Function		2		7		0		12		3		24

		Interface		1		1		0		20		0		22

		Algorithm		1		1		0		4		0		6

		Timing/Serialize		1		0		0		2		0		3

				5		10		13		53		5

Versus

		

Documents

Function

Interface

Algorithm

Timing/Serialize

Defect Trigger

Number of Defects

Defect Triggers versus Defect Type

ODC3

		Defect Data Taken from Handbook of Software Reliability Engineering, (File "ODC3.dat")

		Open Date		Phase Found		Defect Type		Missing/Inccorrect		Defect Source		Impact		Trigger		Phase Injected		Severity		Priority		Close Date		Location		Sequence

		9/10/92		CODE		Function		INCORRECT		PTM/DCR_error		Capability				CODE		MAJOR		LOW		9/10/92		CODE		1

		11/6/92		UT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		11/6/92		UTNI		2

		11/6/92		UT		Checking		MISSING		New_Funct/Rewritten		Capability				CODE		MAJOR		MED		11/6/92		UTNI		3

		11/8/92		CODE		Algorithm		INCORRECT		New_Funct/Rewritten		Capability		Logic Flow		CODE		MAJOR		LOW		11/8/92		CODE		4

		3/22/93		CODE		Documents		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		LOW		3/22/93		CODE		5

		3/16/93		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		3/16/93		PCMLD		6

		3/16/93		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		3/16/93		PCMLD		7

		3/16/93		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		3/16/93		PCMLD		8

		1/18/93		PLD		Interface		MISSING				Capability				PLD		MAJOR		MED		1/18/93		PCMLD		9

		2/25/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		2/25/93		CODE		10

		2/25/93		CODE		Interface		INCORRECT				Reliability/Avail		Recovery/Exception		MLD		MAJOR		MED		2/25/93		CODE		11

		3/16/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		MAJOR		LOW		3/16/93		CODE		12

		3/16/93		CODE		Interface		MISSING		Reused_Code		Reliability/Avail				CODE		MAJOR		LOW		3/16/93		CODE		13

		3/16/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		MAJOR		LOW		3/16/93		CODE		14

		3/16/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		MAJOR		LOW		3/16/93		CODE		15

		1/22/93		MLD		Function		MISSING				Performance		Recovery/Exception		MLD		MAJOR		MED		1/22/93		PCMLD		16

		1/22/93		MLD		Interface		INCORRECT				Capability				MLD		MAJOR		LOW		1/22/93		PCMLD		17

		12/17/92		CLD		Function		MISSING				Reliability/Avail		Workload Volume/Stress		CLD		MAJOR		HIGH		12/17/92		PCMLD		18

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		3/17/93		CODE		19

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		3/17/93		CODE		20

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		MED		3/17/93		CODE		21

		3/17/93		CODE		Function		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		MED		3/17/93		CODE		22

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		3/17/93		CODE		23

		4/27/93		CODE		Interface		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		4/27/93		CODE		24

		4/27/93		CODE		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		4/27/93		CODE		25

		4/27/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		4/27/93		CODE		26

		4/27/93		CODE		Checking		MISSING		Rollup/Parallel_Development		Reliability/Avail				MLD		MAJOR		LOW		4/27/93		CODE		27

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		3/17/93		CODE		28

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		MED		3/17/93		CODE		29

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		3/17/93		CODE		30

		3/17/93		CODE		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		MED		3/17/93		CODE		31

		3/17/93		CODE		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		LOW		3/17/93		CODE		32

		5/3/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		33

		5/3/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		34

		5/3/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		35

		5/3/93		CODE		Function		MISSING		Rollup/Parallel_Development		Reliability/Avail				MLD		MAJOR		LOW		5/3/93		CODE		36

		5/3/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		37

		5/3/93		CODE		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		MED		5/3/93		CODE		38

		5/3/93		CODE		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/3/93		CODE		39

		5/3/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Workload Volume/Stress		CODE		MAJOR		MED		5/3/93		CODE		40

		3/16/93		MLD		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				MLD		MAJOR		LOW		3/16/93		PCMLD		41

		3/16/93		MLD		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				MLD		MAJOR		LOW		3/16/93		PCMLD		42

		3/18/93		MLD		Function		MISSING		New_Funct/Rewritten		Capability				MLD		MAJOR		MED		3/18/93		PCMLD		43

		3/18/93		MLD		Documents		MISSING		New_Funct/Rewritten		Documentation				MLD		MAJOR		LOW		3/18/93		PCMLD		44

		4/13/93		UT		Function		INCORRECT				Usability				CODE		MAJOR		LOW		4/7/93		UTNI		45

		4/13/93		UT		Function		INCORRECT				Standards				CLD		MAJOR		MED		4/7/93		UTNI		46

		4/13/93		UT		Function		INCORRECT				Usability		Workload Volume/Stress		CODE		MAJOR		MED		4/7/93		UTNI		47

		4/13/93		UT		Function		INCORRECT				Usability				CODE		MAJOR		LOW		4/7/93		UTNI		48

		4/13/93		UT		Function		INCORRECT				Reliability/Avail				CODE		MAJOR		LOW		4/7/93		UTNI		49

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		50

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		51

		5/4/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		52

		5/4/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		53

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		54

		5/4/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		55

		5/4/93		UT		Function		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		MLD		MAJOR		MED		5/4/93		UTNI		56

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		57

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		MED		5/4/93		UTNI		58

		5/4/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		59

		5/4/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability		Workload Volume/Stress		MLD		MAJOR		LOW		5/4/93		UTNI		60

		5/4/93		UT		Function		INCORRECT				Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		61

		5/4/93		UT		Checking		MISSING				Capability		Workload Volume/Stress		CODE		MAJOR		LOW		5/4/93		UTNI		62

		3/1/93		CODE		Interface		INCORRECT				Capability				MLD		MAJOR		LOW		3/1/93		CODE		63

		3/1/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail		Recovery/Exception		CODE		MAJOR		LOW		3/1/93		CODE		64

		2/16/93		MLD		Function		MISSING				Reliability/Avail		Recovery/Exception		MLD		MAJOR		LOW		2/16/93		PCMLD		65

		12/16/92		CLD		Documents		INCORRECT				Capability				CLD		MAJOR		LOW		12/16/92		PCMLD		66

		12/16/92		CLD		Documents		INCORRECT				Capability				CLD		MAJOR		LOW		12/16/92		PCMLD		67

		3/16/93		CODE		Algorithm		INCORRECT		New_Funct/Rewritten		Standards				CODE		MAJOR		LOW		3/16/93		CODE		68

		1/20/93		MLD		Function		INCORRECT				Capability				MLD		MAJOR		HIGH		1/20/93		PCMLD		69

		1/20/93		MLD		Function		INCORRECT				Capability				MLD		MAJOR		LOW		1/20/93		PCMLD		70

		3/31/93		MLD		Interface		MISSING				Reliability/Avail				CLD		MAJOR		LOW		3/31/93		PCMLD		71

		3/31/93		MLD		Function		MISSING				Usability		Design NonConformance		CLD		MAJOR		LOW		3/31/93		PCMLD		72

		3/31/93		MLD		Algorithm		MISSING				Reliability/Avail				MLD		MAJOR		LOW		3/31/93		PCMLD		73

		3/31/93		MLD		Checking		INCORRECT				Reliability/Avail		Design NonConformance		MLD		MAJOR		LOW		3/31/93		PCMLD		74

		3/31/93		MLD		Assignment/Initialization		MISSING				Reliability/Avail		Design NonConformance		MLD		MAJOR		LOW		3/31/93		PCMLD		75

		12/17/92		CLD		Function		MISSING				Reliability/Avail		Design NonConformance		CLD		MAJOR		HIGH		12/17/92		PCMLD		76

		2/19/93		PLD		Documents		INCORRECT				Documentation		Recovery/Exception		PLD		MAJOR		LOW		2/19/93		PCMLD		77

		2/19/93		PLD		Function		INCORRECT				Integrity/Security		Documentation Content		PLD		MAJOR		LOW		2/19/93		PCMLD		78

		2/19/93		PLD		Function		INCORRECT				Reliability/Avail				PLD		MAJOR		MED		2/19/93		PCMLD		79

		11/2/92		PLD		Function		MISSING				Usability				PLD		MAJOR		HIGH		11/2/92		PCMLD		80

		11/4/92		PLD		Function		MISSING				Performance				PLD		MAJOR		LOW		11/4/92		PCMLD		81

		11/4/92		PLD		Function		MISSING				Capability				PLD		MAJOR		MED		11/4/92		PCMLD		82

		11/4/92		PLD		Function		MISSING				Reliability/Avail				PLD		MAJOR		MED		11/4/92		PCMLD		83

		11/12/92		PLD		Documents		MISSING				Documentation		Design NonConformance		PLD		MAJOR		MED		11/12/92		PCMLD		84

		11/12/92		PLD		Function		MISSING				Migration		Design NonConformance		PLD		MAJOR		LOW		11/12/92		PCMLD		85

		11/12/92		PLD		Function		MISSING				Documentation		Logic Flow		PLD		MAJOR		LOW		11/12/92		PCMLD		86

		11/12/92		PLD		Function		MISSING				Maintain/Service		Logic Flow		PLD		MAJOR		LOW		11/12/92		PCMLD		87

		11/12/92		PLD		Documents		INCORRECT				Maintain/Service		Logic Flow		PLD		MAJOR		LOW		11/12/92		PCMLD		88

		11/16/92		PLD		Function		INCORRECT				Reliability/Avail				PLD		MAJOR		HIGH		11/16/92		PCMLD		89

		11/16/92		PLD		Assignment/Initialization		INCORRECT				Usability				PLD		MAJOR		LOW		11/16/92		PCMLD		90

		11/16/92		PLD		Function		MISSING				Performance				PLD		MAJOR		LOW		11/16/92		PCMLD		91

		11/16/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		LOW		11/16/92		PCMLD		92

		11/17/92		PLD		Function		MISSING				Performance				PLD		MAJOR		HIGH		11/17/92		PCMLD		93

		11/17/92		PLD		Interface		MISSING				Usability				PLD		MAJOR		LOW		11/17/92		PCMLD		94

		10/30/92		PLD		Interface		INCORRECT				Reliability/Avail				PLD		MAJOR		LOW		10/30/92		PCMLD		95

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		LOW		10/30/92		PCMLD		96

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		LOW		10/30/92		PCMLD		97

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		MED		10/30/92		PCMLD		98

		10/30/92		PLD		Documents		MISSING				Usability				PLD		MAJOR		MED		10/30/92		PCMLD		99

		10/30/92		PLD		Documents		INCORRECT				Usability				PLD		MAJOR		LOW		10/30/92		PCMLD		100

		2/1/93		CLD		Function		MISSING				Reliability/Avail		Bkwd/Lateral Compatibility		PLD		MAJOR		MED		2/1/93		PCMLD		101

		2/1/93		CLD		Timing/Serialization		MISSING				Reliability/Avail				PLD		MAJOR		LOW		2/1/93		PCMLD		102

		2/1/93		CLD		Interface		INCORRECT				Reliability/Avail		Design NonConformance		CLD		MAJOR		HIGH		2/1/93		PCMLD		103

		2/1/93		CLD		Function		MISSING				Maintain/Service		Recovery/Exception		CLD		MAJOR		HIGH		2/1/93		PCMLD		104

		2/1/93		CLD		Function		MISSING				Usability				PLD		MAJOR		MED		2/1/93		PCMLD		105

		3/22/93		MLD		Function		MISSING				Capability		Design NonConformance		MLD		MAJOR		MED		3/22/93		PCMLD		106

		3/22/93		MLD		Checking		INCORRECT				Capability		Logic Flow		MLD		MAJOR		LOW		3/22/93		PCMLD		107

		3/22/93		MLD		Function		MISSING				Reliability/Avail		Logic Flow		MLD		MAJOR		LOW		3/22/93		PCMLD		108

		3/22/93		MLD		Function		MISSING				Migration		Bkwd/Lateral Compatibility		MLD		MAJOR		LOW		3/22/93		PCMLD		109

		3/24/93		MLD		Function		INCORRECT				Capability		Logic Flow		MLD		MAJOR		HIGH		3/24/93		PCMLD		110

		3/24/93		MLD		Function		MISSING				Reliability/Avail		Logic Flow		MLD		MAJOR		MED		3/24/93		PCMLD		111

		3/24/93		MLD		Function		INCORRECT				Capability		Design NonConformance		MLD		MAJOR		LOW		3/24/93		PCMLD		112

		3/24/93		MLD		Function		MISSING				Performance		Design NonConformance		PLD		MAJOR		MED		3/24/93		PCMLD		113

		3/24/93		MLD		Function		MISSING				Reliability/Avail		Design NonConformance		MLD		MAJOR		LOW		3/24/93		PCMLD		114

		2/17/93		MLD		Function		MISSING				Usability				CLD		MAJOR		LOW		2/17/93		PCMLD		115

		2/17/93		MLD		Function		INCORRECT				Capability				CLD		MAJOR		LOW		2/17/93		PCMLD		116

		2/17/93		MLD		Function		INCORRECT				Reliability/Avail				CLD		MAJOR		LOW		2/17/93		PCMLD		117

		2/17/93		MLD		Function		MISSING				Reliability/Avail				CLD		MAJOR		MED		2/17/93		PCMLD		118

		2/17/93		MLD		Function		INCORRECT				Reliability/Avail				CLD		MAJOR		LOW		2/17/93		PCMLD		119

		2/17/93		MLD		Function		MISSING				Usability				PLD		MAJOR		MED		2/17/93		PCMLD		120

		2/17/93		MLD		Function		MISSING				Usability				CLD		MAJOR		MED		2/17/93		PCMLD		121

		2/17/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/17/93		PCMLD		122

		2/17/93		MLD		Algorithm		INCORRECT				Capability				CLD		MAJOR		LOW		2/17/93		PCMLD		123

		2/18/93		MLD		Algorithm		MISSING				Capability				MLD		MAJOR		MED		2/18/93		PCMLD		124

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		MED		2/18/93		PCMLD		125

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		126

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		127

		2/18/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/18/93		PCMLD		128

		2/18/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/18/93		PCMLD		129

		2/18/93		MLD		Function		MISSING				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		130

		2/18/93		MLD		Function		INCORRECT				Reliability/Avail				MLD		MAJOR		LOW		2/18/93		PCMLD		131

		2/18/93		MLD		Function		MISSING				Capability				MLD		MAJOR		LOW		2/18/93		PCMLD		132

		4/2/93		CODE		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Design NonConformance		CODE		MAJOR		LOW		4/2/93		CODE		133

		4/2/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Design NonConformance		CODE		MAJOR		LOW		4/2/93		CODE		134

		4/2/93		CODE		Function		MISSING		New_Funct/Rewritten		Reliability/Avail		Design NonConformance		CODE		MAJOR		LOW		4/2/93		CODE		135

		11/22/92		UT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		MAJOR		LOW		11/22/92		UTNI		136

		12/1/92		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		1				12/10/92		BUILD		137

		12/3/92		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				MLD		4				12/8/92		FUNCCOMP		138

		12/3/92		FCT		Function		MISSING		New_Funct/Rewritten		Integrity/Security				PLD		3				12/4/92		FUNCCOMP		139

		12/3/92		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CLD		3				12/18/92				140

		2/23/93		FCT		Function		INCORRECT		Prior_Release		Capability				MLD		2				2/23/93				141

		2/23/93		FCT		Function				PTM/DCR_error		Capability						2				2/24/93				142

		2/23/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				2/23/93				143

		2/23/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		3				4/1/93				144

		3/22/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				3/22/93		FUNCCOMP		145

		4/8/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				BASE		2				4/8/93		FUNCCOMP		146

		4/20/93		BLD		Build/Package/Merge		INCORRECT				Installability				CODE		2				4/20/93		BUILD		147

		4/22/93		BLD		Assignment/Initialization		INCORRECT		Prior_Release		Capability				CODE		2				4/22/93		BUILD		148

		4/23/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				7/1/93		PCMLD		149

		4/23/93		BLD		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				4/23/93		BUILD		150

		4/23/93		BLD		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				4/23/93		BUILD		151

		5/3/93		ST		Function		MISSING		Prior_Release		Capability				BASE		3				5/10/93		SYSTEM		152

		5/13/93		UT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				MLD		2				5/19/93		UNIT		153

		5/13/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				5/19/93		UNIT		154

		5/13/93		UT		Interface		INCORRECT		Prior_Release		Capability				CODE		2				6/14/93		UNIT		155

		5/17/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				MLD		2				5/19/93		UNIT		156

		5/19/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				5/19/93				157

		5/19/93		UT		Interface				New_Funct/Rewritten		Capability				CODE		2				5/19/93		UNIT		158

		5/20/93		UT		Assignment/Initialization				New_Funct/Rewritten		Capability				CODE		1				5/21/93		UNIT		159

		5/20/93		UT		Algorithm				New_Funct/Rewritten		Capability				CODE		3				5/21/93		UNIT		160

		5/24/93		UT		Assignment/Initialization				New_Funct/Rewritten		Capability				CODE		3				5/24/93		UNIT		161

		5/24/93		UT		Function		INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		3				5/24/93		UNIT		162

		5/24/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				5/24/93		UNIT		163

		5/26/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/14/94		UNIT		164

		5/27/93		UT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				9/29/93				165

		6/2/93		BLD		Interface		INCORRECT		New_Funct/Rewritten		Capability				PLD		1				6/3/93		BUILD		166

		6/2/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				6/2/93		BUILD		167

		6/2/93		UT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				BASE		3				6/3/93		BUILD		168

		6/3/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				6/3/93		FUNCCOMP		169

		6/3/93		BLD		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				6/3/93		BUILD		170

		6/3/93		BLD		Documents		INCORRECT		New_Funct/Rewritten		Standards				CODE		4				6/3/93		BUILD		171

		6/10/93		FCT		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Capability				CODE		1				6/11/93		UNIT		172

		6/11/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				6/28/93		FUNCCOMP		173

		6/14/93		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				CODE		1				6/14/93		BUILD		174

		6/15/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				6/15/93		BUILD		175

		6/15/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				6/15/93		CODE		176

		6/16/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				6/18/93		FUNCCOMP		177

		6/16/93		FCT		Build/Package/Merge		MISSING		New_Funct/Rewritten		Usability				CODE		1				6/16/93		FUNCCOMP		178

		6/16/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				6/16/93		UNIT		179

		6/21/93		ST		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				6/29/93				180

		6/23/93		FCT		Checking		MISSING		New_Funct/Rewritten		Capability				CODE		4				1/31/94		FUNCCOMP		181

		6/23/93		FCT		Function		MISSING		New_Funct/Rewritten		Capability				PLD		3				2/18/94		FUNCCOMP		182

		6/28/93		FCT		Function		INCORRECT		Prior_Release		Capability				CODE		2				8/11/93		FUNCCOMP		183

		6/28/93		FCT		Algorithm		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				7/16/93		FUNCCOMP		184

		7/1/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				7/19/93		FUNCCOMP		185

		7/2/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				11/10/93		FUNCCOMP		186

		7/15/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				7/16/93		FUNCCOMP		187

		7/15/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				7/16/93		FUNCCOMP		188

		7/15/93		FCT				INCORRECT		New_Funct/Rewritten		Usability				CODE		3				8/13/93		FUNCCOMP		189

		7/20/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		2				7/20/93				190

		7/20/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		2				7/20/93		UNIT		191

		7/21/93		UT		Timing/Serialization		MISSING		New_Funct/Rewritten		Reliability/Avail				MLD		2				7/21/93		CODE		192

		7/23/93		UT		Assignment/Initialization		INCORRECT		PTM/DCR_error		Capability				CODE		2				7/26/93		UNIT		193

		7/23/93		FCT		Function		MISSING		Rollup/Parallel_Development		Reliability/Avail				CODE		3				7/23/93		FUNCCOMP		194

		7/24/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				7/26/93		FUNCCOMP		195

		7/27/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/13/93		FUNCCOMP		196

		7/29/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten						CODE		3				2/14/94		FUNCCOMP		197

		7/29/93		FCT		Build/Package/Merge		MISSING		Rollup/Parallel_Development		Capability				CODE		2				7/29/93		FUNCCOMP		198

		7/29/93		UT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				1/24/94		FUNCCOMP		199

		7/30/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				8/4/93		FUNCCOMP		200

		8/2/93		ST		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				MLD		3				8/2/93		SYSTEM		201

		8/2/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				8/3/93		FUNCCOMP		202

		8/4/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		2				8/4/93		UNIT		203

		8/4/93		FCT		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Capability				CODE		2				8/4/93		FUNCCOMP		204

		8/4/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				1/23/94		FUNCCOMP		205

		8/4/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				MLD		3				3/10/94		FUNCCOMP		206

		8/5/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				MLD		2				9/27/93		FUNCCOMP		207

		8/10/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				9/8/93		SYSTEM		208

		8/10/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				MLD		3				8/12/93		FUNCCOMP		209

		8/13/93		FCT				INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/13/93		FUNCCOMP		210

		8/19/93		FCT		Checking		MISSING		New_Funct/Rewritten		Usability				MLD		4				8/24/93		FUNCCOMP		211

		8/23/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		3				9/27/93		FUNCCOMP		212

		8/25/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		4				11/10/93				213

		8/26/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		3				8/26/93		BUILD		214

		8/27/93		BLD		Build/Package/Merge		INCORRECT		Vendor/Imported		Installability				CODE		1				8/27/93		BUILD		215

		8/28/93		BLD		Assignment/Initialization		MISSING		Vendor/Imported		Capability				CODE		3				8/30/93		UNIT		216

		8/28/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				8/28/93		CODE		217

		8/30/93		BLD		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/30/93		BUILD		218

		8/31/93		UT		Function		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				8/31/93		UNIT		219

		8/31/93		BLD		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/31/93		BUILD		220

		8/31/93		BLD		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				8/31/93		BUILD		221

		8/31/93		UT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				8/31/93		UNIT		222

		9/1/93		BLD		Build/Package/Merge		INCORRECT		Vendor/Imported		Reliability/Avail				CODE		1				9/1/93		BUILD		223

		9/1/93		FCT		Checking		INCORRECT		Vendor/Imported		Capability				CODE		2				9/2/93		FUNCCOMP		224

		9/2/93		FCT		Interface		INCORRECT		Vendor/Imported		Usability				CODE		2				9/2/93		FUNCCOMP		225

		9/2/93		ST		Timing/Serialization		MISSING		New_Funct/Rewritten		Usability				CLD		2				11/17/93		SYSTEM		226

		9/2/93		BLD		Algorithm		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		1				9/3/93		FUNCCOMP		227

		9/6/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				2/14/94		FUNCCOMP		228

		9/7/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				9/7/93		UNIT		229

		9/7/93		FCT		Function		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				9/8/93		UNIT		230

		9/7/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				9/8/93				231

		9/9/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		2				9/9/93		UNIT		232

		9/9/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Performance				CODE		3				9/21/93		UNIT		233

		9/20/93		UT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		4				10/21/93		UNIT		234

		9/21/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				PLD		2				9/23/93		FUNCCOMP		235

		9/21/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		1				9/22/93		FUNCCOMP		236

		9/22/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Integrity/Security				CLD		2				11/11/93		FUNCCOMP		237

		9/22/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				CLD		3				1/3/94		UNIT		238

		9/23/93		FCT		Function		MISSING		New_Funct/Rewritten		Usability				MLD		3				9/27/93		UNIT		239

		9/23/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CLD		2				11/10/93		FUNCCOMP		240

		10/1/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/19/94		UNIT		241

		10/4/93		BLD		Build/Package/Merge		INCORRECT				Reliability/Avail				CODE		3				10/4/93		BUILD		242

		10/4/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				10/18/93		FUNCCOMP		243

		10/4/93		FCT		Function		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		3				1/3/94		FUNCCOMP		244

		10/4/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service				CLD		3				1/3/94		FUNCCOMP		245

		10/6/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CLD		3				11/11/93		FUNCCOMP		246

		10/6/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		1				10/6/93		BUILD		247

		10/6/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/3/94		FUNCCOMP		248

		10/7/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				11/17/93		FUNCCOMP		249

		10/8/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/3/94		FUNCCOMP		250

		10/8/93		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/21/94		FUNCCOMP		251

		10/9/93		BLD		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				10/11/93		FUNCCOMP		252

		10/12/93		BLD		Documents		MISSING		Prior_Release		Documentation				CODE		4				10/12/93		BUILD		253

		10/12/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		4				1/3/94		FUNCCOMP		254

		10/14/93		FCT				INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/11/93		FUNCCOMP		255

		10/14/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/17/93		FUNCCOMP		256

		10/15/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				10/27/93		FUNCCOMP		257

		10/17/93		FCT		Interface		MISSING		New_Funct/Rewritten		Capability				CODE		3				11/19/93		FUNCCOMP		258

		10/19/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CLD		4				11/12/93		FUNCCOMP		259

		10/21/93		FCT		Interface		MISSING		New_Funct/Rewritten		Capability				CODE		3				11/29/93		CODE		260

		10/21/93		FCT				INCORRECT		New_Funct/Rewritten		Capability				CODE		3				11/18/93		FUNCCOMP		261

		10/25/93		UT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/20/94		UNIT		262

		10/26/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				PLD		3				10/26/93		UNIT		263

		10/26/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Maintain/Service				MLD		4				11/10/93		FUNCCOMP		264

		10/26/93		ST		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				10/29/93		SYSTEM		265

		10/27/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		4				10/27/93		UNIT		266

		10/27/93		UT		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Reliability/Avail				CODE		4				10/27/93		UNIT		267

		10/27/93		FCT		Checking		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		3				1/13/94		FUNCCOMP		268

		10/27/93		ST		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				11/30/93		SYSTEM		269

		10/28/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				10/29/93		FUNCCOMP		270

		10/29/93		ST		Function		MISSING		New_Funct/Rewritten		Maintain/Service				CLD		4				1/15/94		SYSTEM		271

		11/1/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				MLD		2				11/1/93				272

		11/1/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				12/2/93		FUNCCOMP		273

		11/4/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				11/24/93		FUNCCOMP		274

		11/5/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Integrity/Security				CODE		2				1/11/94		FUNCCOMP		275

		11/5/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				11/19/93		FUNCCOMP		276

		11/9/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/28/94		FUNCCOMP		277

		11/9/93		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				BASE		3				1/20/94		BUILD		278

		11/9/93		UT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				11/9/93		CODE		279

		11/11/93		ST		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		3				11/18/93		SYSTEM		280

		11/12/93		BLD		Build/Package/Merge		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		4				11/12/93		BUILD		281

		11/15/93		ST		Timing/Serialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				12/9/93		FUNCCOMP		282

		11/16/93		FCT		Interface		INCORRECT		Prior_Release		Reliability/Avail				BASE		3				3/2/94		FUNCCOMP		283

		11/18/93		FCT				INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/19/93		FUNCCOMP		284

		11/18/93		GA		Function		INCORRECT		Prior_Release		Capability				OBJ		4				3/22/94		OTHER		285

		11/18/93		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				11/19/93		UNIT		286

		11/19/93		FCT				INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/11/94		UNIT		287

		11/19/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		4				11/19/93		FUNCCOMP		288

		11/19/93		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				1/3/94		FUNCCOMP		289

		11/22/93		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Standards				CODE		3				1/5/94				290

		11/23/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service				MLD		3				11/23/93		FUNCCOMP		291

		11/30/93		ST		Timing/Serialization		INCORRECT		PTM/DCR_error		Maintain/Service				CODE		4				12/14/93		FUNCCOMP		292

		11/30/93		FCT		Build/Package/Merge		MISSING		Rollup/Parallel_Development		Capability				CODE		2				11/30/93		BUILD		293

		11/30/93		ST		Function		MISSING		New_Funct/Rewritten		Capability				OBJ		3				12/6/93				294

		12/2/93		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				12/7/93		CODE		295

		12/4/93		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		2				12/8/93		FUNCCOMP		296

		12/6/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				1/19/94		FUNCCOMP		297

		12/6/93		FCT				INCORRECT		Rollup/Parallel_Development		Capability				CODE		3				12/9/93		FUNCCOMP		298

		12/6/93		BLD		Build/Package/Merge		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				12/7/93		BUILD		299

		12/7/93		FCT		Assignment/Initialization		INCORRECT		Rollup/Parallel_Development		Capability				CODE		3				12/9/93				300

		12/7/93		UT				MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				12/7/93		UNIT		301

		12/7/93		FCT		Interface		INCORRECT		Rollup/Parallel_Development		Reliability/Avail				CODE		2				12/8/93		FUNCCOMP		302

		12/8/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				PLD		4				12/13/93		FUNCCOMP		303

		12/8/93		ST		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Capability				CODE		2				12/8/93		FLDEIO		304

		12/9/93		UT		Build/Package/Merge		MISSING		New_Funct/Rewritten		Capability				CODE		3				1/3/94		CODE		305

		12/9/93		FCT		Timing/Serialization		INCORRECT		Prior_Release		Capability		Test Coverage/Variation		BASE		3				2/28/94		UNIT		306

		12/9/93		FCT		Checking		MISSING		New_Funct/Rewritten		Performance				CLD		4				1/3/94		FUNCCOMP		307

		12/9/93		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Standards				CODE		3				12/13/93		FUNCCOMP		308

		12/10/93		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				12/13/93		BUILD		309

		12/13/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				12/14/93		FUNCCOMP		310

		12/13/93		UT		Function		MISSING		New_Funct/Rewritten		Capability				PLD		3				12/22/93		UNIT		311

		12/13/93		FCT				INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/20/94		FUNCCOMP		312

		12/13/93		FCT		Documents		INCORRECT		New_Funct/Rewritten		Capability				CODE		4				1/20/94		FUNCCOMP		313

		12/13/93		ST		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/31/94		FUNCCOMP		314

		12/14/93		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				CODE		2				12/14/93		FUNCCOMP		315

		12/17/93		UT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				12/22/93		UNIT		316

		12/22/93		UT		Function		INCORRECT		Reused_Code		Capability				CLD		3				1/3/94		UNIT		317

		1/13/94		ST		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				CODE		3				1/13/94				318

		12/22/93		ST		Assignment/Initialization		INCORRECT		Prior_Release		Reliability/Avail				BASE		2				1/7/94				319

		12/22/93		ST		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/14/94		SYSTEM		320

		12/23/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/24/94		FUNCCOMP		321

		12/29/93		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/11/94		FUNCCOMP		322

		12/30/93		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		4				1/13/94		FUNCCOMP		323

		1/3/94		ST		Build/Package/Merge		INCORRECT		Prior_Release		Installability				BASE		2				3/23/94		OTHER		324

		1/3/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				1/7/94		FUNCCOMP		325

		1/5/94		FCT		Checking		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		4				3/24/94		FUNCCOMP		326

		1/5/94		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/22/94		FUNCCOMP		327

		1/5/94		FCT		Build/Package/Merge		INCORRECT		Prior_Release		Capability				BASE		2				1/18/94		FUNCCOMP		328

		1/5/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/6/94		FUNCCOMP		329

		1/5/94		FCT		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				1/14/94		FUNCCOMP		330

		1/5/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				CODE		4				1/6/94		FUNCCOMP		331

		1/5/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/24/94		FUNCCOMP		332

		1/5/94		GA		Interface		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				3/15/94		FUNCCOMP		333

		1/6/94		FCT		Build/Package/Merge		INCORRECT		New_Funct/Rewritten		Installability				CODE		2				1/11/94		BUILD		334

		1/6/94		FCT		Documents		INCORRECT		Prior_Release		Usability				CODE		4				1/11/94		FUNCCOMP		335

		1/6/94		BLD		Build/Package/Merge		MISSING		Prior_Release		Installability				BASE		2				1/13/94		BUILD		336

		1/10/94		ST		Function		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/13/94		FLDEIO		337

		1/10/94		BLD		Build/Package/Merge		INCORRECT		Prior_Release		Installability				BASE		2				1/13/94		BUILD		338

		1/10/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				1/17/94		FUNCCOMP		339

		1/11/94		FCT		Checking		MISSING		New_Funct/Rewritten		Maintain/Service				CODE		3				1/20/94		FUNCCOMP		340

		1/12/94		ST		Documents		INCORRECT		New_Funct/Rewritten		Standards				CODE		4				1/23/94		BUILD		341

		1/12/94		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability				CODE		3				1/20/94		UNIT		342

		1/13/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Reliability/Avail				MLD		3				1/21/94		CODE		343

		1/13/94		FCT		Interface		INCORRECT		Reused_Code		Reliability/Avail				CODE		3				1/20/94		FUNCCOMP		344

		1/14/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Usability				MLD		3				3/10/94		FUNCCOMP		345

		1/14/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				1/20/94		FUNCCOMP		346

		1/17/94		FCT				INCORRECT		New_Funct/Rewritten		Reliability/Avail				MLD		2				1/20/94		FUNCCOMP		347

		1/17/94		FCT		Timing/Serialization		INCORRECT		PTM/DCR_error		Reliability/Avail				CODE		2				1/21/94		UNIT		348

		1/18/94		FCT		Checking		MISSING		New_Funct/Rewritten		Capability				CODE		4				1/18/94		FUNCCOMP		349

		1/18/94		FCT		Timing/Serialization		INCORRECT		PTM/DCR_error		Reliability/Avail				CODE		3				1/21/94		FUNCCOMP		350

		1/19/94		GA		Checking		MISSING		Prior_Release		Capability				BASE		4				3/23/94		OTHER		351

		1/20/94		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		2				1/20/94		FUNCCOMP		352

		1/21/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		2				1/21/94		FUNCCOMP		353

		1/24/94		FCT		Documents		INCORRECT		New_Funct/Rewritten		Documentation				CODE		3				3/17/94		OTHER		354

		1/24/94		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Reliability/Avail				OBJ		3				1/24/94		OTHER		355

		1/24/94		ST		Build/Package/Merge		INCORRECT		Prior_Release		Standards				CODE		3				1/24/94		BUILD		356

		1/24/94		BLD		Build/Package/Merge		INCORRECT		Rollup/Parallel_Development		Installability				CODE		2				1/24/94		BUILD		357

		1/26/94		BLD		Build/Package/Merge		INCORRECT		Reused_Code		Integrity/Security				CLD		1				1/26/94		BUILD		358

		1/26/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/14/94		CODE		359

		1/31/94		GA		Function		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/17/94		FUNCCOMP		360

		1/31/94		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		2				3/11/94		FUNCCOMP		361

		2/1/94		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/25/94		FUNCCOMP		362

		2/1/94		FCT		Function		INCORRECT		New_Funct/Rewritten		Usability				BASE		3				3/10/94		FUNCCOMP		363

		2/2/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Documentation				PLD		4				2/18/94		OTHER		364

		2/3/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				2/10/94		FUNCCOMP		365

		2/4/94		GA		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/15/94		FUNCCOMP		366

		2/7/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/2/94		FUNCCOMP		367

		2/8/94		FCT		Interface		INCORRECT		PTM/DCR_error		Reliability/Avail				CODE		2				2/21/94		FUNCCOMP		368

		2/10/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability				CODE		3				3/24/94		FUNCCOMP		369

		2/11/94		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/4/94		UNIT		370

		2/12/94		ST		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Performance				CLD		2				3/14/94		SYSTEM		371

		2/16/94		UT				INCORRECT		New_Funct/Rewritten		Reliability/Avail		Test Coverage/Variation		CODE		4				2/17/94		FUNCCOMP		372

		2/14/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability				CODE		3				3/4/94		FUNCCOMP		373

		2/14/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability				CODE		3				2/21/94		FUNCCOMP		374

		2/14/94		UT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		CODE		3				2/15/94		FUNCCOMP		375

		3/8/94		FCT		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Rare Situation/Side Effects		CODE		3				3/9/94		FUNCCOMP		376

		2/14/94		FCT		Assignment/Initialization		MISSING		Prior_Release		Usability		Test Coverage/Variation		CODE		3				3/11/94		FUNCCOMP		377

		2/17/94		GA		Interface		INCORRECT		New_Funct/Rewritten		Usability		Test Sequencing/Interaction		CODE		4				3/3/94		OTHER		378

		2/18/94		UT		Interface		INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		PLD		3				2/25/94		FUNCCOMP		379

		2/18/94		UT				INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		MLD		3				3/1/94		FUNCCOMP		380

		2/23/94		GA		Build/Package/Merge		MISSING		New_Funct/Rewritten		Documentation		Startup/Restart		CODE		3				3/3/94		OTHER		381

		2/25/94		FCT		Function		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/8/94		FUNCCOMP		382

		2/28/94		FCT		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail				CODE		2				3/4/94		OTHER		383

		2/28/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability		Test Coverage/Variation		MLD		3				3/1/94		FUNCCOMP		384

		3/18/94		FCT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Maintain/Service		Test Coverage/Variation		CODE		4				3/28/94		FUNCCOMP		385

		3/2/94		FCT		Checking		INCORRECT		New_Funct/Rewritten		Capability		Test Coverage/Variation		CODE		3				3/11/94		FUNCCOMP		386

		3/7/94		UT		Assignment/Initialization		MISSING		New_Funct/Rewritten		Capability				CODE		3				3/14/94		FUNCCOMP		387

		3/7/94		UT				INCORRECT		New_Funct/Rewritten		Usability		Test Coverage/Variation		MLD		3				3/9/94		FUNCCOMP		388

		3/10/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				MLD		4				3/24/94		FUNCCOMP		389

		3/14/94		ST		Timing/Serialization		INCORRECT		New_Funct/Rewritten		Performance		Recovery/Exception		CLD		2				3/15/94		SYSTEM		390

		3/15/94		FCT		Interface		INCORRECT		New_Funct/Rewritten		Maintain/Service				CODE		4				3/16/94		FUNCCOMP		391

		3/16/94		ST		Assignment/Initialization		INCORRECT		New_Funct/Rewritten		Reliability/Avail		Concurrency		CLD		3				3/16/94		FLDEIO		392

		3/17/94		GA		Function		INCORRECT		Prior_Release		Capability		Test Coverage/Variation		BASE		3				3/17/94		UNIT		393

		3/21/94		FCT		Checking		MISSING		New_Funct/Rewritten		Reliability/Avail				CODE		3				3/25/94		FUNCCOMP		394

		11/17/92		OBJ		Function		MISSING				Usability		Design NonConformance		OBJ		MAJOR		MED		11/17/92		PCMLD		395

		5/4/93		CODE		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		MED		5/4/93		CODE		396

		5/4/93		CODE		Checking		INCORRECT		New_Funct/Rewritten		Usability				CODE		MAJOR		MED		5/4/93		CODE		397

		5/4/93		CODE		Assignment/Initialization		MISSING		New_Funct/Rewritten		Usability				CODE		MAJOR		LOW		5/4/93		CODE		398

		4/30/93		MLD		Assignment/Initialization		INCORRECT		Rollup/Parallel_Development		Usability				CODE		MAJOR		LOW		4/30/93		PCMLD		399

		4/30/93		MLD		Function		MISSING		Rollup/Parallel_Development		Documentation				MLD		MAJOR		LOW		4/30/93		PCMLD		400

ODC3Chart

		Function		14

		Assignment/Initialization		10

		Interface		6

		Checking		5

		Algorithm		2

		Function		1

		Documents		1

ODC3Chart

		

_1045135493.xls
Chart1

		600

		800

		1000

		1200

Cumulative Defects

Days

Cumulative Defects

Cumulative Defects versus Time

150

200

500

725

References

		No.		Author		Title		Source

		1		Yuri Chernak		A Statistical Approach to the Inspection Checklist Formal Synthesis and Improvement		IEEE Transactions On Software Engineering, Vol. 22, No. 12, December 1996

		2		M.E. Fagan		Design and Code Inspections to Reduce Errors in Program Development		IBM Systems Journal., vol. 15, No. 3, March 1976

		3		T. Gilb and D. Graham		Software Inspection		Reading, Mass.: Addison-Wesley, 1993

		4		S. Strauss and R. Ebenau		Software Inspection Process		McGraw Hill, 1994

		5		T. Menzies		Practical Machine Learning for Software Engineering and Knowledge Engineering		Handbook of Software Engineering and Knowledge Engineering, 2001

		6		Hans van Vilet		Software Engineering Principles and Practices		John Wiley & Sons, 1993

		7		Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong		Orthogonal Defect Classification - A Concept for In-Process Measurements		IEEE Transactions On Software Engineering, Vol. 18, No. 11, November 1992

		8		IBM, Center for Software Engineering		Details on Orthogonal Defect Classification for Design and Code		http://www.research.ibm.com/softeng/ODC/DETODC.HTM

		9		Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday		In-Process Evaluation for Software Inspection and Test		IEEE Transactions On Software Engineering, Vol. 19, No. 11, November 1993

		10		David A. Wheeler, Bill Brykcznski, Reginald N. Meeson, Jr.		Software Inspection: An Industry Best Practice		IEEE Computer Society Press, 1996

		11		World Wide Web Consortium		Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000		http://www.w3.org/TR/2000/REC-xml-20001006

		12		A.F. Ackerman, L.S. Buchwald, and F.H. Lewski		Software Inspections: An Effective Verification Process		IEEE Software, Vol.6, No. 3, May 1989

		13		Greg J. Badros		JavaML: A Markup Language for Java Source Code		Dept. of Computer Science and Engineering, University of Washington

		14		James Clark		XT is an implementation in Java of XSL Transformations.		http://www.jclark.com/xml/xt.html

		15		Ram Chillarege		Chapter 9:Orthogonal Defect Classification		Handbook of Software Reliability Engineering, McGraw-Hill, 1996

SDML

		

		Element		Frequency		Description		Attribute(s)		Attribute Description

		module

		csci				The CSCI that the defect was found in		name		The name of the CSCI

		defect		+				type		ODC defect type

								impact		The impact the defect has

								severity		The severity the defect has

		description				A description of the defect represented in english sentence(s)

		template				Will be used to automatically generate XSL style sheets

		trigger				Container for the ODC defect trigger

		inspection				Inspection defect triggers		value		The defect trigger that surfaces defects when reviewing design or comparing code against the documented design

		unit_test				Unit test defect triggers		value		The defect trigger associated with white box testing

		function_test				Function test defect triggers		value		The defect trigger associated with black box testing

		system_test				System test defect triggers		value		The defect trigger associated with testing the complete system

		type_statistic		?		Can be used to explain the statistics used on categorical data

		metrics		?		Contains those metrics associated with the CSCI

		tool_driven		?		Container for those metrics derived from CASE tools

		metric				Container for the metrics that follow

		sloc		?		Source Lines Of Code

		vg		?		Cyclomatic Complexity

		comment_percentage		?		Percentage of comments in source code

		weighted_methods		?		A count of all methods implemented in the class

		response		?		A count of all the methods that can be invoked by a message from a class

		coupling		?		A count of the number of other classes to which a class is coupled

		depth		?		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root node

		number_children		?		The number of immediate subclasses subordinate to a class

		criticality_risk		?		Container for the criticality and risk scores of the CSCI. Defined in CARA

		performance_ops				Associates the criticality of the CSCI with respect to performance and operational constraints		driver_value		catastrophic | critical | high | moderate | low

		safety				Associates the criticality of the CSCI with respect to safety contraints		driver_value		catastrophic | critical | high | moderate | low

		devp_cost_schedule				Associates the criticality of the CSCI with respect to the development's cost and schedule		driver_value		catastrophic | critical | high | moderate | low

		complexity				Associates the risk associated with the CSCI with respect to its complexity		driver_value		catastrophic | critical | high | moderate | low

		maturity				Associates the risk associated with the CSCI with respect to the maturity of the technology		driver_value		catastrophic | critical | high | moderate | low

		requirements				Associates the risk associated with the CSCI with respect to the stability of the requirements		driver_value		catastrophic | critical | high | moderate | low

		testability				Associates the risk associated with testing the CSCI		driver_value		catastrophic | critical | high | moderate | low

Figures & Tables

		Tables				Figures				Appendices

		Number		Title		Number		Title		Letter		Title

		1		Code Inspection Activities Mapped to ODC Defect Triggers		2		Defect Type Distributions		A		A Description of the ODC Defect Triggers

		2		Example association of a defect with a defect type and trigger		3		Defect Trigger Distribution		B		A Description of the ODC Defect Types

		3		Example checklist derived by analyzing the attributes of a defect		4		Distribution of Defect Types versus Defect Triggers		C		Software Defect Markup Language (SDML) 1.0 Document Type Definition (DTD)

		4		High Level Description of a SDML Document		5		Distribution of Defect Triggers versus Defect Types		D		JavaML Document Type Definition (DTD) taken from Dr. Badros [13]

						6		Output of applying the style sheet in figure 5 to the JavaML model in Appendix H		E		A Code Inspection Checklist derived by analyzing the defect model

						1		Cumulative Defects vs. Time		F		An example of an SDML document generated from the defect model

										G		Java Source code used to generate an XML model

										H		JavaML model of the source code depicted in Appendix G

										I		Style sheet that identifies those variables in the program, which are not initialized when declared

Outline

		Controlling Outline for MS Computer Science

		Section		Title		Topics				Completed

		1.0		Introduction		Motivation for performing this research

						Explain what will be/has been done during this research

		2.0		Related Work		Define and describe different types of inspections

						Discuss studies of their effectiveness

						Describe ODC

						Describe XML and XSL

		3.0		Methodology

		3.1		Roadmap		Identify the overall goal of the research

						Present the procedures, their objectives and what section they are addressed in

		3.2		Procedures

		3.2.1		Data Gathering		Data must be relevant to code inspections

		3.2.2		Data Classification

		3.2.2.1		Applying ODC		What we need in a defect model

						Why we chose ODC

						How to use ODC (refer to related work)

		3.2.2.2		Synthesize checklists from ODC results		Defect trigger shows what to look for

						Defect type shows where to find it

		3.2.2.3		Generate SDML documents		Identify why it is important to have SDML

						Present the SDML structure

		3.2.3		Process Automation		What are the objectives of this procedure

						What does the environment need to do

						Why use XML and XSL

						What is XML and XSL (refer to related work)

						How do you model source code using XML

						How do you model a checklist using XSL

						How do you apply XSL to XML

		4.0		Results

		4.1		Data Gathering

		4.2		Data Classification		Results from applying ODC (explain very well)

						Show other results from industry

						Show the resultant checklist and how it was derived

						Show examples of the genrated SDML files

		4.3		Process Automation		Modeling source code using XML (use other code)

						Modeling the checklist using XSL

								Variables not initiailized (VarInitialize.xsl)

								Show when and where the variables are used (InitializeUse.xsl)

								Commenting Analysis (CommentUsage.xsl)

								Conditionals using "=" instead of "==" (MisuseIf.xsl)

								Browse the source code by the method name entered (BrowseMethod.xsl)

								JavaScript to dynamically test sections of code (DynamicTest.xsl)

						Applying XSL to XML (using XT)

		5.0		Lessons Learned		How easy it is to write style sheets

						What are some observed benefits

		6.0		Conclusion

		7.0		Bibliography

		8.0		Appendices

Figure 1

		

		Period		Cumulative Defects		Time (days)

		1		150		600

		2		200		800

		3		500		1000

		4		70		1200

				Period 1		Period 2		Period 3		Period 4

		Cumulative Defects		150		200		500		725

		Time (days)		600		800		1000		1200

		Period		0		1		2		3

		Time (days)		600		800		1000		1200

		Cumulative Defects		150		200		500		725

Figure 1

		

Cumulative Defects

Days

Cumulative Defects

Cumulative Defects versus Time

_1039949320.xls
Chart2

		Logic / Flow

		language Dependency

		Internal Document

		Concurrency

		Rare Situation

Frequency

Defect Trigger

Frequency

Frequency of Defect Triggers

340

189

94

6

1

CLCS Issues

		Tim No.		Activity		Phase/Review		Frequency		Description		Module

		1251		SW.CODE		PHASE.SW.DESIGN		42		Deviations from the coding standards (line was greater than 79 characters)		Data Distribution CSCI (Data Distribution)

								1		Deviations from the coding standards (e.g., variables did not have clear names)

								1		Deviations from the coding standards (e.g., not enough commenting)

								1		Deviations from the coding standards (e.g.,switch contructs did not have default statements)

		1252		SW.CODE		PHASE.SW.CODE		1		Lines were greater than 79 characters		Data Distribution CSCI (Data Distribution)

								1		Variable identifiers not clearly named

								1		brackets in the wrong place

								1		not enough comments

								1		switch statements do not contain default statements

		1255		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values		System Services CSCI (IPC CORBA CSC)

		1260		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Lack of Java programming standard		All System Software

		1268		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		108		Uninitialized variables, empty case statements, lines greater than 80 columns		Data Distribution CSCI (Data Health)

		1269		SW.CODE.FAULT_ERROR_HANDLING		REVIEW.SW.CODE.WALKTHROUGH		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		set pointer to null after delete

								1		lack of comments

		1273		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		not enough comments		Data Distribution CSCI (Data Health)

								1		variables were not initialized

								1		variables were not well commented

								1		Functions were not preceded with comments explaining their functionality

		1274		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Data Health)

								1		Switch statements did not contain default statements

								1		Case statements did not contain Break statements

								1		Else statements were empty

								1		Delete statements were used improperly without using New

								1		Include guards were omitted

		1279		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Comments need to identify the variables used		Not Defined

								1		Column alignment was off and makes reading code very difficult

								1		Several lines were greater than 80 columns

								1		Invalid identifiers were used

		1280		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Functions were not preceded with comments explaining their functionality		Data Distribution CSCI (Constraint Mgmt)

								1		variables were not initialized

								1		variables were not well commented

		1282		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		110		coding violations w.r.t. Code Wizzard		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1283		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Constraint Mgmt)

								1		Switch statements did not contain default statements

								1		Invalid filename identifiers

								1		Unclear messages

		1286		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Coment sections preceding functions were inaccurate		Data Distribution CSCI (Constraint Mgt)

								1		Header files contained inaccurate and incomplete parameter descriptions

								1		Method names in the body were inconsistent from header files

								1		Insufficient commenting

		1287		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Error codes not properly identified		Data Distribution CSCI (Constraint Mgt)

								1		Improper identification of return values

								1		Switch statements consisted of empty Case statements

								1		Instances of empty else statements

								1		Strcpy used instead of Strncpy

		1290		SW.CODE.CONTROL_FLOWS		PHASE.SW.UNIT_TEST		1		Use of = in conditional statements instead of ==		Cmd Suppt CSCI (Cmd Mgmt CSC)

		1298		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		15		Pointer initialized to 0		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								2		Replace numbers with constants

		1299		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		7		Virtual functions must have virtual destructors		Cmd Suppt CSCI (Cmd Mgmt CSC)

								2		Public interfaces should not contain data members

								3		Public member functions must always return const handles to data members

								4		Do not directly access global data from a constructor

								17		Prefer C++ style casts

								1		Pass objects by reference instead of by value

								1		Return objects by reference instead of by value

		1300		SW.CODE		PHASE.SW.UNIT_TEST		2		Define a copy constructor and operator= for classes with dynamically allocated memory		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)

								4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second

								4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class

								27		Prefer C++ style casts

								1		Virtual functions must have virtual destructors

		1345		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		2		Revisions need comments which identify author, date, and description		Data Distribution CSCI (Constraint Mgt)

								2		Methods require comments depicting their purpose

								1		Delete debug code

								1		Make main a separate file

		1346		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Missing file headers		Data Distribution CSCI (Constraint Mgt)

								1		else portions of the if statements are not indented

								3		No commenting

								3		List parameters, returns, and exceptions in headers

								1		Need copy constructor and assignment operator

								1		Comments need to identify the variables used

								1		Need deletes for all new methods

		1357		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Private data members require comments		Data Distribution CSCI (Constraint Mgt)

								2		Nothing is being returned

								1		Counters I and j are not commented

		1358		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Directory paths must not be hardcoded		Data Distribution CSCI (Constraint Mgt)

								2		Add copy constructor and assignment operator for pointer declared as private data member

								1		Add a default case for the switch statement

								1		Return int not a pointer

								14		Parameters and counters require comments

								1		variable is declared as global, could cause collision

								1		Code for checking boundary conditions is missing

								1		Constraint parameter is passed with method

								1		main method needs to be placed in separate file

								8		Delete debug code and dead code

		1360		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Initialize all variables		Data Distribution CSCI (Constraint Mgt)

								1		Constants need to appear on the left side of comparison operators

								1		Main should be in a separate file

								1		Using strcpy instead of strncpy

		1384		SW.CODE.SUPPORT_MAINTAINABILITY		PHASE.SYS.TEST		1		Method had a complexity of 30 versus the rule of thumb 10		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*

		1413		SW.CODE		Systems Test		1		Mutex locking is not being used around object creation methods, which may result in memory leaks		Cmd Suppt CSCI (All CSCs)

		1459		Code Analysis		Code & Unit Test		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software		CLCS System (CLCS)

		1464		Code Analysis		Code & Unit Test		1		Status of method execution is not returned		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?

								1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen

								1		Identify methods that are non-thread safe (e.g., those using a static buffer)

								1		Pointer arithmetic is highly discouraged

								1		Variables without descriptive names or no comments associated with them are highly discouraged

								3		The meaning of the comments are unclear

								1		Algorithm allows the pointer to extend past the array's upper bound

		1465		Code Analysis		Code & Unit Test		1		No commenting		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string

								1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized

		1466		Code Analysis		Code & Unit Test		1		Classes need to have insertion or assignment methods for their data members		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

		1467		Code Analysis		Code & Unit Test		1		Standards for class structure is not followed (Class, function, data members)		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Standard naming conventions are not followed

								1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)

								2		variables need to be initialized

								1		there is no check to see if variable exceed another before the for loop is entered

								1		Use strtod() to check for valid C/C++ format number

		1468		Code Analysis		Code & Unit Test		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file		Cmd Suppt CSCI (All CSCs)

		1470		Code Analysis		Code & Unit Test		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Postconditions and exceptions are not always stated in the comments

		1471		Code Analysis		Code & Unit Test		3		Code does not follow what the comments say		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								2		Variables are not checked for valid data before critical use

								2		Methods that do nothing (e.g., return this) should state they do nothing and why

		1472		Code Analysis		Code & Unit Test		6		Post-conditions are required, lack of comments in general		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?

								9		Checks to determine pointers actually point to valid data before they are used

								1		Does not check if element 0 of the array is defined before its use

								3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation

								4		Redundant code is a good candiate for a subroutine

								1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers

								6		Initialize variables

		1473		Code Analysis		Code & Unit Test		1		Files are extremely large and functions are easily hundreds of lines long		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Proprietary system calls provided by the operating system requires commenting and tracking

								1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type

								1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)

								1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))

								1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code

								1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code

								1		Masking literals need to be named to constants (e.g., 0x800000000)

		1478		Interface Analysis		Code & Unit Test		3		Initialize methods have no error checking to guarantee the variables have been properly initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								9		Arguments to methods do not have comments associated with them concerning their valid values

		1483		Code Analysis		Code & Unit Test		2		Dereferencing pointers without checking them first		Cmd Suppt CSCI (Cmd Auth CSC)

								1		No checking method returns for failure status

								1		Commenting states specific error messages can be generated, however the code does not reflect this

								2		Comments do not reflect the code

								1		C++ automatically converts enums to integers, which allows for a wide range of values

								1		It is unclear what meaning "<" can have for a bit vector

								1		variables not being initialized, especially constants

								1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer

		1484		Code Analysis		Code & Unit Test		1		Read and write priveledges on files need to be examined		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Preconditions are not stated in the comments of methods

								1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed

								2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance

								1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined

		1486		Code Analysis		Code & Unit Test		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines		CMD Suppt CSCI (Cmd Auth CSC)

		1489		Code Analysis		Code & Unit Test		1		Member variables not initialized in the Constructor		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Commenting is confusing

								2		Return warnings upon successful termination

								1		Comments conflict with the code

								1		Using static variables for error values leaves multi-threaded applications with no reliable error checking

								1		Errors should be past back through the argument list

								1		Define where System Messages are to be propogated

								1		Multi-threaded code must use thread safe constructs

		1490		Code Analysis		Code & Unit Test		3		Commenting is confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Assertions need to be added to ensure all variables used in this routine are properly initialized

								1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set

								1		Enums should be integer constants to make their meaning clearer

								3		Dereferencing pointers without checking them first

								1		The destructor for this calss needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.

								1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations

		1491		Code Analysis		Code & Unit Test		4		Comments are confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		An enum is used where integer constants are implied

								2		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Vectors are used without checking the bounds nor if there are values in the vector

								1		String classes are used in conjunction with C style string functions

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

								1		Constants nees to have comments

		1492		Code Analysis		Code & Unit Test		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

		1494		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		No postconditions are stated for methods		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		No preconditions are stated for methods

								1		Comments are confusing

								4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)

								2		Variable naming is confusing

		1495		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		3		Comments are unclear		Cmd Suppt CSCI (Cmd Mgmt CSC)

								3		Variables need to be checked for proper values

		1496		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are used outside of their scope		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Method are declared but never used, hence dead code

								3		Comments contradict the code

		1497		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		6		Variables are not initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1498		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1501		SW.CODE		Code & Unit Test		1		Variables are not checked for valid data		Data Distribution CSCI (Data Fusion)

								630

The IV&V Activity
being performed
when the issue was
identified

The phase or review in which the issue was identified

The number of times the issue occurred

Filtered Issues

		Trigger		Type		Severity		Frequency		General Description		Template		Module

		language Dependency		documentation		3		42		line was greater than 79 characters				K

		language Dependency		documentation		3		1		variables did not have clear names				K

		language Dependency		documentation		3		1		not enough commenting				K

		language Dependency		checking		3		1		switch contructs did not have default statements				K

		language Dependency		documentation		3		1		Lines were greater than 79 characters				K

		language Dependency		documentation		3		1		Variable identifiers not clearly named				K

		language Dependency		documentation		3		1		brackets in the wrong place				K

		language Dependency		documentation		3		1		not enough comments				K

		language Dependency		checking		3		1		switch statements do not contain default statements				K

		Logic / Flow		algorithm		3		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values				O

		language Dependency		documentation		3		1		Lack of Java programming standard				A

		Logic / Flow		assignment		3		108		Uninitialized variables, empty case statements, lines greater than 80 columns				M

		Logic / Flow		algorithm		3		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor				F

		Logic / Flow		assignment		3		2		set pointer to null after delete				F

		Logic / Flow		documentation		3		1		lack of comments				F

		Internal Document		documentation		3		1		not enough comments				M

		Internal Document		assignment		3		1		variables were not initialized				M

		Internal Document		documentation		3		1		variables were not well commented				M

		Internal Document		documentation		3		1		Functions were not preceded with comments explaining their functionality				M

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				M

		language Dependency		checking		3		1		Switch statements did not contain default statements				M

		language Dependency		checking		3		1		Case statements did not contain Break statements				M

		language Dependency		checking		3		1		Else statements were empty				M

		language Dependency		algorithm		3		1		Delete statements were used improperly without using New				M

		language Dependency		checking		3		1		Include guards were omitted				M

		language Dependency		documentation		3		1		Comments need to identify the variables used				N

		language Dependency		documentation		3		1		Column alignment was off and makes reading code very difficult				N

		language Dependency		documentation		3		1		line was greater than 79 characters				N

		language Dependency		documentation		3		1		Invalid identifiers were used				N

		Internal Document		documentation		2		1		Functions were not preceded with comments explaining their functionality				J

		Internal Document		assignment		2		1		variables were not initialized				J

		Internal Document		documentation		2		1		variables were not well commented				J

		Logic / Flow		assignment		3		110		coding violations w.r.t. Code Wizzard				F

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		3		1		Switch statements did not contain default statements				J

		language Dependency		documentation		3		1		Invalid filename identifiers				J

		language Dependency		documentation		3		1		Unclear messages				J

		Internal Document		documentation		2		1		Coment sections preceding functions were inaccurate				J

		Internal Document		documentation		2		1		Header files contained inaccurate and incomplete parameter descriptions				J

		Internal Document		interface		2		1		Method names in the body were inconsistent from header files				J

		Internal Document		documentation		2		1		Insufficient commenting				J

		language Dependency		documentation		2		1		Error codes not properly identified				J

		Internal Document		documentation		2		1		Improper identification of return values				J

		language Dependency		checking		2		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		2		1		Instances of empty else statements				J

		language Dependency		algorithm		2		1		Strcpy used instead of Strncpy				J

		language Dependency		checking		1		1		Use of = in conditional statements instead of ==				H

		Logic / Flow		assignment		3		15		Pointer initialized to 0				I

		language Dependency		assignment		3		2		Replace numbers with constants				I

		language Dependency		algorithm		3		7		Virtual functions must have virtual destructors				H

		language Dependency		function		3		2		Public interfaces should not contain data members				H

		language Dependency		interface		3		3		Public member functions must always return const handles to data members				H

		language Dependency		algorithm		3		4		Do not directly access global data from a constructor				H

		language Dependency		checking		3		17		Prefer C++ style casts				H

		language Dependency		algorithm		3		1		Pass objects by reference instead of by value				H

		language Dependency		algorithm		3		1		Return objects by reference instead of by value				H

		language Dependency		algorithm		3		2		Define a copy constructor and operator= for classes with dynamically allocated memory				I

		language Dependency		algorithm		3		8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)				I

		language Dependency		algorithm		3		4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second				I

		language Dependency		algorithm		3		4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class				I

		language Dependency		checking		3		27		Prefer C++ style casts				I

		language Dependency		algorithm		3		1		Virtual functions must have virtual destructors				I

		Internal Document		documentation		3		2		Revisions need comments which identify author, date, and description				J

		Internal Document		documentation		3		2		Methods require comments depicting their purpose				J

		language Dependency		checking		3		1		Delete debug code				J

		language Dependency		algorithm		3		1		Make main a separate file				J

		Internal Document		documentation		3		1		Missing file headers				J

		language Dependency		documentation		3		1		else portions of the if statements are not indented				J

		Internal Document		documentation		3		3		No commenting				J

		Internal Document		documentation		3		3		List parameters, returns, and exceptions in headers				J

		language Dependency		algorithm		3		1		Need copy constructor and assignment operator				J

		Internal Document		documentation		3		1		Comments need to identify the variables used				J

		language Dependency		algorithm		3		1		Need deletes for all new methods				J

		Internal Document		documentation		3		1		Private data members require comments				J

		language Dependency		checking		3		2		Nothing is being returned				J

		Internal Document		documentation		3		1		Counters I and j are not commented				J

		Internal Document		assignment		3		1		Directory paths must not be hardcoded				J

		language Dependency		algorithm		3		2		Add copy constructor and assignment operator for pointer declared as private data member				J

		language Dependency		checking		3		1		Add a default case for the switch statement				J

		language Dependency		algorithm		3		1		Return int not a pointer				J

		Internal Document		documentation		3		14		Parameters and counters require comments				J

		Logic / Flow		function		3		1		variable is declared as global, could cause collision				J

		Logic / Flow		checking		3		1		Code for checking boundary conditions is missing				J

		language Dependency		documentation		3		1		Constraint parameter is passed with method				J

		language Dependency		algorithm		3		1		main method needs to be placed in separate file				J

		language Dependency		checking		3		8		Delete debug code and dead code				J

		language Dependency		assignment		3		1		Initialize all variables				J

		language Dependency		checking		3		1		Constants need to appear on the left side of comparison operators				J

		language Dependency		algorithm		3		1		Main should be in a separate file				J

		language Dependency		algorithm		3		1		Using strcpy instead of strncpy				J

		Rare Situation		function		3		1		Method had a complexity of 30 versus the rule of thumb 10				H

		Logic / Flow		algorithm		3		1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*				H

		Concurrency		timing		4		1		Mutex locking is not being used around object creation methods, which may result in memory leaks				D

		language Dependency		documentation		3		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software				B

		Logic / Flow		checking		2		1		Status of method execution is not returned				G

		Internal Document		assignment		2		1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?				G

		Internal Document		documentation		2		1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen				G

		Concurrency		timing		2		1		Identify methods that are non-thread safe (e.g., those using a static buffer)				G

		Logic / Flow		checking		2		1		Pointer arithmetic is highly discouraged				G

		Logic / Flow		documentation		2		1		Variables without descriptive names or no comments associated with them are highly discouraged				G

		Internal Document		documentation		2		3		The meaning of the comments are unclear				G

		Logic / Flow		checking		2		1		Algorithm allows the pointer to extend past the array's upper bound				G

		Internal Document		documentation		4		1		No commenting				G

		Logic / Flow		assignment		4		1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string				G

		Logic / Flow		assignment		4		1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized				G

		language Dependency		assignment		3		1		Classes need to have insertion or assignment methods for their data members				G

		language Dependency		documentation		2		1		Standards for class structure is not followed (Class, function, data members)				G

		language Dependency		documentation		2		1		Standard naming conventions are not followed				G

		Logic / Flow		assignment		2		1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)				G

		Logic / Flow		assignment		2		2		variables need to be initialized				G

		Logic / Flow		checking		2		1		there is no check to see if variable exceed another before the for loop is entered				G

		Logic / Flow		checking		2		1		Use strtod() to check for valid C/C++ format number				G

		language Dependency		documentation		3		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file				D

		language Dependency		assignment		4		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				G

		Internal Document		documentation		4		1		Postconditions and exceptions are not always stated in the comments				G

		Internal Document		documentation		2		3		Code does not follow what the comments say				G

		Logic / Flow		checking		2		2		Variables are not checked for valid data before critical use				G

		Logic / Flow		documentation		2		2		Methods that do nothing (e.g., return this) should state they do nothing and why				G

		Internal Document		documentation		2		6		Post-conditions are required, lack of comments in general				G

		Logic / Flow		documentation		2		3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?				G

		Logic / Flow		checking		2		9		Checks to determine pointers actually point to valid data before they are used				G

		Logic / Flow		checking		2		1		Does not check if element 0 of the array is defined before its use				G

		Internal Document		documentation		2		3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation				G

		Logic / Flow		algorithm		2		4		Redundant code is a good candiate for a subroutine				G

		Logic / Flow		checking		2		1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers				G

		Logic / Flow		assignment		2		6		Initialize variables				G

		language Dependency		function		2		1		Files are extremely large and functions are easily hundreds of lines long				G

		Internal Document		documentation		2		1		Proprietary system calls provided by the operating system requires commenting and tracking				G

		Logic / Flow		algorithm		2		1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type				G

		Logic / Flow		checking		2		1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)				G

		Logic / Flow		checking		2		1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))				G

		Internal Document		documentation		2		1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code				G

		Logic / Flow		checking		2		1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code				G

		Logic / Flow		assignment		2		1		Masking literals need to be named to constants (e.g., 0x800000000)				G

		Logic / Flow		checking		3		3		Initialize methods have no error checking to guarantee the variables have been properly initialized				F

		Internal Document		documentation		3		9		Arguments to methods do not have comments associated with them concerning their valid values				F

		Logic / Flow		checking		2		2		Dereferencing pointers without checking them first				E

		Logic / Flow		checking		2		1		No checking method returns for failure status				E

		Logic / Flow		documentation		2		1		Commenting states specific error messages can be generated, however the code does not reflect this				E

		Logic / Flow		documentation		2		2		Comments do not reflect the code				E

		Logic / Flow		checking		2		1		C++ automatically converts enums to integers, which allows for a wide range of values				E

		Logic / Flow		documentation		2		1		It is unclear what meaning "<" can have for a bit vector				E

		Logic / Flow		assignment		2		1		variables not being initialized, especially constants				E

		Logic / Flow		checking		2		1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer				E

		Concurrency		checking		3		1		Read and write priveledges on files need to be examined				F

		Internal Document		documentation		3		1		Preconditions are not stated in the comments of methods				F

		Concurrency		timing		3		1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed				F

		Logic / Flow		assignment		3		2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance				F

		Logic / Flow		function		3		1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined				F

		Internal Document		checking		2		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines				E

		Logic / Flow		assignment		3		1		Member variables not initialized in the Constructor				F

		Internal Document		documentation		3		1		Commenting is confusing				F

		Logic / Flow		checking		3		2		Return warnings upon successful termination				F

		Internal Document		documentation		3		1		Comments conflict with the code				F

		Concurrency		timing		3		1		Using static variables for error values leaves multi-threaded applications with no reliable error checking				F

		Logic / Flow		algorithm		3		1		Errors should be past back through the argument list				F

		Logic / Flow		function		3		1		Define where System Messages are to be propogated				F

		Concurrency		timing		3		1		Multi-threaded code must use thread safe constructs				F

		Internal Document		documentation		2		3		Commenting is confusing				F

		Logic / Flow		assignment		2		2		Assertions need to be added to ensure all variables used in this routine are properly initialized				F

		Internal Document		checking		2		1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set				F

		Logic / Flow		assignment		2		1		Enums should be integer constants to make their meaning clearer				F

		Logic / Flow		checking		2		3		Dereferencing pointers without checking them first				F

		language Dependency		checking		2		1		The destructor for this class needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.				F

		language Dependency		algorithm		2		1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations				F

		Internal Document		documentation		3		4		Comments are confusing				F

		Logic / Flow		checking		3		1		An enum is used where integer constants are implied				F

		Logic / Flow		checking		3		2		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		checking		3		1		Vectors are used without checking the bounds nor if there are values in the vector				F

		Logic / Flow		function		3		1		String classes are used in conjunction with C style string functions				F

		Logic / Flow		assignment		3		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Logic / Flow		documentation		3		1		Constants need to have comments				F

		Logic / Flow		checking		2		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)				F

		Logic / Flow		checking		2		1		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		assignment		2		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Internal Document		documentation		3		1		No postconditions are stated for methods				H

		Internal Document		documentation		3		1		No preconditions are stated for methods				H

		Internal Document		documentation		3		1		Comments are confusing				H

		Logic / Flow		checking		3		4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)				H

		Internal Document		documentation		3		2		Variable naming is confusing				H

		Internal Document		documentation		3		3		Comments are unclear				C

		Logic / Flow		checking		3		3		Variables need to be checked for proper values				C

		Logic / Flow		checking		4		1		Variables are used outside of their scope				F

		Logic / Flow		checking		4		2		Method are declared but never used, hence dead code				F

		Internal Document		documentation		4		3		Comments contradict the code				F

		Logic / Flow		assignment		2		6		Variables are not initialized				F

		Logic / Flow		checking		1		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns				F

		Logic / Flow		checking		3		1		Variables are not checked for valid data				L

								630

The number of times the issue occurred

Defect Type Chart

		Type		Frequency

		assignment		273

		documentation		161

		checking		126

		algorithm		53

		function		8

		timing		5

		interface		4

		Relationship		0

		Build		0

The number of times the issue occurred

Defect Type Chart

		

Frequency

Defect Type

Number of Defects

Frequency of Defects

Defect Trigger Chart

		Trigger		Frequency		Percent

		Logic / Flow		340		53.97

		language Dependency		189		30.00

		Internal Document		94		14.92

		Concurrency		6		0.95

		Rare Situation		1		0.16

		Important Note:		The trigger classification can not be deemed one hundred percent reliable.

				The activity that surfaced the defect was not recorded by the defect identification team, so this required

				the authors to attempt to identify which activity was being performed when the defect was found

		Analysis:		Logic / Flow was responsible for identifying 54 percent of the overall defects found

				A few examples of this trigger type are control flow analysis, global entity-cross referencing, object use analysis

				exception propogation analysis, and call dependency analysis

				Language Dependency was responsible for finding 30 precent of the overall defects found

				This trigger type describes activities that deal with analyzing the source code with respect to a specific standard

				and focuses on checking language specific details and compilation concerns

				Internal Document was responsible for finding 15 precent of the overall defects found

				This trigger type searches for incorrect information, inconsistency, or incompleteness within the code and its

				documentation (including comments). This activity is also responsible for assessing how maintainable the code

				will be in its current form

The number of times the issue occurred

Defect Trigger Chart

		

Frequency

Defect Trigger

Frequency

Frequency of Defect Triggers

VS Charts

		

				Concurrency		Internal Document		Language Dependency		Logic/Flow		Rare Situation

		timing		5		0		0		0		0		5

		checking		1		2		70		53		0		126

		documentation		0		87		62		12		0		161

		assignment		0		4		7		262		0		273

		interface		0		1		3		0		0		4

		algorithm		0		0		44		9		0		53

		function		0		0		3		4		1		8

				6		94		189		340		1		630

VS Charts

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

timing

checking

documentation

assignment

interface

algorithm

function

Defect Trigger

Frequency

Defect Trigger vs Defect Type

IV&V Triggers

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Type

Frequency

Defect Type vs Defect Trigger

Severity Chart

		IV&V Analysis Level Definitions

		Phase		Activity		Basic		Limited		Focused		Comprehensive		Trigger

		Requirements Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements		x		x		x		x		Conformance

				Validate ability of requirements to meet system needs		x		x		x		x		Conformance

				Verify traceability to and from parent requirements		x		x		x		x		Conformance

				Analyze data/adaptation requirement		x		x		x		x

				Analyze testability, qualification requirements		x		x		x		x

				Analyze data flow, control flow, moding and sequencing		x		x		x		x

				Assess development metrics		x		x		x		x

				Analyze development risks/mitigation plans		x		x		x		x

				Analyze timing and sizing requirements		x		x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform engineering analysis of key algorithms						x		x

				Review/use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Design Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x

				Validate ability of design to meet system needs				x		x		x

				Verify traceability to and from requirements				x		x		x

				Analyze database design				x		x		x

				Analyze design testability, qualification requirements				x		x		x

				Analyze design data flow, control flow, moding, sequencing				x		x		x

				Analyze control logic, error/exception handling design				x		x		x

				Assess design development metrics				x		x		x

				Analyze development risks/mitigation plans				x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform design analysis of select critical algorithms						x		x

				Review /use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Code Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x		Design Conformance

				Verify Traceability to and from design				x		x		x		Design Conformance

				Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)				x		x		x		Design Conformance

				Verify supportability and maintainability				x		x		x

				Assess code static metrics				x		x		x

				Verify CSU & CSC level logical structure and control flow				x		x		x		logic

				Verify internal data structures and data flow/usage						x		x		logic

				Verify error and exception handling						x		x		logic

				Verify code & external I/O data consistency						x		x		logic

				Review code compilation results & syntax checking						x		x

				Verify correct adaptation data & ability to reconfigure						x		x

				Verify correct operating system & run time libraries						x		x

				For select algorithms, verify correctness and stability under full range of potential input conditions								x

				Verify code data compliance with data dictionary								x

				Verify compliance with coding standards								x		language

		Software Test Analysis		Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions		x		x		x		x

				Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs		x		x		x		x

				Verify test cases traceability and coverage of software requirements, operational needs, and capabilities		x		x		x		x

				Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives		x		x		x		x

				Analyze correct dispositioning of software test anomalies		x		x		x		x

				Validate software test results compliance with test acceptance criteria		x		x		x		x

				Verify trace and successful completion of all software test case objectives		x		x		x		x

				Verify ability of software test environment plans and designs to meet software testing objectives				x		x		x

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes				x		x		x

				Analyze STD procedures for test setup, execution, and data collection						x		x

				Monitor execution of software testing						x		x

				Analyze select CSC test plans, procedures, and results to verify adequate logic path coverage, testing of full range of input conditions, error and exception handling, key algorithm stability, and performance in compliance with the design.								x

				Perform life cycle IV&V on software test environment components								x

		System Test Analysis		Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs

				Verify test case traceability and coverage of system requirements, operational needs, and capabilities

				Analyze correct dispositioning of software test anomalies

				Validate ST results compliance with test acceptance criteria

				Verify trace and successful completion of all ST case objectives

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes

System test analysis activities are applied independent of IV&V Analysis Levels

Defect Type

		Severity		Frequency

		One		2

		Two		109

		Three		505

		Four		14

		Five		0

		Severity		Description

		One		Prevent the accomplishment of an essential capability

				Jeapordize safety, security, or other requirements designated critical

		Two		Adversely affect the accomplishment of an essential capability and no work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, and no work-around solution is known

		Three		Adversely affect the accomplishment of an essential capability but a work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, but a work-around solution is known

		Four		Result in user/operator inconveniences but does not affect a required operational or mission essential capability

				Result in inconvenience for development or maintenance personnel, but does not affect accomplishment of these responsiblities

		Five		Any other affect

The number of times the issue occurred

Defect Type

		0

		0

		0

		0

		0

Frequency

Severity

Frequency

Defect Severity

ODC Triggers

		Orthogonal Defect Classification

		The selection of the defect type captures the nature of the change

		Defect Type		Description		Examples

		Function / Class / Object		The error should require a formal design change, as it affects significant capability, end-user features, product interfaces, interface with hardware architectures, or global structures. The error occurred when implementing the state and capabilities of		A database did not include a field, although the requirements specified it

						A database included a field but it was to small to contain possible values

						A class was omitted during system design

						An object was not instantiated before being accessed by other objects of the system

		Assignment / Initialization		Value(s) assigned incorrectly or not assigned at all; but note that a fix involving multiple assignment corrections may be of type Algorithm		Internal variable or variable within a control block did not have correct value, or did not have any value at all

						Initialization of parameters

						Resetting of variable's value

						The instance variable capturing a characteristic of an object is omitted

						The instance variables that capture the state of an object are not correctly initialized

		Interface / OO Messages		Communication problems between modules, components, device drivers, objects, functions vi macros, call statements, control blocks, parameter lists		A database implements both insertion and deletion functions, but the deletion interface was not made callable

						The interface specifies a pointer to a number, but the implementation is expecting a pointer to a character

						The OO message incorrectly specifies the name of the service

						The number and/or types of parameters of the OO message do not conform with the signature of the requested service

		Checking		Errors caused by missing or incorrect validation of parameters or data in conditional statements. It might be expected that a consequence of checking for a value would require additional code such as a do while loop or branch. If the missing or incorrec		Value greater than 100 is not valid, but the check to make sure that the value was less than 100 was missing

						The conditional loop should have stopped on the ninth iteration, but it kept looping while the counter was <=10

						Is there checking or debugging code that is left in the function that shouldn't be

		Timing/Serialization		Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong serialization technique was employed		Serialization is missing when making updates to a shared control block

						A hierarchical locking scheme is in use, but the defective code failed to acquire the locks in the prescribed sequence

		Relationship		Problems related to associations among procedures, data structures and objects. Such associations may be conditional		The structure of code/data in one place assumes a certain structure of code/data in another. Without appropriate consideration of their relationship, program will not execute or it executes incorrectly

						The inheritance relationship between two classes is missing or incorrectly specified

						The limit on the number of objects that may be instantiated from a given class is incorrect and causes performance degradation of thsystem

		Build/Package/Merge		Describe errors that occur due to mistakes in library systems, management of changes, or version control

		Documentation		Errors that affect both publications and maintenance notes		Function does not have sufficient commenting or it does not describe the code accurately

						Are variables described when declared

						Variable naming conventions do not follow the standard or are not descriptive

		Algorithm / Method		Efficiency or correctness problems that affect the task and can be fixed by (re)implementing an algorithm or local data structure without the need for requesting a design change. Problem in the procedure, template, or overloaded function that describes a		The low-level designcalled for the use of an algorithm that improves throuput over the link by delaying transmission of some messages, but implementation transmitted all messages as soon as they arrived. The algorithm that delayed transmission was missin

						The algorithm for searching a chain of control blocks was corrected to use a linear-linked list instead of a circular-linked list

						The number and/or types of parameters of a method or an operation are incorrectly specified. A method or an operation is not made public in the specification of a class

IV&V Methodology

				Triggers		Explanation		Examples

		Inspection		Design Conformance		The document reviewer or the code inspector detects the defect while comparing the design element or code segment being inspected with its specification in the preceding stage(s). Faults largely related to the completeness of the product being designed wi		The code didn't implement the case when no data exists

								On one screen, all font is bold while in another it is not

				Logic / Flow		The inspector uses knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete		Memory in this subroutine needs to be allocated before storing these values

								A value assignment is spelled incorrectly

				Lateral Compatibility		The inspector with broad-based experience, detects an incompatibility between the function described by the design document or code, and other systems, products, services, components, or modules with which it must interface		A graphics application was not able to read a gif file put out by some other application package it is supposed to work with

				Backward Compatibility		The inspector uses extensive product/component experience to identify an incompatibility between the function described by the design document or the code, than that of earlier versions of the same product or component or with n to n+1 (subsequent release		The install option in the current product hard codes the drive for the install whereas the previous version just used the current drive

								The previous version defaulted to 0 decimal places for numeric data but the current defaults to 2 decimal places

				Concurrency		The inspector is considering the serialization necessary for controlling a shared resource when the defect is discovered. This would include serialization of multiple functions, threads, processes, or kernel contexts as well as obtaining and releasing lo		Routine A didn't release the lock before calling routine B which requests the lock

								This variable incorrectly reset to 0 by routine A after routine B had already incremented it

				Internal Document		There is incorrect information, inconsistency, or incompleteness within internal documentation. It has to do with overall completeness of the design and ensures that there is consistency between the different parts of the proposed design or implementatio		The prologue for subroutine A lists only 3 parameters when there are actually 4

				Language Dependency		The developer detects the defect while checking the language specific detatils of the implementation of a component or a function. Language standards, compilation concerns, and language specific efficiencies are examples or potential areas of concern		The inspector is checking C code and sees a "=" that should be "=="

				Side Effect		The inspector uses extensive experience or product knowledge to foresee some system, product, function, or component behavior which may result from the design or code under review. The side effects would be characterized as a result of common usage or co		While looking at a pointer that accesses data by byte, the inspector realizes in another part of the code, the bytes could be in reverse order, so that the pointer won't be accessing them correctly

				Process		The inspector uses experience and best practices to identify issues within the development activities		The developing organization has not institutionalized a standard development practice

								The developing organization has not identified any tools or have not identified the appropriate tools to aid in the development of the system

				Rare Situations		The inspector uses extensive experience or product knowledge to foresee some system behavior which is not considered or addressed by the documented design or code under review, and would typically be associated with unusual configurations or usage. These		Requirements state that a network can handle 250 machines. A bug occurs when a customer has 1000 machines. This is not workload stress because the requirements state that only 250 machines are currently able to be accomadated

		Unit Test		Simple Path		In white/Gray Box Testing, the test case that found the defect was executing a simple code path related to a single function		Tried executing the "default" path of a case statement but since it didn't exist, the test failed

				Complex Path		In White/Gray Box Testing, the test case that found the defect was executing some contrived combinations of code paths related to multiple functions		Path failed because one function released memory that subsequently was used in another function

								Path failed because a global variable is being accessed and incremented in multiple functions

		Function Test		Test Coverage		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function, using no parameters or a single set of parameters		The tester tried to delete a city from the database but it couldn't be deleted

				Test Variation		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function but using a variety of inputs and parameters		When the tester tried to add one more character than the maximum allowable, the software hung

				Test Sequencing		During black box testing, the test case that found the defect executed multiple functions in a very specific sequence		The test case first added a record, then deleted it, and then tried to add it again but got the message that you cannot add a record that already exists

				Test Interaction		During black box testing, the test case that found the defect initiated an interaction among two or more bodies of code. This is more involved than a simple serial sequence of the executions		Cant add data to fields after the record has been created

		System Test		Workload Volume/Stress		The system is operating at or near some resource limit		When the system is idle for 10 minutes it hangs

				Recovery/Exception		The system is being tested with the intent of invoking an exception handler or some type of recovery code		Unexpected errors get converted to to other types of errors instead of the expected one

				Startup/Restart		The system was being initialized or restarted		After pulling the plug on the cpu, the system was unable to restart until certain files were cleaned up

				Hardware Configuration		The system is being tested to ensure functions execute correctly under specific hardware configurations

				Software Configuration		The system is being tested to ensure functions execute correctly under specific software configurations

				Blocked Test Execution		The product is operating well within resource limits and the defect surfaced without any particular strategy		Wanted to check for workload stress by printing 1000 jobs. However, when Print was selected, nothing happened

Template

		IV&V: A Life Cycle Engineering Process for Quality Software

		Robert O. Lewis, 1992, John Wiley & Sons, Inc.

		Code Verification Activities

		Phase		Activity		Notes		ODC Trigger

		Documentation Review		Verify consistency between the code and the software design document (SDD)		Are the documents and the code meeting the intended purpose?		Design Conformance

						Is the technical content consistent, complete, clear, correct, and testable?

						The goal is to find discrepancies between the SDD and the Code

		Process Review		Verify the specified standards and practices are being followed		These are specified in the Software Development Plan (SDP)		Process

						Must look at a system level as well as individual units

						Assess the developer's metrics program

						Verify developer's processes meet applicable standards

				Verify the developer is using specified coding tools		Simple check to ensure the appropriate tools are being used

				Verify versions of the compiler, operating system, and utilities		IV&V looks for any inconsistencies and stays coordinated with the developer's configuration management organization		Language Dependency

				Review software library and release/version control		Monitor the developer's control and release procedures, adherence to scheduled events, completeness of the product and consistency with which the release occurs		Process

		Code Review		Verify the logical structure and syntax with static analysis		control flow analysis		Logic / Flow

						standards analysis (coding standards)		Language Dependency

						global entity cross-reference: representation clause, entity cross-reference, type/object cross-reference, type dependency, exception cross-reference, generic instantiation		Logic / Flow

						Object use analysis		Logic / Flow

						exception propogation analysis		Logic / Flow

						call dependency analysis: invocation cross-reference, invocation bands, compilation unit dependency		Logic / Flow

						verify the code is maintainable		Backward Compatibility

						source code data collection and assess metrics		Rare Situation

				Verify terms between data dictionary and code		compare the entries in the data dictionary to the element names appearing both in the code and in the interface, global, and local data definitions in the SDD		Internal Document

						This activity ensures consistency among the three items that share the data definitions

				Verify sample input and output data		During development, it is customary for the developer to generate sample input data that are representative to the actual input data. Coincidentally, the system generates output data that have a correlation to these particular inputs.		Rare Situation

						IV&V checks to make sure the developer is adequately identifying and archiving I/O data and that the correct input data are specified for particular tests

				Verify algorithms per the software design document (SDD)		Ensure the consistency between the algorithms in the code and those defined in the SDD to determine if they are accurately and completely implemented		Design Conformance

						Verify any timing contraints required		Concurrency

CLCS Modules

		The Defect Type you wish to search for		Where to look		How to detect		Explanation

		Documentation		Readability		Line length exceeding 79 characters

						Brackets and indentations in the wrong place

						Class structure (class, functions, and then data members)

				Data Declarations		Variables must have comments the first time they are used

						Are the units on the data declarations commented

						Are the ranges or limitations of values defined for the variables

						Are flags documented to the bit level

						Has each global variable been commented where declared

						Are counters and MAGIC numbers commented

						Identifiers must have clear names

				Methods		Methods must have comment headers explaining their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw

						Comments must accurately describe the code

						Variables local to the method must follow the conditions stated in Data Declarations

						Methods that do nothing (e.g., return this) need to be commented that they do nothing and the reason

				Control Structures		Is each control structure commented

				General		Comment percentage		See the worksheet entitled OO Metrics for Comment Percentage remarks

						Does each file have a header

						Error and message propogation must be clearly identified

						Revisions need comments that identify the author, date, and description of the revision

						Complex code requires comments		See the worksheet entitled OO Metrics for Comment Percentage remarks

		Assignment		Pointers		Set to NULL or 0 (zero) after deleting memory it points to

						Avoid Pointer arithmetic

				Variables		Initialize variables

						All initialization needs to be done in one place

						Initializing strings by hardcoding in "\0" will place 2 null terminators

						MAGIC and hardcoded literals need to be assigned to a constant

				Operators		"&=" should not be used with booleans		May yield a correct results but it may be slower than logical operators

				Class		Must have assignment methods for their data members

		Checking		include guards are omitted

				Delete debugging code

				Code dependent on specific operating system specs (e.g., size of int) may cause future porting issues

				Constructs		switch constructs with empty case statements

						switch constructs with no default clauses

						switch constructs with no break statements

						if statements contain empty else clauses

						Vectors and arrays must check their bounds

						vectors and arrays must check their index being referenced does in fact contain valid data

						Before loops are entered the code does not check if variable exceeds another

				Comparison		if conditionals using "=" instead of "=="

						constants must appear on left side of comparison operators

				Pointers		must check they point to something before they get dreferenced

				Data		variables declared as 8-bit unsigned int must check they don't go out of range (0<=var<=256)

						Where strings get converted to other formats (e.g., integers) you must check that the string first contains a valid conversion type

						Variables that are used outside their scope

				Methods		return values must be checked

						must check their parameters

						must assert() all variables used

						get rid of methods that are never used (dead code)

						Status of routine execution is not returned

				Interfaces		Public member functions must always return const handles to data members

		Algorithm		The use of certain functions

				Main must be a separate file

				Virtual functions must have virtual destructors

				Define a copy constructor and operator= for private data members of a class

				Redundant code is a good candiate for a subroutine

		Function		Variables		Global variables can cause collision

				Files		Extremely large

				Methods		Extremely large, they are easily hundreds of lines long

		Timing		Threads		Multithreaded code must use thread safe constructs

Highlites mean I will provide a stylesheet as an example.

OO Properties "Riel"

		Module		Issues		Identifier		Metrics

								KSLOC		Complexity		Perf / Op		Safety		Devp Cost / Sched		Maturity		Reqts Def / Stability		Testability

		All System Software		1		A

		CLCS System (CLCS)		1		B

		Cmd Suppt CSCI (Cmd Mgmt CSC)		6		C		4.00

		Cmd Suppt CSCI (All CSCs)		2		D

		Cmd Suppt CSCI (Cmd Auth CSC)		11		E

		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)		180		F		2.50

		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)		73		G		10.00

		Cmd Suppt CSCI (Cmd Mgmt CSC)		47		H

		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)		63		I		2.00

		Data Distribution CSCI (Constraint Mgmt)		72		J		15.40

		Data Distribution CSCI (Data Distribution)		50		K		66.00

		Data Distribution CSCI (Data Fusion)		1		L		12.00

		Data Distribution CSCI (Data Health)		118		M		19.00

		Not Defined		4		N

		System Services CSCI (IPC CORBA CSC)		1		O

								130.90

OO Metrics

		Heuristics Summary

		The following heuristics are taken from Object-Oriented Design Heuristics by Arthur J. Riel

		Chapter		Topic		Heuristic

		2		Classes & Objects		All data should be hidden within its class

						Users of a class must be dependent on its public interface, but a class should not be depndent on its users

						Minimize the number of messages in the protocol of the class

						Implement a minimal public interface which all classes understand (e.g., operations such as COPY (deep versus shallow), equality testing, pretty printing, parsing from ASCII description, et cetera)

						Do not put implementation details such as common-code private functions into the public interface of a class

						Classes should only exhibit nil or export coupling with other classes (e.g., a class should only use operations in the public interface of another class or have nothing to do with that class

						A class should capture one and only one key abstarction

						Keep related data and behavior in one place

						Spin off non-related information into another class (e.g., non-communicating behavior)

						Be sure the abstraction that you model are classes and not simply the roles objects play

Effective Coding

		TOOM Metric		Description

		cyclomatic complexity		Used to evaluate the application of the algorithm. The number generated represents the total number of independent test paths (= edges – nodes + 2). The lower the complexity results in a decrease in testing and an increase in understandability of the

		lines of code		LOC: counts all lines; NCNB: counts all lines not comments and not blank; Executable Statements: counts all executable statements; Comments: counts all the comments

		comment percentage		Calculated by taking the total number of on-line and stand-alone comments and divide by the total lines of code less the number of blank lines. A high percentage gives an increase of understandability and maintainability		Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes highly maintainable. Specifically, they say a higher comment percentage (~20-30%) decreasing the testing efforts, increases understanda		Projects sometime adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be		One study found that areas of source code with large numbers of comments also tended to have the most defects and to consume the most development effort. The authors hypothesized that programmers tended to comment difficult code heavily. "An Experimental		Since comments assist developers and maintainers, higher comment percentages increase understandability and maintainability. "The Object Oriented Brewery: A Comparison of Two Object Oriented Development Methods", Robert Sharble and Samuel Cohen, Software

		weighted methods per class		A count of all methods implemented in the class or calculated by summing the methods’ complexities and generates one complexity for the class. The number of methods and their complexity give an idea of how much time and effort will be required to develop

		response for a class		A count of all the methods that can be invoked by a message from a class

		coupling between objects		A count of the number of other classes to which a class is coupled

		depth in a tree		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root of the tree

		number of children		The number of immediate subclasses subordinate to a class in a hierarchy

		McCabe Metrics		Description

		Cyclomatic Complexity (v(G))		The maximum number of linearly independent paths through a module of code. It measures the amount of testing necessary to reasonably guard against errors. To compute follow these steps:
a) Draw the module’s flowgraph
b) Compute v(G) using one of three m

		Actual Complexity (ac(G))		The actual number of independent paths tested during the test phase. The number of distinct, realizable paths; paths that can be traversed with real data.
Usage: if ac(G) < v(G) → v(G) may be able to be reduced to v-ac; it also tells when the minimum nu

		Module Design Complexity (iv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to calls to other modules. To compute just remove all conditions that do not involve calls to other modules and then compute v(G) on this new flowgraph

		Essential Complexity (ev(G))		A measure of the degree to which the module contains unstructured constructs. It is equal to the cyclomatic complexity of the reduced flowgraph. Removing all structured constructs does the reduction.Usage: Quantifies the degree of structuredness, reveal

		Pathological Complexity (pv(G))		A measure of the degree to which the module contains extremely unstructured constructs. The measure of a reduced flowgraph where all unstructured constructs except multiple entries into loops are treated as straight-line code. Pv(G) is the module’s stru

		Design Complexity (S0)		Measures the amount of interaction between modules. S0 of a design G, is a measure of the decision structure that controls the invocation of modules within the design. It is a quantification of the testing effort of all calls in the design. S0 = Σ iv(Gj

		Integration Complexity (S1)		Measures the amount of integration testing necessary to guard against errors. Each S1 tests validates the integration of several modules. It is computed by S1 = S0 – n + 1 (where n is the number of modules in the design and S0 is the design complexity o

		Object Integration Complexity (OS1)		Quantifies the number of tests necessary to fully integrate an object or class into an OO system

		Global Data Complexity (gdv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to global/parameter data. Decision predicates are reduced that do not impact data that is either global or is passed as parameters to the module. Specific Data Complexity sdv(G)

		Line Count		Lines of code, lines of comment, lines of mixed code and comment, lines left blank

		Halstead Metrics		Description

		Program Length		The total number of operator occurrences and the total number of operand occurrences

		Program Volume		The minimum number of bits required for coding the program

		Program Level and Difficulty		Measure the program’s ability to be comprehended

		Intelligent Content		Shows the complexity of a given algorithm independent of the language used to express the algorithm

		Programming Effort		Estimated mental effort required developing the program

		Error Estimate		Calculates the number of errors in a program

		Programming Time		The estimated amount of time to implement an algorithm

Tool for Object Oriented Metrics

Requires further research to determine an accurate correlation

Universal Coding Standards

		Scott Meyers, Effective C++, Second Edition 1998, Addison Wesley Longman, Inc.

		Category		Item		Description

		Shifting from C to C++		2		Prefer iostream.h to stdio.h

				3		Use new and delete instead of malloc and free

		Memory Management		5		Use the same form in corresponding calls to new and delete

				6		Call delete on pointer members in destructors

				7		Check the return value of new

				8		Adhere to convention when writing new

				9		Avoid hiding the global new

				10		Write delete if you write new

		Constructors, Destructors, & Assignment Operators		11		Define a copy constructor and assignment operator for classes with dynamically allocated memory.

				12		Prefer initialization to assignment in constructors

				13		List members in an initialization list in the order in which they are declared

				14		Make destructors virtual in base classes

				15		Have operator= return a reference to *this

				16		Assign to all data members in operator=

				17		Check for assignment to self in operator=

		Classes and Functions: Design & Declaration		19		Differentiate among member functions, global functions, and friend functions

				20		Avoid data members in the public interface

				22		Pass and return objects by reference instead of by value

				23		Don't try to return a reference when you must return an object

				25		Avoid overloading on a pointer and a numerical type

		Classes and Functions: Implementation		29		Avoid returning "handles" to internal data from const member functions

				30		Avoid member functions that return pointers or references to members less accessible than themselves

				31		Never return a reference to a local object or a dereferenced pointer initialized by new within the function

		Inheritance and OO Design		37		Never redefine an inherited non-virtual function

				38		Never redefine an inherited default parameter value

				39		Avoid casts down the inheritance hierarchy

		Scott Meyers, More Effective C++, 1996, Addison Wesley Longman, Inc.

		Category		Item		Description

		Basics		2		Prefer C++-style casts

		Operators		5		Be wary of user-defined conversion functions

				6		Distinguish between prefix and postfix forms of increment and decrement operators

				7		Never overload &&, ||, or ,

		Efficiency		22		Consider using op= instead of stand-alone op

				24		Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI

		Techniques		26		Limiting the number of objects of a class

		Meyers-Klaus Items

		Category		Item		Description

		Constructors/Destructors		13		Avoid calling virtual functions from constructors and destructors

		Assignment

		Implementation		23		Avoid using "..." in function parameter list

User Items

		

		Item		Description

		2		Do not declare protected data members

		3		Do not declare the constructor or destructor to be inline

		4		Declare at least one constructor to prevent the compiler from doing so

		5		Pointers to functions should use a typedef

		6		Never convert a const to a non-const

		7		Do not use the ?: operator

		8		Each class must declare the public, protected, and private sections in that order

		9		In the public section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		10		In the protected section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		11		In the private section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		12		If a function has no parameters, use () instead of (void)

		13		If, else, while, and do statements shall be followed by a block, even if it is empty

		14		If a block is a single statement, enclose it in braces

		15		Whenever a global variable or function is used, use the :: operator

		16		Do not use public data members

		17		If a function has any virtual functions it shall have a virtual destructor

		18		Public member functions shall return const handles to member data

		19		A class that has pointer members shall have an operator= and a copy constructor

		20		If a subclass implements a virtual function, use the virtual keyword

		21		Member functions shall not be defined in the class definition

		22		Ellipses shall not be used

		23		Functions shall explicitly declare their return types

		24		A pointer to a class shall not be converted to a pointer of a second class unless it inherits from the second

		25		A pointer to an abstract class shall not be converted to a pointer that inherits from that class

		26		Do not use the friend mechanism

		27		When working with float or double values, use < and ==> instead of ==

		28		Do not overload functions within a template class

		29		Do not define structs that contain member functions

		30		Do not directly access global data from a constructor

		31		Do not use multiple inheritance

		32		Initialize all variables

		33		All pointers should be initialized to zero

		34		Always terminate a case statement with break

		35		Always provide a default branch for switch statements

		36		Do not use the goto statement

		37		Provide only one return statement in a function

Standards

		User Items

		Item		Description

		1		Assign to all member variables in operator= functions

		2		Declare an assignment operator for each class with pointer member variables

		3		Make destructors virtual for all base classes

		4		Avoid breaks in for loops

		5		Do not cast pointers to non-pointers

		6		Do not cast an unsigned pointer to an unsigned int

		7		Do not compare chars to constants out of char range

		8		Declare reference parameters as const reference whenever possible

		9		Write operator delete if you write operator new

		10		Do not call delete on a non-pointer

		11		Avoid do statements

		12		Do not use an enum keyword to declare a variable in C++

		13		Do not check floats for equality; check for greater than or less than

		14		Do not assign to loop control variables in the body of a for loop

		15		Do not assign the dividend of 2 ints to a float

		16		Avoid assignment in if statement condition

		17		Give each if statements an else clause

		18		Initialize all pointer variables

		19		Use capital "L" instead of lowercase "l" to indicate long

		20		Avoid switch statements with many cases

		21		Number of blocks of code per function

		22		Number of global variable references per member function

		23		Number of function calls per function

		24		Number of base classes

		25		Number of data members per class

		26		Number of methods per class

		27		Number of parameters per method

		28		Number of private data members per class

		29		Number of private methods per class

		30		Number of protected data members per class

		31		Number of protected methods per class

		32		Number of public data members per class

		33		Number of public methods per class

		34		Begin boolean type variable names with `b'

		35		Begin class names with an uppercase letter

		36		Begin constant variable names with `c'

		37		Begin class data member names with `its'

		38		Begin double type variable names with `d'

		39		Begin enumerated type names with an uppercase letter that is prefixed by the software element and suffixed by `_t_'

		40		Begin float type variable names with `f'

		41		Begin function names with an uppercase letter

		42		Begin global variable names with `the'

		43		Begin integer names with `i'

		44		Begin `is' function names with bool values

		45		Begin long integer value names with `li'

		46		Prefix variable type pointer names with `p'

		47		Begin short integer variable names with `si'

		48		Begin signed character variable names with `c'

		49		Begin terminated characters' string variable names with `sz'

		50		Begin struct type names with an uppercase letter that is prefixed by software element and suffixed by `_t'

		51		Begin unsigned character type names with `uc'

		52		Begin unsigned integer type variables with `ui'

		53		Begin variable names with a lowercase letter

		54		Return reference to *this in operator= functions

		55		Pass built-in types by value unless you are modifying them

		56		Avoid member variables in the public interface

		57		Do not use a struct keyword to declare a variable in C++

		58		Do not throw from within a destructor

		59		Avoid unnecessary casts

		60		Avoid unnecessary "==true"s

		61		Avoid unused local variables

		62		Avoid unused parameters

		63		Avoid unused private member variables

		No Java Standard: This can cause a significant impact to the system. Code developed for a large scale project must be maintainable, portable, and follow consistent programming style

_1039949526.xls
Chart3

		Concurrency		Concurrency		Concurrency		Concurrency		Concurrency		Concurrency		Concurrency

		Internal Document		Internal Document		Internal Document		Internal Document		Internal Document		Internal Document		Internal Document

		Language Dependency		Language Dependency		Language Dependency		Language Dependency		Language Dependency		Language Dependency		Language Dependency

		Logic/Flow		Logic/Flow		Logic/Flow		Logic/Flow		Logic/Flow		Logic/Flow		Logic/Flow

		Rare Situation		Rare Situation		Rare Situation		Rare Situation		Rare Situation		Rare Situation		Rare Situation

timing

checking

documentation

assignment

interface

algorithm

function

Defect Trigger

Frequency

Defect Trigger vs Defect Type

5

1

0

0

0

0

0

0

2

87

4

1

0

0

0

70

62

7

3

44

3

0

53

12

262

0

9

4

0

0

0

0

0

0

1

CLCS Issues

		Tim No.		Activity		Phase/Review		Frequency		Description		Module

		1251		SW.CODE		PHASE.SW.DESIGN		42		Deviations from the coding standards (line was greater than 79 characters)		Data Distribution CSCI (Data Distribution)

								1		Deviations from the coding standards (e.g., variables did not have clear names)

								1		Deviations from the coding standards (e.g., not enough commenting)

								1		Deviations from the coding standards (e.g.,switch contructs did not have default statements)

		1252		SW.CODE		PHASE.SW.CODE		1		Lines were greater than 79 characters		Data Distribution CSCI (Data Distribution)

								1		Variable identifiers not clearly named

								1		brackets in the wrong place

								1		not enough comments

								1		switch statements do not contain default statements

		1255		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values		System Services CSCI (IPC CORBA CSC)

		1260		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Lack of Java programming standard		All System Software

		1268		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		108		Uninitialized variables, empty case statements, lines greater than 80 columns		Data Distribution CSCI (Data Health)

		1269		SW.CODE.FAULT_ERROR_HANDLING		REVIEW.SW.CODE.WALKTHROUGH		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		set pointer to null after delete

								1		lack of comments

		1273		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		not enough comments		Data Distribution CSCI (Data Health)

								1		variables were not initialized

								1		variables were not well commented

								1		Functions were not preceded with comments explaining their functionality

		1274		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Data Health)

								1		Switch statements did not contain default statements

								1		Case statements did not contain Break statements

								1		Else statements were empty

								1		Delete statements were used improperly without using New

								1		Include guards were omitted

		1279		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Comments need to identify the variables used		Not Defined

								1		Column alignment was off and makes reading code very difficult

								1		Several lines were greater than 80 columns

								1		Invalid identifiers were used

		1280		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Functions were not preceded with comments explaining their functionality		Data Distribution CSCI (Constraint Mgmt)

								1		variables were not initialized

								1		variables were not well commented

		1282		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		110		coding violations w.r.t. Code Wizzard		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1283		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Constraint Mgmt)

								1		Switch statements did not contain default statements

								1		Invalid filename identifiers

								1		Unclear messages

		1286		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Coment sections preceding functions were inaccurate		Data Distribution CSCI (Constraint Mgt)

								1		Header files contained inaccurate and incomplete parameter descriptions

								1		Method names in the body were inconsistent from header files

								1		Insufficient commenting

		1287		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Error codes not properly identified		Data Distribution CSCI (Constraint Mgt)

								1		Improper identification of return values

								1		Switch statements consisted of empty Case statements

								1		Instances of empty else statements

								1		Strcpy used instead of Strncpy

		1290		SW.CODE.CONTROL_FLOWS		PHASE.SW.UNIT_TEST		1		Use of = in conditional statements instead of ==		Cmd Suppt CSCI (Cmd Mgmt CSC)

		1298		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		15		Pointer initialized to 0		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								2		Replace numbers with constants

		1299		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		7		Virtual functions must have virtual destructors		Cmd Suppt CSCI (Cmd Mgmt CSC)

								2		Public interfaces should not contain data members

								3		Public member functions must always return const handles to data members

								4		Do not directly access global data from a constructor

								17		Prefer C++ style casts

								1		Pass objects by reference instead of by value

								1		Return objects by reference instead of by value

		1300		SW.CODE		PHASE.SW.UNIT_TEST		2		Define a copy constructor and operator= for classes with dynamically allocated memory		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)

								4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second

								4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class

								27		Prefer C++ style casts

								1		Virtual functions must have virtual destructors

		1345		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		2		Revisions need comments which identify author, date, and description		Data Distribution CSCI (Constraint Mgt)

								2		Methods require comments depicting their purpose

								1		Delete debug code

								1		Make main a separate file

		1346		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Missing file headers		Data Distribution CSCI (Constraint Mgt)

								1		else portions of the if statements are not indented

								3		No commenting

								3		List parameters, returns, and exceptions in headers

								1		Need copy constructor and assignment operator

								1		Comments need to identify the variables used

								1		Need deletes for all new methods

		1357		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Private data members require comments		Data Distribution CSCI (Constraint Mgt)

								2		Nothing is being returned

								1		Counters I and j are not commented

		1358		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Directory paths must not be hardcoded		Data Distribution CSCI (Constraint Mgt)

								2		Add copy constructor and assignment operator for pointer declared as private data member

								1		Add a default case for the switch statement

								1		Return int not a pointer

								14		Parameters and counters require comments

								1		variable is declared as global, could cause collision

								1		Code for checking boundary conditions is missing

								1		Constraint parameter is passed with method

								1		main method needs to be placed in separate file

								8		Delete debug code and dead code

		1360		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Initialize all variables		Data Distribution CSCI (Constraint Mgt)

								1		Constants need to appear on the left side of comparison operators

								1		Main should be in a separate file

								1		Using strcpy instead of strncpy

		1384		SW.CODE.SUPPORT_MAINTAINABILITY		PHASE.SYS.TEST		1		Method had a complexity of 30 versus the rule of thumb 10		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*

		1413		SW.CODE		Systems Test		1		Mutex locking is not being used around object creation methods, which may result in memory leaks		Cmd Suppt CSCI (All CSCs)

		1459		Code Analysis		Code & Unit Test		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software		CLCS System (CLCS)

		1464		Code Analysis		Code & Unit Test		1		Status of method execution is not returned		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?

								1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen

								1		Identify methods that are non-thread safe (e.g., those using a static buffer)

								1		Pointer arithmetic is highly discouraged

								1		Variables without descriptive names or no comments associated with them are highly discouraged

								3		The meaning of the comments are unclear

								1		Algorithm allows the pointer to extend past the array's upper bound

		1465		Code Analysis		Code & Unit Test		1		No commenting		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string

								1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized

		1466		Code Analysis		Code & Unit Test		1		Classes need to have insertion or assignment methods for their data members		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

		1467		Code Analysis		Code & Unit Test		1		Standards for class structure is not followed (Class, function, data members)		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Standard naming conventions are not followed

								1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)

								2		variables need to be initialized

								1		there is no check to see if variable exceed another before the for loop is entered

								1		Use strtod() to check for valid C/C++ format number

		1468		Code Analysis		Code & Unit Test		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file		Cmd Suppt CSCI (All CSCs)

		1470		Code Analysis		Code & Unit Test		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Postconditions and exceptions are not always stated in the comments

		1471		Code Analysis		Code & Unit Test		3		Code does not follow what the comments say		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								2		Variables are not checked for valid data before critical use

								2		Methods that do nothing (e.g., return this) should state they do nothing and why

		1472		Code Analysis		Code & Unit Test		6		Post-conditions are required, lack of comments in general		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?

								9		Checks to determine pointers actually point to valid data before they are used

								1		Does not check if element 0 of the array is defined before its use

								3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation

								4		Redundant code is a good candiate for a subroutine

								1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers

								6		Initialize variables

		1473		Code Analysis		Code & Unit Test		1		Files are extremely large and functions are easily hundreds of lines long		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Proprietary system calls provided by the operating system requires commenting and tracking

								1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type

								1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)

								1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))

								1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code

								1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code

								1		Masking literals need to be named to constants (e.g., 0x800000000)

		1478		Interface Analysis		Code & Unit Test		3		Initialize methods have no error checking to guarantee the variables have been properly initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								9		Arguments to methods do not have comments associated with them concerning their valid values

		1483		Code Analysis		Code & Unit Test		2		Dereferencing pointers without checking them first		Cmd Suppt CSCI (Cmd Auth CSC)

								1		No checking method returns for failure status

								1		Commenting states specific error messages can be generated, however the code does not reflect this

								2		Comments do not reflect the code

								1		C++ automatically converts enums to integers, which allows for a wide range of values

								1		It is unclear what meaning "<" can have for a bit vector

								1		variables not being initialized, especially constants

								1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer

		1484		Code Analysis		Code & Unit Test		1		Read and write priveledges on files need to be examined		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Preconditions are not stated in the comments of methods

								1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed

								2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance

								1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined

		1486		Code Analysis		Code & Unit Test		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines		CMD Suppt CSCI (Cmd Auth CSC)

		1489		Code Analysis		Code & Unit Test		1		Member variables not initialized in the Constructor		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Commenting is confusing

								2		Return warnings upon successful termination

								1		Comments conflict with the code

								1		Using static variables for error values leaves multi-threaded applications with no reliable error checking

								1		Errors should be past back through the argument list

								1		Define where System Messages are to be propogated

								1		Multi-threaded code must use thread safe constructs

		1490		Code Analysis		Code & Unit Test		3		Commenting is confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Assertions need to be added to ensure all variables used in this routine are properly initialized

								1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set

								1		Enums should be integer constants to make their meaning clearer

								3		Dereferencing pointers without checking them first

								1		The destructor for this calss needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.

								1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations

		1491		Code Analysis		Code & Unit Test		4		Comments are confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		An enum is used where integer constants are implied

								2		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Vectors are used without checking the bounds nor if there are values in the vector

								1		String classes are used in conjunction with C style string functions

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

								1		Constants nees to have comments

		1492		Code Analysis		Code & Unit Test		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

		1494		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		No postconditions are stated for methods		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		No preconditions are stated for methods

								1		Comments are confusing

								4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)

								2		Variable naming is confusing

		1495		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		3		Comments are unclear		Cmd Suppt CSCI (Cmd Mgmt CSC)

								3		Variables need to be checked for proper values

		1496		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are used outside of their scope		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Method are declared but never used, hence dead code

								3		Comments contradict the code

		1497		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		6		Variables are not initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1498		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1501		SW.CODE		Code & Unit Test		1		Variables are not checked for valid data		Data Distribution CSCI (Data Fusion)

								630

The IV&V Activity
being performed
when the issue was
identified

The phase or review in which the issue was identified

The number of times the issue occurred

Filtered Issues

		Trigger		Type		Severity		Frequency		General Description		Template		Module

		language Dependency		documentation		3		42		line was greater than 79 characters				K

		language Dependency		documentation		3		1		variables did not have clear names				K

		language Dependency		documentation		3		1		not enough commenting				K

		language Dependency		checking		3		1		switch contructs did not have default statements				K

		language Dependency		documentation		3		1		Lines were greater than 79 characters				K

		language Dependency		documentation		3		1		Variable identifiers not clearly named				K

		language Dependency		documentation		3		1		brackets in the wrong place				K

		language Dependency		documentation		3		1		not enough comments				K

		language Dependency		checking		3		1		switch statements do not contain default statements				K

		Logic / Flow		algorithm		3		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values				O

		language Dependency		documentation		3		1		Lack of Java programming standard				A

		Logic / Flow		assignment		3		108		Uninitialized variables, empty case statements, lines greater than 80 columns				M

		Logic / Flow		algorithm		3		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor				F

		Logic / Flow		assignment		3		2		set pointer to null after delete				F

		Logic / Flow		documentation		3		1		lack of comments				F

		Internal Document		documentation		3		1		not enough comments				M

		Internal Document		assignment		3		1		variables were not initialized				M

		Internal Document		documentation		3		1		variables were not well commented				M

		Internal Document		documentation		3		1		Functions were not preceded with comments explaining their functionality				M

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				M

		language Dependency		checking		3		1		Switch statements did not contain default statements				M

		language Dependency		checking		3		1		Case statements did not contain Break statements				M

		language Dependency		checking		3		1		Else statements were empty				M

		language Dependency		algorithm		3		1		Delete statements were used improperly without using New				M

		language Dependency		checking		3		1		Include guards were omitted				M

		language Dependency		documentation		3		1		Comments need to identify the variables used				N

		language Dependency		documentation		3		1		Column alignment was off and makes reading code very difficult				N

		language Dependency		documentation		3		1		line was greater than 79 characters				N

		language Dependency		documentation		3		1		Invalid identifiers were used				N

		Internal Document		documentation		2		1		Functions were not preceded with comments explaining their functionality				J

		Internal Document		assignment		2		1		variables were not initialized				J

		Internal Document		documentation		2		1		variables were not well commented				J

		Logic / Flow		assignment		3		110		coding violations w.r.t. Code Wizzard				F

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		3		1		Switch statements did not contain default statements				J

		language Dependency		documentation		3		1		Invalid filename identifiers				J

		language Dependency		documentation		3		1		Unclear messages				J

		Internal Document		documentation		2		1		Coment sections preceding functions were inaccurate				J

		Internal Document		documentation		2		1		Header files contained inaccurate and incomplete parameter descriptions				J

		Internal Document		interface		2		1		Method names in the body were inconsistent from header files				J

		Internal Document		documentation		2		1		Insufficient commenting				J

		language Dependency		documentation		2		1		Error codes not properly identified				J

		Internal Document		documentation		2		1		Improper identification of return values				J

		language Dependency		checking		2		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		2		1		Instances of empty else statements				J

		language Dependency		algorithm		2		1		Strcpy used instead of Strncpy				J

		language Dependency		checking		1		1		Use of = in conditional statements instead of ==				H

		Logic / Flow		assignment		3		15		Pointer initialized to 0				I

		language Dependency		assignment		3		2		Replace numbers with constants				I

		language Dependency		algorithm		3		7		Virtual functions must have virtual destructors				H

		language Dependency		function		3		2		Public interfaces should not contain data members				H

		language Dependency		interface		3		3		Public member functions must always return const handles to data members				H

		language Dependency		algorithm		3		4		Do not directly access global data from a constructor				H

		language Dependency		checking		3		17		Prefer C++ style casts				H

		language Dependency		algorithm		3		1		Pass objects by reference instead of by value				H

		language Dependency		algorithm		3		1		Return objects by reference instead of by value				H

		language Dependency		algorithm		3		2		Define a copy constructor and operator= for classes with dynamically allocated memory				I

		language Dependency		algorithm		3		8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)				I

		language Dependency		algorithm		3		4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second				I

		language Dependency		algorithm		3		4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class				I

		language Dependency		checking		3		27		Prefer C++ style casts				I

		language Dependency		algorithm		3		1		Virtual functions must have virtual destructors				I

		Internal Document		documentation		3		2		Revisions need comments which identify author, date, and description				J

		Internal Document		documentation		3		2		Methods require comments depicting their purpose				J

		language Dependency		checking		3		1		Delete debug code				J

		language Dependency		algorithm		3		1		Make main a separate file				J

		Internal Document		documentation		3		1		Missing file headers				J

		language Dependency		documentation		3		1		else portions of the if statements are not indented				J

		Internal Document		documentation		3		3		No commenting				J

		Internal Document		documentation		3		3		List parameters, returns, and exceptions in headers				J

		language Dependency		algorithm		3		1		Need copy constructor and assignment operator				J

		Internal Document		documentation		3		1		Comments need to identify the variables used				J

		language Dependency		algorithm		3		1		Need deletes for all new methods				J

		Internal Document		documentation		3		1		Private data members require comments				J

		language Dependency		checking		3		2		Nothing is being returned				J

		Internal Document		documentation		3		1		Counters I and j are not commented				J

		Internal Document		assignment		3		1		Directory paths must not be hardcoded				J

		language Dependency		algorithm		3		2		Add copy constructor and assignment operator for pointer declared as private data member				J

		language Dependency		checking		3		1		Add a default case for the switch statement				J

		language Dependency		algorithm		3		1		Return int not a pointer				J

		Internal Document		documentation		3		14		Parameters and counters require comments				J

		Logic / Flow		function		3		1		variable is declared as global, could cause collision				J

		Logic / Flow		checking		3		1		Code for checking boundary conditions is missing				J

		language Dependency		documentation		3		1		Constraint parameter is passed with method				J

		language Dependency		algorithm		3		1		main method needs to be placed in separate file				J

		language Dependency		checking		3		8		Delete debug code and dead code				J

		language Dependency		assignment		3		1		Initialize all variables				J

		language Dependency		checking		3		1		Constants need to appear on the left side of comparison operators				J

		language Dependency		algorithm		3		1		Main should be in a separate file				J

		language Dependency		algorithm		3		1		Using strcpy instead of strncpy				J

		Rare Situation		function		3		1		Method had a complexity of 30 versus the rule of thumb 10				H

		Logic / Flow		algorithm		3		1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*				H

		Concurrency		timing		4		1		Mutex locking is not being used around object creation methods, which may result in memory leaks				D

		language Dependency		documentation		3		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software				B

		Logic / Flow		checking		2		1		Status of method execution is not returned				G

		Internal Document		assignment		2		1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?				G

		Internal Document		documentation		2		1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen				G

		Concurrency		timing		2		1		Identify methods that are non-thread safe (e.g., those using a static buffer)				G

		Logic / Flow		checking		2		1		Pointer arithmetic is highly discouraged				G

		Logic / Flow		documentation		2		1		Variables without descriptive names or no comments associated with them are highly discouraged				G

		Internal Document		documentation		2		3		The meaning of the comments are unclear				G

		Logic / Flow		checking		2		1		Algorithm allows the pointer to extend past the array's upper bound				G

		Internal Document		documentation		4		1		No commenting				G

		Logic / Flow		assignment		4		1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string				G

		Logic / Flow		assignment		4		1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized				G

		language Dependency		assignment		3		1		Classes need to have insertion or assignment methods for their data members				G

		language Dependency		documentation		2		1		Standards for class structure is not followed (Class, function, data members)				G

		language Dependency		documentation		2		1		Standard naming conventions are not followed				G

		Logic / Flow		assignment		2		1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)				G

		Logic / Flow		assignment		2		2		variables need to be initialized				G

		Logic / Flow		checking		2		1		there is no check to see if variable exceed another before the for loop is entered				G

		Logic / Flow		checking		2		1		Use strtod() to check for valid C/C++ format number				G

		language Dependency		documentation		3		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file				D

		language Dependency		assignment		4		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				G

		Internal Document		documentation		4		1		Postconditions and exceptions are not always stated in the comments				G

		Internal Document		documentation		2		3		Code does not follow what the comments say				G

		Logic / Flow		checking		2		2		Variables are not checked for valid data before critical use				G

		Logic / Flow		documentation		2		2		Methods that do nothing (e.g., return this) should state they do nothing and why				G

		Internal Document		documentation		2		6		Post-conditions are required, lack of comments in general				G

		Logic / Flow		documentation		2		3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?				G

		Logic / Flow		checking		2		9		Checks to determine pointers actually point to valid data before they are used				G

		Logic / Flow		checking		2		1		Does not check if element 0 of the array is defined before its use				G

		Internal Document		documentation		2		3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation				G

		Logic / Flow		algorithm		2		4		Redundant code is a good candiate for a subroutine				G

		Logic / Flow		checking		2		1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers				G

		Logic / Flow		assignment		2		6		Initialize variables				G

		language Dependency		function		2		1		Files are extremely large and functions are easily hundreds of lines long				G

		Internal Document		documentation		2		1		Proprietary system calls provided by the operating system requires commenting and tracking				G

		Logic / Flow		algorithm		2		1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type				G

		Logic / Flow		checking		2		1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)				G

		Logic / Flow		checking		2		1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))				G

		Internal Document		documentation		2		1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code				G

		Logic / Flow		checking		2		1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code				G

		Logic / Flow		assignment		2		1		Masking literals need to be named to constants (e.g., 0x800000000)				G

		Logic / Flow		checking		3		3		Initialize methods have no error checking to guarantee the variables have been properly initialized				F

		Internal Document		documentation		3		9		Arguments to methods do not have comments associated with them concerning their valid values				F

		Logic / Flow		checking		2		2		Dereferencing pointers without checking them first				E

		Logic / Flow		checking		2		1		No checking method returns for failure status				E

		Logic / Flow		documentation		2		1		Commenting states specific error messages can be generated, however the code does not reflect this				E

		Logic / Flow		documentation		2		2		Comments do not reflect the code				E

		Logic / Flow		checking		2		1		C++ automatically converts enums to integers, which allows for a wide range of values				E

		Logic / Flow		documentation		2		1		It is unclear what meaning "<" can have for a bit vector				E

		Logic / Flow		assignment		2		1		variables not being initialized, especially constants				E

		Logic / Flow		checking		2		1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer				E

		Concurrency		checking		3		1		Read and write priveledges on files need to be examined				F

		Internal Document		documentation		3		1		Preconditions are not stated in the comments of methods				F

		Concurrency		timing		3		1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed				F

		Logic / Flow		assignment		3		2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance				F

		Logic / Flow		function		3		1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined				F

		Internal Document		checking		2		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines				E

		Logic / Flow		assignment		3		1		Member variables not initialized in the Constructor				F

		Internal Document		documentation		3		1		Commenting is confusing				F

		Logic / Flow		checking		3		2		Return warnings upon successful termination				F

		Internal Document		documentation		3		1		Comments conflict with the code				F

		Concurrency		timing		3		1		Using static variables for error values leaves multi-threaded applications with no reliable error checking				F

		Logic / Flow		algorithm		3		1		Errors should be past back through the argument list				F

		Logic / Flow		function		3		1		Define where System Messages are to be propogated				F

		Concurrency		timing		3		1		Multi-threaded code must use thread safe constructs				F

		Internal Document		documentation		2		3		Commenting is confusing				F

		Logic / Flow		assignment		2		2		Assertions need to be added to ensure all variables used in this routine are properly initialized				F

		Internal Document		checking		2		1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set				F

		Logic / Flow		assignment		2		1		Enums should be integer constants to make their meaning clearer				F

		Logic / Flow		checking		2		3		Dereferencing pointers without checking them first				F

		language Dependency		checking		2		1		The destructor for this class needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.				F

		language Dependency		algorithm		2		1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations				F

		Internal Document		documentation		3		4		Comments are confusing				F

		Logic / Flow		checking		3		1		An enum is used where integer constants are implied				F

		Logic / Flow		checking		3		2		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		checking		3		1		Vectors are used without checking the bounds nor if there are values in the vector				F

		Logic / Flow		function		3		1		String classes are used in conjunction with C style string functions				F

		Logic / Flow		assignment		3		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Logic / Flow		documentation		3		1		Constants need to have comments				F

		Logic / Flow		checking		2		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)				F

		Logic / Flow		checking		2		1		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		assignment		2		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Internal Document		documentation		3		1		No postconditions are stated for methods				H

		Internal Document		documentation		3		1		No preconditions are stated for methods				H

		Internal Document		documentation		3		1		Comments are confusing				H

		Logic / Flow		checking		3		4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)				H

		Internal Document		documentation		3		2		Variable naming is confusing				H

		Internal Document		documentation		3		3		Comments are unclear				C

		Logic / Flow		checking		3		3		Variables need to be checked for proper values				C

		Logic / Flow		checking		4		1		Variables are used outside of their scope				F

		Logic / Flow		checking		4		2		Method are declared but never used, hence dead code				F

		Internal Document		documentation		4		3		Comments contradict the code				F

		Logic / Flow		assignment		2		6		Variables are not initialized				F

		Logic / Flow		checking		1		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns				F

		Logic / Flow		checking		3		1		Variables are not checked for valid data				L

								630

The number of times the issue occurred

Defect Type Chart

		Type		Frequency

		assignment		273

		documentation		161

		checking		126

		algorithm		53

		function		8

		timing		5

		interface		4

		Relationship		0

		Build		0

The number of times the issue occurred

Defect Type Chart

		

Frequency

Defect Type

Number of Defects

Frequency of Defects

Defect Trigger Chart

		Trigger		Frequency		Percent

		Logic / Flow		340		53.97

		language Dependency		189		30.00

		Internal Document		94		14.92

		Concurrency		6		0.95

		Rare Situation		1		0.16

		Important Note:		The trigger classification can not be deemed one hundred percent reliable.

				The activity that surfaced the defect was not recorded by the defect identification team, so this required

				the authors to attempt to identify which activity was being performed when the defect was found

		Analysis:		Logic / Flow was responsible for identifying 54 percent of the overall defects found

				A few examples of this trigger type are control flow analysis, global entity-cross referencing, object use analysis

				exception propogation analysis, and call dependency analysis

				Language Dependency was responsible for finding 30 precent of the overall defects found

				This trigger type describes activities that deal with analyzing the source code with respect to a specific standard

				and focuses on checking language specific details and compilation concerns

				Internal Document was responsible for finding 15 precent of the overall defects found

				This trigger type searches for incorrect information, inconsistency, or incompleteness within the code and its

				documentation (including comments). This activity is also responsible for assessing how maintainable the code

				will be in its current form

The number of times the issue occurred

Defect Trigger Chart

		

Frequency

Defect Trigger

Frequency

Frequency of Defect Triggers

VS Charts

		

				Concurrency		Internal Document		Language Dependency		Logic/Flow		Rare Situation

		timing		5		0		0		0		0		5

		checking		1		2		70		53		0		126

		documentation		0		87		62		12		0		161

		assignment		0		4		7		262		0		273

		interface		0		1		3		0		0		4

		algorithm		0		0		44		9		0		53

		function		0		0		3		4		1		8

				6		94		189		340		1		630

VS Charts

		

timing

checking

documentation

assignment

interface

algorithm

function

Defect Trigger

Frequency

Defect Trigger vs Defect Type

IV&V Triggers

		

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Type

Frequency

Defect Type vs Defect Trigger

Severity Chart

		IV&V Analysis Level Definitions

		Phase		Activity		Basic		Limited		Focused		Comprehensive		Trigger

		Requirements Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements		x		x		x		x		Conformance

				Validate ability of requirements to meet system needs		x		x		x		x		Conformance

				Verify traceability to and from parent requirements		x		x		x		x		Conformance

				Analyze data/adaptation requirement		x		x		x		x

				Analyze testability, qualification requirements		x		x		x		x

				Analyze data flow, control flow, moding and sequencing		x		x		x		x

				Assess development metrics		x		x		x		x

				Analyze development risks/mitigation plans		x		x		x		x

				Analyze timing and sizing requirements		x		x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform engineering analysis of key algorithms						x		x

				Review/use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Design Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x

				Validate ability of design to meet system needs				x		x		x

				Verify traceability to and from requirements				x		x		x

				Analyze database design				x		x		x

				Analyze design testability, qualification requirements				x		x		x

				Analyze design data flow, control flow, moding, sequencing				x		x		x

				Analyze control logic, error/exception handling design				x		x		x

				Assess design development metrics				x		x		x

				Analyze development risks/mitigation plans				x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform design analysis of select critical algorithms						x		x

				Review /use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Code Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x		Design Conformance

				Verify Traceability to and from design				x		x		x		Design Conformance

				Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)				x		x		x		Design Conformance

				Verify supportability and maintainability				x		x		x

				Assess code static metrics				x		x		x

				Verify CSU & CSC level logical structure and control flow				x		x		x		logic

				Verify internal data structures and data flow/usage						x		x		logic

				Verify error and exception handling						x		x		logic

				Verify code & external I/O data consistency						x		x		logic

				Review code compilation results & syntax checking						x		x

				Verify correct adaptation data & ability to reconfigure						x		x

				Verify correct operating system & run time libraries						x		x

				For select algorithms, verify correctness and stability under full range of potential input conditions								x

				Verify code data compliance with data dictionary								x

				Verify compliance with coding standards								x		language

		Software Test Analysis		Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions		x		x		x		x

				Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs		x		x		x		x

				Verify test cases traceability and coverage of software requirements, operational needs, and capabilities		x		x		x		x

				Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives		x		x		x		x

				Analyze correct dispositioning of software test anomalies		x		x		x		x

				Validate software test results compliance with test acceptance criteria		x		x		x		x

				Verify trace and successful completion of all software test case objectives		x		x		x		x

				Verify ability of software test environment plans and designs to meet software testing objectives				x		x		x

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes				x		x		x

				Analyze STD procedures for test setup, execution, and data collection						x		x

				Monitor execution of software testing						x		x

				Analyze select CSC test plans, procedures, and results to verify adequate logic path coverage, testing of full range of input conditions, error and exception handling, key algorithm stability, and performance in compliance with the design.								x

				Perform life cycle IV&V on software test environment components								x

		System Test Analysis		Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs

				Verify test case traceability and coverage of system requirements, operational needs, and capabilities

				Analyze correct dispositioning of software test anomalies

				Validate ST results compliance with test acceptance criteria

				Verify trace and successful completion of all ST case objectives

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes

System test analysis activities are applied independent of IV&V Analysis Levels

Defect Type

		Severity		Frequency

		One		2

		Two		109

		Three		505

		Four		14

		Five		0

		Severity		Description

		One		Prevent the accomplishment of an essential capability

				Jeapordize safety, security, or other requirements designated critical

		Two		Adversely affect the accomplishment of an essential capability and no work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, and no work-around solution is known

		Three		Adversely affect the accomplishment of an essential capability but a work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, but a work-around solution is known

		Four		Result in user/operator inconveniences but does not affect a required operational or mission essential capability

				Result in inconvenience for development or maintenance personnel, but does not affect accomplishment of these responsiblities

		Five		Any other affect

The number of times the issue occurred

Defect Type

		0

		0

		0

		0

		0

Frequency

Severity

Frequency

Defect Severity

ODC Triggers

		Orthogonal Defect Classification

		The selection of the defect type captures the nature of the change

		Defect Type		Description		Examples

		Function / Class / Object		The error should require a formal design change, as it affects significant capability, end-user features, product interfaces, interface with hardware architectures, or global structures. The error occurred when implementing the state and capabilities of		A database did not include a field, although the requirements specified it

						A database included a field but it was to small to contain possible values

						A class was omitted during system design

						An object was not instantiated before being accessed by other objects of the system

		Assignment / Initialization		Value(s) assigned incorrectly or not assigned at all; but note that a fix involving multiple assignment corrections may be of type Algorithm		Internal variable or variable within a control block did not have correct value, or did not have any value at all

						Initialization of parameters

						Resetting of variable's value

						The instance variable capturing a characteristic of an object is omitted

						The instance variables that capture the state of an object are not correctly initialized

		Interface / OO Messages		Communication problems between modules, components, device drivers, objects, functions vi macros, call statements, control blocks, parameter lists		A database implements both insertion and deletion functions, but the deletion interface was not made callable

						The interface specifies a pointer to a number, but the implementation is expecting a pointer to a character

						The OO message incorrectly specifies the name of the service

						The number and/or types of parameters of the OO message do not conform with the signature of the requested service

		Checking		Errors caused by missing or incorrect validation of parameters or data in conditional statements. It might be expected that a consequence of checking for a value would require additional code such as a do while loop or branch. If the missing or incorrec		Value greater than 100 is not valid, but the check to make sure that the value was less than 100 was missing

						The conditional loop should have stopped on the ninth iteration, but it kept looping while the counter was <=10

						Is there checking or debugging code that is left in the function that shouldn't be

		Timing/Serialization		Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong serialization technique was employed		Serialization is missing when making updates to a shared control block

						A hierarchical locking scheme is in use, but the defective code failed to acquire the locks in the prescribed sequence

		Relationship		Problems related to associations among procedures, data structures and objects. Such associations may be conditional		The structure of code/data in one place assumes a certain structure of code/data in another. Without appropriate consideration of their relationship, program will not execute or it executes incorrectly

						The inheritance relationship between two classes is missing or incorrectly specified

						The limit on the number of objects that may be instantiated from a given class is incorrect and causes performance degradation of thsystem

		Build/Package/Merge		Describe errors that occur due to mistakes in library systems, management of changes, or version control

		Documentation		Errors that affect both publications and maintenance notes		Function does not have sufficient commenting or it does not describe the code accurately

						Are variables described when declared

						Variable naming conventions do not follow the standard or are not descriptive

		Algorithm / Method		Efficiency or correctness problems that affect the task and can be fixed by (re)implementing an algorithm or local data structure without the need for requesting a design change. Problem in the procedure, template, or overloaded function that describes a		The low-level designcalled for the use of an algorithm that improves throuput over the link by delaying transmission of some messages, but implementation transmitted all messages as soon as they arrived. The algorithm that delayed transmission was missin

						The algorithm for searching a chain of control blocks was corrected to use a linear-linked list instead of a circular-linked list

						The number and/or types of parameters of a method or an operation are incorrectly specified. A method or an operation is not made public in the specification of a class

IV&V Methodology

				Triggers		Explanation		Examples

		Inspection		Design Conformance		The document reviewer or the code inspector detects the defect while comparing the design element or code segment being inspected with its specification in the preceding stage(s). Faults largely related to the completeness of the product being designed wi		The code didn't implement the case when no data exists

								On one screen, all font is bold while in another it is not

				Logic / Flow		The inspector uses knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete		Memory in this subroutine needs to be allocated before storing these values

								A value assignment is spelled incorrectly

				Lateral Compatibility		The inspector with broad-based experience, detects an incompatibility between the function described by the design document or code, and other systems, products, services, components, or modules with which it must interface		A graphics application was not able to read a gif file put out by some other application package it is supposed to work with

				Backward Compatibility		The inspector uses extensive product/component experience to identify an incompatibility between the function described by the design document or the code, than that of earlier versions of the same product or component or with n to n+1 (subsequent release		The install option in the current product hard codes the drive for the install whereas the previous version just used the current drive

								The previous version defaulted to 0 decimal places for numeric data but the current defaults to 2 decimal places

				Concurrency		The inspector is considering the serialization necessary for controlling a shared resource when the defect is discovered. This would include serialization of multiple functions, threads, processes, or kernel contexts as well as obtaining and releasing lo		Routine A didn't release the lock before calling routine B which requests the lock

								This variable incorrectly reset to 0 by routine A after routine B had already incremented it

				Internal Document		There is incorrect information, inconsistency, or incompleteness within internal documentation. It has to do with overall completeness of the design and ensures that there is consistency between the different parts of the proposed design or implementatio		The prologue for subroutine A lists only 3 parameters when there are actually 4

				Language Dependency		The developer detects the defect while checking the language specific detatils of the implementation of a component or a function. Language standards, compilation concerns, and language specific efficiencies are examples or potential areas of concern		The inspector is checking C code and sees a "=" that should be "=="

				Side Effect		The inspector uses extensive experience or product knowledge to foresee some system, product, function, or component behavior which may result from the design or code under review. The side effects would be characterized as a result of common usage or co		While looking at a pointer that accesses data by byte, the inspector realizes in another part of the code, the bytes could be in reverse order, so that the pointer won't be accessing them correctly

				Process		The inspector uses experience and best practices to identify issues within the development activities		The developing organization has not institutionalized a standard development practice

								The developing organization has not identified any tools or have not identified the appropriate tools to aid in the development of the system

				Rare Situations		The inspector uses extensive experience or product knowledge to foresee some system behavior which is not considered or addressed by the documented design or code under review, and would typically be associated with unusual configurations or usage. These		Requirements state that a network can handle 250 machines. A bug occurs when a customer has 1000 machines. This is not workload stress because the requirements state that only 250 machines are currently able to be accomadated

		Unit Test		Simple Path		In white/Gray Box Testing, the test case that found the defect was executing a simple code path related to a single function		Tried executing the "default" path of a case statement but since it didn't exist, the test failed

				Complex Path		In White/Gray Box Testing, the test case that found the defect was executing some contrived combinations of code paths related to multiple functions		Path failed because one function released memory that subsequently was used in another function

								Path failed because a global variable is being accessed and incremented in multiple functions

		Function Test		Test Coverage		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function, using no parameters or a single set of parameters		The tester tried to delete a city from the database but it couldn't be deleted

				Test Variation		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function but using a variety of inputs and parameters		When the tester tried to add one more character than the maximum allowable, the software hung

				Test Sequencing		During black box testing, the test case that found the defect executed multiple functions in a very specific sequence		The test case first added a record, then deleted it, and then tried to add it again but got the message that you cannot add a record that already exists

				Test Interaction		During black box testing, the test case that found the defect initiated an interaction among two or more bodies of code. This is more involved than a simple serial sequence of the executions		Cant add data to fields after the record has been created

		System Test		Workload Volume/Stress		The system is operating at or near some resource limit		When the system is idle for 10 minutes it hangs

				Recovery/Exception		The system is being tested with the intent of invoking an exception handler or some type of recovery code		Unexpected errors get converted to to other types of errors instead of the expected one

				Startup/Restart		The system was being initialized or restarted		After pulling the plug on the cpu, the system was unable to restart until certain files were cleaned up

				Hardware Configuration		The system is being tested to ensure functions execute correctly under specific hardware configurations

				Software Configuration		The system is being tested to ensure functions execute correctly under specific software configurations

				Blocked Test Execution		The product is operating well within resource limits and the defect surfaced without any particular strategy		Wanted to check for workload stress by printing 1000 jobs. However, when Print was selected, nothing happened

Template

		IV&V: A Life Cycle Engineering Process for Quality Software

		Robert O. Lewis, 1992, John Wiley & Sons, Inc.

		Code Verification Activities

		Phase		Activity		Notes		ODC Trigger

		Documentation Review		Verify consistency between the code and the software design document (SDD)		Are the documents and the code meeting the intended purpose?		Design Conformance

						Is the technical content consistent, complete, clear, correct, and testable?

						The goal is to find discrepancies between the SDD and the Code

		Process Review		Verify the specified standards and practices are being followed		These are specified in the Software Development Plan (SDP)		Process

						Must look at a system level as well as individual units

						Assess the developer's metrics program

						Verify developer's processes meet applicable standards

				Verify the developer is using specified coding tools		Simple check to ensure the appropriate tools are being used

				Verify versions of the compiler, operating system, and utilities		IV&V looks for any inconsistencies and stays coordinated with the developer's configuration management organization		Language Dependency

				Review software library and release/version control		Monitor the developer's control and release procedures, adherence to scheduled events, completeness of the product and consistency with which the release occurs		Process

		Code Review		Verify the logical structure and syntax with static analysis		control flow analysis		Logic / Flow

						standards analysis (coding standards)		Language Dependency

						global entity cross-reference: representation clause, entity cross-reference, type/object cross-reference, type dependency, exception cross-reference, generic instantiation		Logic / Flow

						Object use analysis		Logic / Flow

						exception propogation analysis		Logic / Flow

						call dependency analysis: invocation cross-reference, invocation bands, compilation unit dependency		Logic / Flow

						verify the code is maintainable		Backward Compatibility

						source code data collection and assess metrics		Rare Situation

				Verify terms between data dictionary and code		compare the entries in the data dictionary to the element names appearing both in the code and in the interface, global, and local data definitions in the SDD		Internal Document

						This activity ensures consistency among the three items that share the data definitions

				Verify sample input and output data		During development, it is customary for the developer to generate sample input data that are representative to the actual input data. Coincidentally, the system generates output data that have a correlation to these particular inputs.		Rare Situation

						IV&V checks to make sure the developer is adequately identifying and archiving I/O data and that the correct input data are specified for particular tests

				Verify algorithms per the software design document (SDD)		Ensure the consistency between the algorithms in the code and those defined in the SDD to determine if they are accurately and completely implemented		Design Conformance

						Verify any timing contraints required		Concurrency

CLCS Modules

		The Defect Type you wish to search for		Where to look		How to detect		Explanation

		Documentation		Readability		Line length exceeding 79 characters

						Brackets and indentations in the wrong place

						Class structure (class, functions, and then data members)

				Data Declarations		Variables must have comments the first time they are used

						Are the units on the data declarations commented

						Are the ranges or limitations of values defined for the variables

						Are flags documented to the bit level

						Has each global variable been commented where declared

						Are counters and MAGIC numbers commented

						Identifiers must have clear names

				Methods		Methods must have comment headers explaining their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw

						Comments must accurately describe the code

						Variables local to the method must follow the conditions stated in Data Declarations

						Methods that do nothing (e.g., return this) need to be commented that they do nothing and the reason

				Control Structures		Is each control structure commented

				General		Comment percentage		See the worksheet entitled OO Metrics for Comment Percentage remarks

						Does each file have a header

						Error and message propogation must be clearly identified

						Revisions need comments that identify the author, date, and description of the revision

						Complex code requires comments		See the worksheet entitled OO Metrics for Comment Percentage remarks

		Assignment		Pointers		Set to NULL or 0 (zero) after deleting memory it points to

						Avoid Pointer arithmetic

				Variables		Initialize variables

						All initialization needs to be done in one place

						Initializing strings by hardcoding in "\0" will place 2 null terminators

						MAGIC and hardcoded literals need to be assigned to a constant

				Operators		"&=" should not be used with booleans		May yield a correct results but it may be slower than logical operators

				Class		Must have assignment methods for their data members

		Checking		include guards are omitted

				Delete debugging code

				Code dependent on specific operating system specs (e.g., size of int) may cause future porting issues

				Constructs		switch constructs with empty case statements

						switch constructs with no default clauses

						switch constructs with no break statements

						if statements contain empty else clauses

						Vectors and arrays must check their bounds

						vectors and arrays must check their index being referenced does in fact contain valid data

						Before loops are entered the code does not check if variable exceeds another

				Comparison		if conditionals using "=" instead of "=="

						constants must appear on left side of comparison operators

				Pointers		must check they point to something before they get dreferenced

				Data		variables declared as 8-bit unsigned int must check they don't go out of range (0<=var<=256)

						Where strings get converted to other formats (e.g., integers) you must check that the string first contains a valid conversion type

						Variables that are used outside their scope

				Methods		return values must be checked

						must check their parameters

						must assert() all variables used

						get rid of methods that are never used (dead code)

						Status of routine execution is not returned

				Interfaces		Public member functions must always return const handles to data members

		Algorithm		The use of certain functions

				Main must be a separate file

				Virtual functions must have virtual destructors

				Define a copy constructor and operator= for private data members of a class

				Redundant code is a good candiate for a subroutine

		Function		Variables		Global variables can cause collision

				Files		Extremely large

				Methods		Extremely large, they are easily hundreds of lines long

		Timing		Threads		Multithreaded code must use thread safe constructs

Highlites mean I will provide a stylesheet as an example.

OO Properties "Riel"

		Module		Issues		Identifier		Metrics

								KSLOC		Complexity		Perf / Op		Safety		Devp Cost / Sched		Maturity		Reqts Def / Stability		Testability

		All System Software		1		A

		CLCS System (CLCS)		1		B

		Cmd Suppt CSCI (Cmd Mgmt CSC)		6		C		4.00

		Cmd Suppt CSCI (All CSCs)		2		D

		Cmd Suppt CSCI (Cmd Auth CSC)		11		E

		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)		180		F		2.50

		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)		73		G		10.00

		Cmd Suppt CSCI (Cmd Mgmt CSC)		47		H

		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)		63		I		2.00

		Data Distribution CSCI (Constraint Mgmt)		72		J		15.40

		Data Distribution CSCI (Data Distribution)		50		K		66.00

		Data Distribution CSCI (Data Fusion)		1		L		12.00

		Data Distribution CSCI (Data Health)		118		M		19.00

		Not Defined		4		N

		System Services CSCI (IPC CORBA CSC)		1		O

								130.90

OO Metrics

		Heuristics Summary

		The following heuristics are taken from Object-Oriented Design Heuristics by Arthur J. Riel

		Chapter		Topic		Heuristic

		2		Classes & Objects		All data should be hidden within its class

						Users of a class must be dependent on its public interface, but a class should not be depndent on its users

						Minimize the number of messages in the protocol of the class

						Implement a minimal public interface which all classes understand (e.g., operations such as COPY (deep versus shallow), equality testing, pretty printing, parsing from ASCII description, et cetera)

						Do not put implementation details such as common-code private functions into the public interface of a class

						Classes should only exhibit nil or export coupling with other classes (e.g., a class should only use operations in the public interface of another class or have nothing to do with that class

						A class should capture one and only one key abstarction

						Keep related data and behavior in one place

						Spin off non-related information into another class (e.g., non-communicating behavior)

						Be sure the abstraction that you model are classes and not simply the roles objects play

Effective Coding

		TOOM Metric		Description

		cyclomatic complexity		Used to evaluate the application of the algorithm. The number generated represents the total number of independent test paths (= edges – nodes + 2). The lower the complexity results in a decrease in testing and an increase in understandability of the

		lines of code		LOC: counts all lines; NCNB: counts all lines not comments and not blank; Executable Statements: counts all executable statements; Comments: counts all the comments

		comment percentage		Calculated by taking the total number of on-line and stand-alone comments and divide by the total lines of code less the number of blank lines. A high percentage gives an increase of understandability and maintainability		Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes highly maintainable. Specifically, they say a higher comment percentage (~20-30%) decreasing the testing efforts, increases understanda		Projects sometime adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be		One study found that areas of source code with large numbers of comments also tended to have the most defects and to consume the most development effort. The authors hypothesized that programmers tended to comment difficult code heavily. "An Experimental		Since comments assist developers and maintainers, higher comment percentages increase understandability and maintainability. "The Object Oriented Brewery: A Comparison of Two Object Oriented Development Methods", Robert Sharble and Samuel Cohen, Software

		weighted methods per class		A count of all methods implemented in the class or calculated by summing the methods’ complexities and generates one complexity for the class. The number of methods and their complexity give an idea of how much time and effort will be required to develop

		response for a class		A count of all the methods that can be invoked by a message from a class

		coupling between objects		A count of the number of other classes to which a class is coupled

		depth in a tree		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root of the tree

		number of children		The number of immediate subclasses subordinate to a class in a hierarchy

		McCabe Metrics		Description

		Cyclomatic Complexity (v(G))		The maximum number of linearly independent paths through a module of code. It measures the amount of testing necessary to reasonably guard against errors. To compute follow these steps:
a) Draw the module’s flowgraph
b) Compute v(G) using one of three m

		Actual Complexity (ac(G))		The actual number of independent paths tested during the test phase. The number of distinct, realizable paths; paths that can be traversed with real data.
Usage: if ac(G) < v(G) → v(G) may be able to be reduced to v-ac; it also tells when the minimum nu

		Module Design Complexity (iv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to calls to other modules. To compute just remove all conditions that do not involve calls to other modules and then compute v(G) on this new flowgraph

		Essential Complexity (ev(G))		A measure of the degree to which the module contains unstructured constructs. It is equal to the cyclomatic complexity of the reduced flowgraph. Removing all structured constructs does the reduction.Usage: Quantifies the degree of structuredness, reveal

		Pathological Complexity (pv(G))		A measure of the degree to which the module contains extremely unstructured constructs. The measure of a reduced flowgraph where all unstructured constructs except multiple entries into loops are treated as straight-line code. Pv(G) is the module’s stru

		Design Complexity (S0)		Measures the amount of interaction between modules. S0 of a design G, is a measure of the decision structure that controls the invocation of modules within the design. It is a quantification of the testing effort of all calls in the design. S0 = Σ iv(Gj

		Integration Complexity (S1)		Measures the amount of integration testing necessary to guard against errors. Each S1 tests validates the integration of several modules. It is computed by S1 = S0 – n + 1 (where n is the number of modules in the design and S0 is the design complexity o

		Object Integration Complexity (OS1)		Quantifies the number of tests necessary to fully integrate an object or class into an OO system

		Global Data Complexity (gdv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to global/parameter data. Decision predicates are reduced that do not impact data that is either global or is passed as parameters to the module. Specific Data Complexity sdv(G)

		Line Count		Lines of code, lines of comment, lines of mixed code and comment, lines left blank

		Halstead Metrics		Description

		Program Length		The total number of operator occurrences and the total number of operand occurrences

		Program Volume		The minimum number of bits required for coding the program

		Program Level and Difficulty		Measure the program’s ability to be comprehended

		Intelligent Content		Shows the complexity of a given algorithm independent of the language used to express the algorithm

		Programming Effort		Estimated mental effort required developing the program

		Error Estimate		Calculates the number of errors in a program

		Programming Time		The estimated amount of time to implement an algorithm

Tool for Object Oriented Metrics

Requires further research to determine an accurate correlation

Universal Coding Standards

		Scott Meyers, Effective C++, Second Edition 1998, Addison Wesley Longman, Inc.

		Category		Item		Description

		Shifting from C to C++		2		Prefer iostream.h to stdio.h

				3		Use new and delete instead of malloc and free

		Memory Management		5		Use the same form in corresponding calls to new and delete

				6		Call delete on pointer members in destructors

				7		Check the return value of new

				8		Adhere to convention when writing new

				9		Avoid hiding the global new

				10		Write delete if you write new

		Constructors, Destructors, & Assignment Operators		11		Define a copy constructor and assignment operator for classes with dynamically allocated memory.

				12		Prefer initialization to assignment in constructors

				13		List members in an initialization list in the order in which they are declared

				14		Make destructors virtual in base classes

				15		Have operator= return a reference to *this

				16		Assign to all data members in operator=

				17		Check for assignment to self in operator=

		Classes and Functions: Design & Declaration		19		Differentiate among member functions, global functions, and friend functions

				20		Avoid data members in the public interface

				22		Pass and return objects by reference instead of by value

				23		Don't try to return a reference when you must return an object

				25		Avoid overloading on a pointer and a numerical type

		Classes and Functions: Implementation		29		Avoid returning "handles" to internal data from const member functions

				30		Avoid member functions that return pointers or references to members less accessible than themselves

				31		Never return a reference to a local object or a dereferenced pointer initialized by new within the function

		Inheritance and OO Design		37		Never redefine an inherited non-virtual function

				38		Never redefine an inherited default parameter value

				39		Avoid casts down the inheritance hierarchy

		Scott Meyers, More Effective C++, 1996, Addison Wesley Longman, Inc.

		Category		Item		Description

		Basics		2		Prefer C++-style casts

		Operators		5		Be wary of user-defined conversion functions

				6		Distinguish between prefix and postfix forms of increment and decrement operators

				7		Never overload &&, ||, or ,

		Efficiency		22		Consider using op= instead of stand-alone op

				24		Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI

		Techniques		26		Limiting the number of objects of a class

		Meyers-Klaus Items

		Category		Item		Description

		Constructors/Destructors		13		Avoid calling virtual functions from constructors and destructors

		Assignment

		Implementation		23		Avoid using "..." in function parameter list

User Items

		

		Item		Description

		2		Do not declare protected data members

		3		Do not declare the constructor or destructor to be inline

		4		Declare at least one constructor to prevent the compiler from doing so

		5		Pointers to functions should use a typedef

		6		Never convert a const to a non-const

		7		Do not use the ?: operator

		8		Each class must declare the public, protected, and private sections in that order

		9		In the public section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		10		In the protected section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		11		In the private section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		12		If a function has no parameters, use () instead of (void)

		13		If, else, while, and do statements shall be followed by a block, even if it is empty

		14		If a block is a single statement, enclose it in braces

		15		Whenever a global variable or function is used, use the :: operator

		16		Do not use public data members

		17		If a function has any virtual functions it shall have a virtual destructor

		18		Public member functions shall return const handles to member data

		19		A class that has pointer members shall have an operator= and a copy constructor

		20		If a subclass implements a virtual function, use the virtual keyword

		21		Member functions shall not be defined in the class definition

		22		Ellipses shall not be used

		23		Functions shall explicitly declare their return types

		24		A pointer to a class shall not be converted to a pointer of a second class unless it inherits from the second

		25		A pointer to an abstract class shall not be converted to a pointer that inherits from that class

		26		Do not use the friend mechanism

		27		When working with float or double values, use < and ==> instead of ==

		28		Do not overload functions within a template class

		29		Do not define structs that contain member functions

		30		Do not directly access global data from a constructor

		31		Do not use multiple inheritance

		32		Initialize all variables

		33		All pointers should be initialized to zero

		34		Always terminate a case statement with break

		35		Always provide a default branch for switch statements

		36		Do not use the goto statement

		37		Provide only one return statement in a function

Standards

		User Items

		Item		Description

		1		Assign to all member variables in operator= functions

		2		Declare an assignment operator for each class with pointer member variables

		3		Make destructors virtual for all base classes

		4		Avoid breaks in for loops

		5		Do not cast pointers to non-pointers

		6		Do not cast an unsigned pointer to an unsigned int

		7		Do not compare chars to constants out of char range

		8		Declare reference parameters as const reference whenever possible

		9		Write operator delete if you write operator new

		10		Do not call delete on a non-pointer

		11		Avoid do statements

		12		Do not use an enum keyword to declare a variable in C++

		13		Do not check floats for equality; check for greater than or less than

		14		Do not assign to loop control variables in the body of a for loop

		15		Do not assign the dividend of 2 ints to a float

		16		Avoid assignment in if statement condition

		17		Give each if statements an else clause

		18		Initialize all pointer variables

		19		Use capital "L" instead of lowercase "l" to indicate long

		20		Avoid switch statements with many cases

		21		Number of blocks of code per function

		22		Number of global variable references per member function

		23		Number of function calls per function

		24		Number of base classes

		25		Number of data members per class

		26		Number of methods per class

		27		Number of parameters per method

		28		Number of private data members per class

		29		Number of private methods per class

		30		Number of protected data members per class

		31		Number of protected methods per class

		32		Number of public data members per class

		33		Number of public methods per class

		34		Begin boolean type variable names with `b'

		35		Begin class names with an uppercase letter

		36		Begin constant variable names with `c'

		37		Begin class data member names with `its'

		38		Begin double type variable names with `d'

		39		Begin enumerated type names with an uppercase letter that is prefixed by the software element and suffixed by `_t_'

		40		Begin float type variable names with `f'

		41		Begin function names with an uppercase letter

		42		Begin global variable names with `the'

		43		Begin integer names with `i'

		44		Begin `is' function names with bool values

		45		Begin long integer value names with `li'

		46		Prefix variable type pointer names with `p'

		47		Begin short integer variable names with `si'

		48		Begin signed character variable names with `c'

		49		Begin terminated characters' string variable names with `sz'

		50		Begin struct type names with an uppercase letter that is prefixed by software element and suffixed by `_t'

		51		Begin unsigned character type names with `uc'

		52		Begin unsigned integer type variables with `ui'

		53		Begin variable names with a lowercase letter

		54		Return reference to *this in operator= functions

		55		Pass built-in types by value unless you are modifying them

		56		Avoid member variables in the public interface

		57		Do not use a struct keyword to declare a variable in C++

		58		Do not throw from within a destructor

		59		Avoid unnecessary casts

		60		Avoid unnecessary "==true"s

		61		Avoid unused local variables

		62		Avoid unused parameters

		63		Avoid unused private member variables

		No Java Standard: This can cause a significant impact to the system. Code developed for a large scale project must be maintainable, portable, and follow consistent programming style

_1039949168.xls
Chart1

		assignment

		documentation

		checking

		algorithm

		function

		timing

		interface

		Relationship

		Build

Frequency

Defect Type

Number of Defects

Frequency of Defects

273

161

126

53

8

5

4

0

0

CLCS Issues

		Tim No.		Activity		Phase/Review		Frequency		Description		Module

		1251		SW.CODE		PHASE.SW.DESIGN		42		Deviations from the coding standards (line was greater than 79 characters)		Data Distribution CSCI (Data Distribution)

								1		Deviations from the coding standards (e.g., variables did not have clear names)

								1		Deviations from the coding standards (e.g., not enough commenting)

								1		Deviations from the coding standards (e.g.,switch contructs did not have default statements)

		1252		SW.CODE		PHASE.SW.CODE		1		Lines were greater than 79 characters		Data Distribution CSCI (Data Distribution)

								1		Variable identifiers not clearly named

								1		brackets in the wrong place

								1		not enough comments

								1		switch statements do not contain default statements

		1255		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values		System Services CSCI (IPC CORBA CSC)

		1260		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Lack of Java programming standard		All System Software

		1268		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		108		Uninitialized variables, empty case statements, lines greater than 80 columns		Data Distribution CSCI (Data Health)

		1269		SW.CODE.FAULT_ERROR_HANDLING		REVIEW.SW.CODE.WALKTHROUGH		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		set pointer to null after delete

								1		lack of comments

		1273		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		not enough comments		Data Distribution CSCI (Data Health)

								1		variables were not initialized

								1		variables were not well commented

								1		Functions were not preceded with comments explaining their functionality

		1274		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Data Health)

								1		Switch statements did not contain default statements

								1		Case statements did not contain Break statements

								1		Else statements were empty

								1		Delete statements were used improperly without using New

								1		Include guards were omitted

		1279		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Comments need to identify the variables used		Not Defined

								1		Column alignment was off and makes reading code very difficult

								1		Several lines were greater than 80 columns

								1		Invalid identifiers were used

		1280		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Functions were not preceded with comments explaining their functionality		Data Distribution CSCI (Constraint Mgmt)

								1		variables were not initialized

								1		variables were not well commented

		1282		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		110		coding violations w.r.t. Code Wizzard		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1283		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Constraint Mgmt)

								1		Switch statements did not contain default statements

								1		Invalid filename identifiers

								1		Unclear messages

		1286		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Coment sections preceding functions were inaccurate		Data Distribution CSCI (Constraint Mgt)

								1		Header files contained inaccurate and incomplete parameter descriptions

								1		Method names in the body were inconsistent from header files

								1		Insufficient commenting

		1287		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Error codes not properly identified		Data Distribution CSCI (Constraint Mgt)

								1		Improper identification of return values

								1		Switch statements consisted of empty Case statements

								1		Instances of empty else statements

								1		Strcpy used instead of Strncpy

		1290		SW.CODE.CONTROL_FLOWS		PHASE.SW.UNIT_TEST		1		Use of = in conditional statements instead of ==		Cmd Suppt CSCI (Cmd Mgmt CSC)

		1298		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		15		Pointer initialized to 0		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								2		Replace numbers with constants

		1299		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		7		Virtual functions must have virtual destructors		Cmd Suppt CSCI (Cmd Mgmt CSC)

								2		Public interfaces should not contain data members

								3		Public member functions must always return const handles to data members

								4		Do not directly access global data from a constructor

								17		Prefer C++ style casts

								1		Pass objects by reference instead of by value

								1		Return objects by reference instead of by value

		1300		SW.CODE		PHASE.SW.UNIT_TEST		2		Define a copy constructor and operator= for classes with dynamically allocated memory		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)

								4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second

								4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class

								27		Prefer C++ style casts

								1		Virtual functions must have virtual destructors

		1345		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		2		Revisions need comments which identify author, date, and description		Data Distribution CSCI (Constraint Mgt)

								2		Methods require comments depicting their purpose

								1		Delete debug code

								1		Make main a separate file

		1346		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Missing file headers		Data Distribution CSCI (Constraint Mgt)

								1		else portions of the if statements are not indented

								3		No commenting

								3		List parameters, returns, and exceptions in headers

								1		Need copy constructor and assignment operator

								1		Comments need to identify the variables used

								1		Need deletes for all new methods

		1357		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Private data members require comments		Data Distribution CSCI (Constraint Mgt)

								2		Nothing is being returned

								1		Counters I and j are not commented

		1358		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Directory paths must not be hardcoded		Data Distribution CSCI (Constraint Mgt)

								2		Add copy constructor and assignment operator for pointer declared as private data member

								1		Add a default case for the switch statement

								1		Return int not a pointer

								14		Parameters and counters require comments

								1		variable is declared as global, could cause collision

								1		Code for checking boundary conditions is missing

								1		Constraint parameter is passed with method

								1		main method needs to be placed in separate file

								8		Delete debug code and dead code

		1360		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Initialize all variables		Data Distribution CSCI (Constraint Mgt)

								1		Constants need to appear on the left side of comparison operators

								1		Main should be in a separate file

								1		Using strcpy instead of strncpy

		1384		SW.CODE.SUPPORT_MAINTAINABILITY		PHASE.SYS.TEST		1		Method had a complexity of 30 versus the rule of thumb 10		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*

		1413		SW.CODE		Systems Test		1		Mutex locking is not being used around object creation methods, which may result in memory leaks		Cmd Suppt CSCI (All CSCs)

		1459		Code Analysis		Code & Unit Test		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software		CLCS System (CLCS)

		1464		Code Analysis		Code & Unit Test		1		Status of method execution is not returned		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?

								1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen

								1		Identify methods that are non-thread safe (e.g., those using a static buffer)

								1		Pointer arithmetic is highly discouraged

								1		Variables without descriptive names or no comments associated with them are highly discouraged

								3		The meaning of the comments are unclear

								1		Algorithm allows the pointer to extend past the array's upper bound

		1465		Code Analysis		Code & Unit Test		1		No commenting		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string

								1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized

		1466		Code Analysis		Code & Unit Test		1		Classes need to have insertion or assignment methods for their data members		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

		1467		Code Analysis		Code & Unit Test		1		Standards for class structure is not followed (Class, function, data members)		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Standard naming conventions are not followed

								1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)

								2		variables need to be initialized

								1		there is no check to see if variable exceed another before the for loop is entered

								1		Use strtod() to check for valid C/C++ format number

		1468		Code Analysis		Code & Unit Test		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file		Cmd Suppt CSCI (All CSCs)

		1470		Code Analysis		Code & Unit Test		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Postconditions and exceptions are not always stated in the comments

		1471		Code Analysis		Code & Unit Test		3		Code does not follow what the comments say		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								2		Variables are not checked for valid data before critical use

								2		Methods that do nothing (e.g., return this) should state they do nothing and why

		1472		Code Analysis		Code & Unit Test		6		Post-conditions are required, lack of comments in general		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?

								9		Checks to determine pointers actually point to valid data before they are used

								1		Does not check if element 0 of the array is defined before its use

								3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation

								4		Redundant code is a good candiate for a subroutine

								1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers

								6		Initialize variables

		1473		Code Analysis		Code & Unit Test		1		Files are extremely large and functions are easily hundreds of lines long		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Proprietary system calls provided by the operating system requires commenting and tracking

								1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type

								1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)

								1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))

								1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code

								1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code

								1		Masking literals need to be named to constants (e.g., 0x800000000)

		1478		Interface Analysis		Code & Unit Test		3		Initialize methods have no error checking to guarantee the variables have been properly initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								9		Arguments to methods do not have comments associated with them concerning their valid values

		1483		Code Analysis		Code & Unit Test		2		Dereferencing pointers without checking them first		Cmd Suppt CSCI (Cmd Auth CSC)

								1		No checking method returns for failure status

								1		Commenting states specific error messages can be generated, however the code does not reflect this

								2		Comments do not reflect the code

								1		C++ automatically converts enums to integers, which allows for a wide range of values

								1		It is unclear what meaning "<" can have for a bit vector

								1		variables not being initialized, especially constants

								1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer

		1484		Code Analysis		Code & Unit Test		1		Read and write priveledges on files need to be examined		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Preconditions are not stated in the comments of methods

								1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed

								2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance

								1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined

		1486		Code Analysis		Code & Unit Test		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines		CMD Suppt CSCI (Cmd Auth CSC)

		1489		Code Analysis		Code & Unit Test		1		Member variables not initialized in the Constructor		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Commenting is confusing

								2		Return warnings upon successful termination

								1		Comments conflict with the code

								1		Using static variables for error values leaves multi-threaded applications with no reliable error checking

								1		Errors should be past back through the argument list

								1		Define where System Messages are to be propogated

								1		Multi-threaded code must use thread safe constructs

		1490		Code Analysis		Code & Unit Test		3		Commenting is confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Assertions need to be added to ensure all variables used in this routine are properly initialized

								1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set

								1		Enums should be integer constants to make their meaning clearer

								3		Dereferencing pointers without checking them first

								1		The destructor for this calss needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.

								1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations

		1491		Code Analysis		Code & Unit Test		4		Comments are confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		An enum is used where integer constants are implied

								2		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Vectors are used without checking the bounds nor if there are values in the vector

								1		String classes are used in conjunction with C style string functions

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

								1		Constants nees to have comments

		1492		Code Analysis		Code & Unit Test		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

		1494		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		No postconditions are stated for methods		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		No preconditions are stated for methods

								1		Comments are confusing

								4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)

								2		Variable naming is confusing

		1495		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		3		Comments are unclear		Cmd Suppt CSCI (Cmd Mgmt CSC)

								3		Variables need to be checked for proper values

		1496		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are used outside of their scope		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Method are declared but never used, hence dead code

								3		Comments contradict the code

		1497		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		6		Variables are not initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1498		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1501		SW.CODE		Code & Unit Test		1		Variables are not checked for valid data		Data Distribution CSCI (Data Fusion)

								630

The IV&V Activity
being performed
when the issue was
identified

The phase or review in which the issue was identified

The number of times the issue occurred

Filtered Issues

		Trigger		Type		Severity		Frequency		General Description		Template		Module

		language Dependency		documentation		3		42		line was greater than 79 characters				K

		language Dependency		documentation		3		1		variables did not have clear names				K

		language Dependency		documentation		3		1		not enough commenting				K

		language Dependency		checking		3		1		switch contructs did not have default statements				K

		language Dependency		documentation		3		1		Lines were greater than 79 characters				K

		language Dependency		documentation		3		1		Variable identifiers not clearly named				K

		language Dependency		documentation		3		1		brackets in the wrong place				K

		language Dependency		documentation		3		1		not enough comments				K

		language Dependency		checking		3		1		switch statements do not contain default statements				K

		Logic / Flow		algorithm		3		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values				O

		language Dependency		documentation		3		1		Lack of Java programming standard				A

		Logic / Flow		assignment		3		108		Uninitialized variables, empty case statements, lines greater than 80 columns				M

		Logic / Flow		algorithm		3		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor				F

		Logic / Flow		assignment		3		2		set pointer to null after delete				F

		Logic / Flow		documentation		3		1		lack of comments				F

		Internal Document		documentation		3		1		not enough comments				M

		Internal Document		assignment		3		1		variables were not initialized				M

		Internal Document		documentation		3		1		variables were not well commented				M

		Internal Document		documentation		3		1		Functions were not preceded with comments explaining their functionality				M

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				M

		language Dependency		checking		3		1		Switch statements did not contain default statements				M

		language Dependency		checking		3		1		Case statements did not contain Break statements				M

		language Dependency		checking		3		1		Else statements were empty				M

		language Dependency		algorithm		3		1		Delete statements were used improperly without using New				M

		language Dependency		checking		3		1		Include guards were omitted				M

		language Dependency		documentation		3		1		Comments need to identify the variables used				N

		language Dependency		documentation		3		1		Column alignment was off and makes reading code very difficult				N

		language Dependency		documentation		3		1		line was greater than 79 characters				N

		language Dependency		documentation		3		1		Invalid identifiers were used				N

		Internal Document		documentation		2		1		Functions were not preceded with comments explaining their functionality				J

		Internal Document		assignment		2		1		variables were not initialized				J

		Internal Document		documentation		2		1		variables were not well commented				J

		Logic / Flow		assignment		3		110		coding violations w.r.t. Code Wizzard				F

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		3		1		Switch statements did not contain default statements				J

		language Dependency		documentation		3		1		Invalid filename identifiers				J

		language Dependency		documentation		3		1		Unclear messages				J

		Internal Document		documentation		2		1		Coment sections preceding functions were inaccurate				J

		Internal Document		documentation		2		1		Header files contained inaccurate and incomplete parameter descriptions				J

		Internal Document		interface		2		1		Method names in the body were inconsistent from header files				J

		Internal Document		documentation		2		1		Insufficient commenting				J

		language Dependency		documentation		2		1		Error codes not properly identified				J

		Internal Document		documentation		2		1		Improper identification of return values				J

		language Dependency		checking		2		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		2		1		Instances of empty else statements				J

		language Dependency		algorithm		2		1		Strcpy used instead of Strncpy				J

		language Dependency		checking		1		1		Use of = in conditional statements instead of ==				H

		Logic / Flow		assignment		3		15		Pointer initialized to 0				I

		language Dependency		assignment		3		2		Replace numbers with constants				I

		language Dependency		algorithm		3		7		Virtual functions must have virtual destructors				H

		language Dependency		function		3		2		Public interfaces should not contain data members				H

		language Dependency		interface		3		3		Public member functions must always return const handles to data members				H

		language Dependency		algorithm		3		4		Do not directly access global data from a constructor				H

		language Dependency		checking		3		17		Prefer C++ style casts				H

		language Dependency		algorithm		3		1		Pass objects by reference instead of by value				H

		language Dependency		algorithm		3		1		Return objects by reference instead of by value				H

		language Dependency		algorithm		3		2		Define a copy constructor and operator= for classes with dynamically allocated memory				I

		language Dependency		algorithm		3		8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)				I

		language Dependency		algorithm		3		4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second				I

		language Dependency		algorithm		3		4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class				I

		language Dependency		checking		3		27		Prefer C++ style casts				I

		language Dependency		algorithm		3		1		Virtual functions must have virtual destructors				I

		Internal Document		documentation		3		2		Revisions need comments which identify author, date, and description				J

		Internal Document		documentation		3		2		Methods require comments depicting their purpose				J

		language Dependency		checking		3		1		Delete debug code				J

		language Dependency		algorithm		3		1		Make main a separate file				J

		Internal Document		documentation		3		1		Missing file headers				J

		language Dependency		documentation		3		1		else portions of the if statements are not indented				J

		Internal Document		documentation		3		3		No commenting				J

		Internal Document		documentation		3		3		List parameters, returns, and exceptions in headers				J

		language Dependency		algorithm		3		1		Need copy constructor and assignment operator				J

		Internal Document		documentation		3		1		Comments need to identify the variables used				J

		language Dependency		algorithm		3		1		Need deletes for all new methods				J

		Internal Document		documentation		3		1		Private data members require comments				J

		language Dependency		checking		3		2		Nothing is being returned				J

		Internal Document		documentation		3		1		Counters I and j are not commented				J

		Internal Document		assignment		3		1		Directory paths must not be hardcoded				J

		language Dependency		algorithm		3		2		Add copy constructor and assignment operator for pointer declared as private data member				J

		language Dependency		checking		3		1		Add a default case for the switch statement				J

		language Dependency		algorithm		3		1		Return int not a pointer				J

		Internal Document		documentation		3		14		Parameters and counters require comments				J

		Logic / Flow		function		3		1		variable is declared as global, could cause collision				J

		Logic / Flow		checking		3		1		Code for checking boundary conditions is missing				J

		language Dependency		documentation		3		1		Constraint parameter is passed with method				J

		language Dependency		algorithm		3		1		main method needs to be placed in separate file				J

		language Dependency		checking		3		8		Delete debug code and dead code				J

		language Dependency		assignment		3		1		Initialize all variables				J

		language Dependency		checking		3		1		Constants need to appear on the left side of comparison operators				J

		language Dependency		algorithm		3		1		Main should be in a separate file				J

		language Dependency		algorithm		3		1		Using strcpy instead of strncpy				J

		Rare Situation		function		3		1		Method had a complexity of 30 versus the rule of thumb 10				H

		Logic / Flow		algorithm		3		1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*				H

		Concurrency		timing		4		1		Mutex locking is not being used around object creation methods, which may result in memory leaks				D

		language Dependency		documentation		3		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software				B

		Logic / Flow		checking		2		1		Status of method execution is not returned				G

		Internal Document		assignment		2		1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?				G

		Internal Document		documentation		2		1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen				G

		Concurrency		timing		2		1		Identify methods that are non-thread safe (e.g., those using a static buffer)				G

		Logic / Flow		checking		2		1		Pointer arithmetic is highly discouraged				G

		Logic / Flow		documentation		2		1		Variables without descriptive names or no comments associated with them are highly discouraged				G

		Internal Document		documentation		2		3		The meaning of the comments are unclear				G

		Logic / Flow		checking		2		1		Algorithm allows the pointer to extend past the array's upper bound				G

		Internal Document		documentation		4		1		No commenting				G

		Logic / Flow		assignment		4		1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string				G

		Logic / Flow		assignment		4		1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized				G

		language Dependency		assignment		3		1		Classes need to have insertion or assignment methods for their data members				G

		language Dependency		documentation		2		1		Standards for class structure is not followed (Class, function, data members)				G

		language Dependency		documentation		2		1		Standard naming conventions are not followed				G

		Logic / Flow		assignment		2		1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)				G

		Logic / Flow		assignment		2		2		variables need to be initialized				G

		Logic / Flow		checking		2		1		there is no check to see if variable exceed another before the for loop is entered				G

		Logic / Flow		checking		2		1		Use strtod() to check for valid C/C++ format number				G

		language Dependency		documentation		3		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file				D

		language Dependency		assignment		4		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				G

		Internal Document		documentation		4		1		Postconditions and exceptions are not always stated in the comments				G

		Internal Document		documentation		2		3		Code does not follow what the comments say				G

		Logic / Flow		checking		2		2		Variables are not checked for valid data before critical use				G

		Logic / Flow		documentation		2		2		Methods that do nothing (e.g., return this) should state they do nothing and why				G

		Internal Document		documentation		2		6		Post-conditions are required, lack of comments in general				G

		Logic / Flow		documentation		2		3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?				G

		Logic / Flow		checking		2		9		Checks to determine pointers actually point to valid data before they are used				G

		Logic / Flow		checking		2		1		Does not check if element 0 of the array is defined before its use				G

		Internal Document		documentation		2		3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation				G

		Logic / Flow		algorithm		2		4		Redundant code is a good candiate for a subroutine				G

		Logic / Flow		checking		2		1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers				G

		Logic / Flow		assignment		2		6		Initialize variables				G

		language Dependency		function		2		1		Files are extremely large and functions are easily hundreds of lines long				G

		Internal Document		documentation		2		1		Proprietary system calls provided by the operating system requires commenting and tracking				G

		Logic / Flow		algorithm		2		1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type				G

		Logic / Flow		checking		2		1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)				G

		Logic / Flow		checking		2		1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))				G

		Internal Document		documentation		2		1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code				G

		Logic / Flow		checking		2		1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code				G

		Logic / Flow		assignment		2		1		Masking literals need to be named to constants (e.g., 0x800000000)				G

		Logic / Flow		checking		3		3		Initialize methods have no error checking to guarantee the variables have been properly initialized				F

		Internal Document		documentation		3		9		Arguments to methods do not have comments associated with them concerning their valid values				F

		Logic / Flow		checking		2		2		Dereferencing pointers without checking them first				E

		Logic / Flow		checking		2		1		No checking method returns for failure status				E

		Logic / Flow		documentation		2		1		Commenting states specific error messages can be generated, however the code does not reflect this				E

		Logic / Flow		documentation		2		2		Comments do not reflect the code				E

		Logic / Flow		checking		2		1		C++ automatically converts enums to integers, which allows for a wide range of values				E

		Logic / Flow		documentation		2		1		It is unclear what meaning "<" can have for a bit vector				E

		Logic / Flow		assignment		2		1		variables not being initialized, especially constants				E

		Logic / Flow		checking		2		1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer				E

		Concurrency		checking		3		1		Read and write priveledges on files need to be examined				F

		Internal Document		documentation		3		1		Preconditions are not stated in the comments of methods				F

		Concurrency		timing		3		1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed				F

		Logic / Flow		assignment		3		2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance				F

		Logic / Flow		function		3		1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined				F

		Internal Document		checking		2		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines				E

		Logic / Flow		assignment		3		1		Member variables not initialized in the Constructor				F

		Internal Document		documentation		3		1		Commenting is confusing				F

		Logic / Flow		checking		3		2		Return warnings upon successful termination				F

		Internal Document		documentation		3		1		Comments conflict with the code				F

		Concurrency		timing		3		1		Using static variables for error values leaves multi-threaded applications with no reliable error checking				F

		Logic / Flow		algorithm		3		1		Errors should be past back through the argument list				F

		Logic / Flow		function		3		1		Define where System Messages are to be propogated				F

		Concurrency		timing		3		1		Multi-threaded code must use thread safe constructs				F

		Internal Document		documentation		2		3		Commenting is confusing				F

		Logic / Flow		assignment		2		2		Assertions need to be added to ensure all variables used in this routine are properly initialized				F

		Internal Document		checking		2		1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set				F

		Logic / Flow		assignment		2		1		Enums should be integer constants to make their meaning clearer				F

		Logic / Flow		checking		2		3		Dereferencing pointers without checking them first				F

		language Dependency		checking		2		1		The destructor for this class needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.				F

		language Dependency		algorithm		2		1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations				F

		Internal Document		documentation		3		4		Comments are confusing				F

		Logic / Flow		checking		3		1		An enum is used where integer constants are implied				F

		Logic / Flow		checking		3		2		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		checking		3		1		Vectors are used without checking the bounds nor if there are values in the vector				F

		Logic / Flow		function		3		1		String classes are used in conjunction with C style string functions				F

		Logic / Flow		assignment		3		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Logic / Flow		documentation		3		1		Constants need to have comments				F

		Logic / Flow		checking		2		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)				F

		Logic / Flow		checking		2		1		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		assignment		2		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Internal Document		documentation		3		1		No postconditions are stated for methods				H

		Internal Document		documentation		3		1		No preconditions are stated for methods				H

		Internal Document		documentation		3		1		Comments are confusing				H

		Logic / Flow		checking		3		4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)				H

		Internal Document		documentation		3		2		Variable naming is confusing				H

		Internal Document		documentation		3		3		Comments are unclear				C

		Logic / Flow		checking		3		3		Variables need to be checked for proper values				C

		Logic / Flow		checking		4		1		Variables are used outside of their scope				F

		Logic / Flow		checking		4		2		Method are declared but never used, hence dead code				F

		Internal Document		documentation		4		3		Comments contradict the code				F

		Logic / Flow		assignment		2		6		Variables are not initialized				F

		Logic / Flow		checking		1		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns				F

		Logic / Flow		checking		3		1		Variables are not checked for valid data				L

								630

The number of times the issue occurred

Defect Type Chart

		Type		Frequency

		assignment		273

		documentation		161

		checking		126

		algorithm		53

		function		8

		timing		5

		interface		4

		Relationship		0

		Build		0

The number of times the issue occurred

Defect Type Chart

		

Frequency

Defect Type

Number of Defects

Frequency of Defects

Defect Trigger Chart

		Trigger		Frequency		Percent

		Logic / Flow		340		53.97

		language Dependency		189		30.00

		Internal Document		94		14.92

		Concurrency		6		0.95

		Rare Situation		1		0.16

		Important Note:		The trigger classification can not be deemed one hundred percent reliable.

				The activity that surfaced the defect was not recorded by the defect identification team, so this required

				the authors to attempt to identify which activity was being performed when the defect was found

		Analysis:		Logic / Flow was responsible for identifying 54 percent of the overall defects found

				A few examples of this trigger type are control flow analysis, global entity-cross referencing, object use analysis

				exception propogation analysis, and call dependency analysis

				Language Dependency was responsible for finding 30 precent of the overall defects found

				This trigger type describes activities that deal with analyzing the source code with respect to a specific standard

				and focuses on checking language specific details and compilation concerns

				Internal Document was responsible for finding 15 precent of the overall defects found

				This trigger type searches for incorrect information, inconsistency, or incompleteness within the code and its

				documentation (including comments). This activity is also responsible for assessing how maintainable the code

				will be in its current form

The number of times the issue occurred

Defect Trigger Chart

		

Frequency

Defect Trigger

Frequency

Frequency of Defect Triggers

VS Charts

		

				Concurrency		Internal Document		Language Dependency		Logic/Flow		Rare Situation

		timing		5		0		0		0		0		5

		checking		1		2		70		53		0		126

		documentation		0		87		62		12		0		161

		assignment		0		4		7		262		0		273

		interface		0		1		3		0		0		4

		algorithm		0		0		44		9		0		53

		function		0		0		3		4		1		8

				6		94		189		340		1		630

VS Charts

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

timing

checking

documentation

assignment

interface

algorithm

function

Defect Trigger

Frequency

Defect Trigger vs Defect Type

IV&V Triggers

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Type

Frequency

Defect Type vs Defect Trigger

Severity Chart

		IV&V Analysis Level Definitions

		Phase		Activity		Basic		Limited		Focused		Comprehensive		Trigger

		Requirements Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements		x		x		x		x		Conformance

				Validate ability of requirements to meet system needs		x		x		x		x		Conformance

				Verify traceability to and from parent requirements		x		x		x		x		Conformance

				Analyze data/adaptation requirement		x		x		x		x

				Analyze testability, qualification requirements		x		x		x		x

				Analyze data flow, control flow, moding and sequencing		x		x		x		x

				Assess development metrics		x		x		x		x

				Analyze development risks/mitigation plans		x		x		x		x

				Analyze timing and sizing requirements		x		x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform engineering analysis of key algorithms						x		x

				Review/use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Design Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x

				Validate ability of design to meet system needs				x		x		x

				Verify traceability to and from requirements				x		x		x

				Analyze database design				x		x		x

				Analyze design testability, qualification requirements				x		x		x

				Analyze design data flow, control flow, moding, sequencing				x		x		x

				Analyze control logic, error/exception handling design				x		x		x

				Assess design development metrics				x		x		x

				Analyze development risks/mitigation plans				x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform design analysis of select critical algorithms						x		x

				Review /use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Code Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x		Design Conformance

				Verify Traceability to and from design				x		x		x		Design Conformance

				Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)				x		x		x		Design Conformance

				Verify supportability and maintainability				x		x		x

				Assess code static metrics				x		x		x

				Verify CSU & CSC level logical structure and control flow				x		x		x		logic

				Verify internal data structures and data flow/usage						x		x		logic

				Verify error and exception handling						x		x		logic

				Verify code & external I/O data consistency						x		x		logic

				Review code compilation results & syntax checking						x		x

				Verify correct adaptation data & ability to reconfigure						x		x

				Verify correct operating system & run time libraries						x		x

				For select algorithms, verify correctness and stability under full range of potential input conditions								x

				Verify code data compliance with data dictionary								x

				Verify compliance with coding standards								x		language

		Software Test Analysis		Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions		x		x		x		x

				Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs		x		x		x		x

				Verify test cases traceability and coverage of software requirements, operational needs, and capabilities		x		x		x		x

				Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives		x		x		x		x

				Analyze correct dispositioning of software test anomalies		x		x		x		x

				Validate software test results compliance with test acceptance criteria		x		x		x		x

				Verify trace and successful completion of all software test case objectives		x		x		x		x

				Verify ability of software test environment plans and designs to meet software testing objectives				x		x		x

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes				x		x		x

				Analyze STD procedures for test setup, execution, and data collection						x		x

				Monitor execution of software testing						x		x

				Analyze select CSC test plans, procedures, and results to verify adequate logic path coverage, testing of full range of input conditions, error and exception handling, key algorithm stability, and performance in compliance with the design.								x

				Perform life cycle IV&V on software test environment components								x

		System Test Analysis		Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs

				Verify test case traceability and coverage of system requirements, operational needs, and capabilities

				Analyze correct dispositioning of software test anomalies

				Validate ST results compliance with test acceptance criteria

				Verify trace and successful completion of all ST case objectives

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes

System test analysis activities are applied independent of IV&V Analysis Levels

Defect Type

		Severity		Frequency

		One		2

		Two		109

		Three		505

		Four		14

		Five		0

		Severity		Description

		One		Prevent the accomplishment of an essential capability

				Jeapordize safety, security, or other requirements designated critical

		Two		Adversely affect the accomplishment of an essential capability and no work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, and no work-around solution is known

		Three		Adversely affect the accomplishment of an essential capability but a work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, but a work-around solution is known

		Four		Result in user/operator inconveniences but does not affect a required operational or mission essential capability

				Result in inconvenience for development or maintenance personnel, but does not affect accomplishment of these responsiblities

		Five		Any other affect

The number of times the issue occurred

Defect Type

		0

		0

		0

		0

		0

Frequency

Severity

Frequency

Defect Severity

ODC Triggers

		Orthogonal Defect Classification

		The selection of the defect type captures the nature of the change

		Defect Type		Description		Examples

		Function / Class / Object		The error should require a formal design change, as it affects significant capability, end-user features, product interfaces, interface with hardware architectures, or global structures. The error occurred when implementing the state and capabilities of		A database did not include a field, although the requirements specified it

						A database included a field but it was to small to contain possible values

						A class was omitted during system design

						An object was not instantiated before being accessed by other objects of the system

		Assignment / Initialization		Value(s) assigned incorrectly or not assigned at all; but note that a fix involving multiple assignment corrections may be of type Algorithm		Internal variable or variable within a control block did not have correct value, or did not have any value at all

						Initialization of parameters

						Resetting of variable's value

						The instance variable capturing a characteristic of an object is omitted

						The instance variables that capture the state of an object are not correctly initialized

		Interface / OO Messages		Communication problems between modules, components, device drivers, objects, functions vi macros, call statements, control blocks, parameter lists		A database implements both insertion and deletion functions, but the deletion interface was not made callable

						The interface specifies a pointer to a number, but the implementation is expecting a pointer to a character

						The OO message incorrectly specifies the name of the service

						The number and/or types of parameters of the OO message do not conform with the signature of the requested service

		Checking		Errors caused by missing or incorrect validation of parameters or data in conditional statements. It might be expected that a consequence of checking for a value would require additional code such as a do while loop or branch. If the missing or incorrec		Value greater than 100 is not valid, but the check to make sure that the value was less than 100 was missing

						The conditional loop should have stopped on the ninth iteration, but it kept looping while the counter was <=10

						Is there checking or debugging code that is left in the function that shouldn't be

		Timing/Serialization		Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong serialization technique was employed		Serialization is missing when making updates to a shared control block

						A hierarchical locking scheme is in use, but the defective code failed to acquire the locks in the prescribed sequence

		Relationship		Problems related to associations among procedures, data structures and objects. Such associations may be conditional		The structure of code/data in one place assumes a certain structure of code/data in another. Without appropriate consideration of their relationship, program will not execute or it executes incorrectly

						The inheritance relationship between two classes is missing or incorrectly specified

						The limit on the number of objects that may be instantiated from a given class is incorrect and causes performance degradation of thsystem

		Build/Package/Merge		Describe errors that occur due to mistakes in library systems, management of changes, or version control

		Documentation		Errors that affect both publications and maintenance notes		Function does not have sufficient commenting or it does not describe the code accurately

						Are variables described when declared

						Variable naming conventions do not follow the standard or are not descriptive

		Algorithm / Method		Efficiency or correctness problems that affect the task and can be fixed by (re)implementing an algorithm or local data structure without the need for requesting a design change. Problem in the procedure, template, or overloaded function that describes a		The low-level designcalled for the use of an algorithm that improves throuput over the link by delaying transmission of some messages, but implementation transmitted all messages as soon as they arrived. The algorithm that delayed transmission was missin

						The algorithm for searching a chain of control blocks was corrected to use a linear-linked list instead of a circular-linked list

						The number and/or types of parameters of a method or an operation are incorrectly specified. A method or an operation is not made public in the specification of a class

IV&V Methodology

				Triggers		Explanation		Examples

		Inspection		Design Conformance		The document reviewer or the code inspector detects the defect while comparing the design element or code segment being inspected with its specification in the preceding stage(s). Faults largely related to the completeness of the product being designed wi		The code didn't implement the case when no data exists

								On one screen, all font is bold while in another it is not

				Logic / Flow		The inspector uses knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete		Memory in this subroutine needs to be allocated before storing these values

								A value assignment is spelled incorrectly

				Lateral Compatibility		The inspector with broad-based experience, detects an incompatibility between the function described by the design document or code, and other systems, products, services, components, or modules with which it must interface		A graphics application was not able to read a gif file put out by some other application package it is supposed to work with

				Backward Compatibility		The inspector uses extensive product/component experience to identify an incompatibility between the function described by the design document or the code, than that of earlier versions of the same product or component or with n to n+1 (subsequent release		The install option in the current product hard codes the drive for the install whereas the previous version just used the current drive

								The previous version defaulted to 0 decimal places for numeric data but the current defaults to 2 decimal places

				Concurrency		The inspector is considering the serialization necessary for controlling a shared resource when the defect is discovered. This would include serialization of multiple functions, threads, processes, or kernel contexts as well as obtaining and releasing lo		Routine A didn't release the lock before calling routine B which requests the lock

								This variable incorrectly reset to 0 by routine A after routine B had already incremented it

				Internal Document		There is incorrect information, inconsistency, or incompleteness within internal documentation. It has to do with overall completeness of the design and ensures that there is consistency between the different parts of the proposed design or implementatio		The prologue for subroutine A lists only 3 parameters when there are actually 4

				Language Dependency		The developer detects the defect while checking the language specific detatils of the implementation of a component or a function. Language standards, compilation concerns, and language specific efficiencies are examples or potential areas of concern		The inspector is checking C code and sees a "=" that should be "=="

				Side Effect		The inspector uses extensive experience or product knowledge to foresee some system, product, function, or component behavior which may result from the design or code under review. The side effects would be characterized as a result of common usage or co		While looking at a pointer that accesses data by byte, the inspector realizes in another part of the code, the bytes could be in reverse order, so that the pointer won't be accessing them correctly

				Process		The inspector uses experience and best practices to identify issues within the development activities		The developing organization has not institutionalized a standard development practice

								The developing organization has not identified any tools or have not identified the appropriate tools to aid in the development of the system

				Rare Situations		The inspector uses extensive experience or product knowledge to foresee some system behavior which is not considered or addressed by the documented design or code under review, and would typically be associated with unusual configurations or usage. These		Requirements state that a network can handle 250 machines. A bug occurs when a customer has 1000 machines. This is not workload stress because the requirements state that only 250 machines are currently able to be accomadated

		Unit Test		Simple Path		In white/Gray Box Testing, the test case that found the defect was executing a simple code path related to a single function		Tried executing the "default" path of a case statement but since it didn't exist, the test failed

				Complex Path		In White/Gray Box Testing, the test case that found the defect was executing some contrived combinations of code paths related to multiple functions		Path failed because one function released memory that subsequently was used in another function

								Path failed because a global variable is being accessed and incremented in multiple functions

		Function Test		Test Coverage		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function, using no parameters or a single set of parameters		The tester tried to delete a city from the database but it couldn't be deleted

				Test Variation		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function but using a variety of inputs and parameters		When the tester tried to add one more character than the maximum allowable, the software hung

				Test Sequencing		During black box testing, the test case that found the defect executed multiple functions in a very specific sequence		The test case first added a record, then deleted it, and then tried to add it again but got the message that you cannot add a record that already exists

				Test Interaction		During black box testing, the test case that found the defect initiated an interaction among two or more bodies of code. This is more involved than a simple serial sequence of the executions		Cant add data to fields after the record has been created

		System Test		Workload Volume/Stress		The system is operating at or near some resource limit		When the system is idle for 10 minutes it hangs

				Recovery/Exception		The system is being tested with the intent of invoking an exception handler or some type of recovery code		Unexpected errors get converted to to other types of errors instead of the expected one

				Startup/Restart		The system was being initialized or restarted		After pulling the plug on the cpu, the system was unable to restart until certain files were cleaned up

				Hardware Configuration		The system is being tested to ensure functions execute correctly under specific hardware configurations

				Software Configuration		The system is being tested to ensure functions execute correctly under specific software configurations

				Blocked Test Execution		The product is operating well within resource limits and the defect surfaced without any particular strategy		Wanted to check for workload stress by printing 1000 jobs. However, when Print was selected, nothing happened

Template

		IV&V: A Life Cycle Engineering Process for Quality Software

		Robert O. Lewis, 1992, John Wiley & Sons, Inc.

		Code Verification Activities

		Phase		Activity		Notes		ODC Trigger

		Documentation Review		Verify consistency between the code and the software design document (SDD)		Are the documents and the code meeting the intended purpose?		Design Conformance

						Is the technical content consistent, complete, clear, correct, and testable?

						The goal is to find discrepancies between the SDD and the Code

		Process Review		Verify the specified standards and practices are being followed		These are specified in the Software Development Plan (SDP)		Process

						Must look at a system level as well as individual units

						Assess the developer's metrics program

						Verify developer's processes meet applicable standards

				Verify the developer is using specified coding tools		Simple check to ensure the appropriate tools are being used

				Verify versions of the compiler, operating system, and utilities		IV&V looks for any inconsistencies and stays coordinated with the developer's configuration management organization		Language Dependency

				Review software library and release/version control		Monitor the developer's control and release procedures, adherence to scheduled events, completeness of the product and consistency with which the release occurs		Process

		Code Review		Verify the logical structure and syntax with static analysis		control flow analysis		Logic / Flow

						standards analysis (coding standards)		Language Dependency

						global entity cross-reference: representation clause, entity cross-reference, type/object cross-reference, type dependency, exception cross-reference, generic instantiation		Logic / Flow

						Object use analysis		Logic / Flow

						exception propogation analysis		Logic / Flow

						call dependency analysis: invocation cross-reference, invocation bands, compilation unit dependency		Logic / Flow

						verify the code is maintainable		Backward Compatibility

						source code data collection and assess metrics		Rare Situation

				Verify terms between data dictionary and code		compare the entries in the data dictionary to the element names appearing both in the code and in the interface, global, and local data definitions in the SDD		Internal Document

						This activity ensures consistency among the three items that share the data definitions

				Verify sample input and output data		During development, it is customary for the developer to generate sample input data that are representative to the actual input data. Coincidentally, the system generates output data that have a correlation to these particular inputs.		Rare Situation

						IV&V checks to make sure the developer is adequately identifying and archiving I/O data and that the correct input data are specified for particular tests

				Verify algorithms per the software design document (SDD)		Ensure the consistency between the algorithms in the code and those defined in the SDD to determine if they are accurately and completely implemented		Design Conformance

						Verify any timing contraints required		Concurrency

CLCS Modules

		The Defect Type you wish to search for		Where to look		How to detect		Explanation

		Documentation		Readability		Line length exceeding 79 characters

						Brackets and indentations in the wrong place

						Class structure (class, functions, and then data members)

				Data Declarations		Variables must have comments the first time they are used

						Are the units on the data declarations commented

						Are the ranges or limitations of values defined for the variables

						Are flags documented to the bit level

						Has each global variable been commented where declared

						Are counters and MAGIC numbers commented

						Identifiers must have clear names

				Methods		Methods must have comment headers explaining their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw

						Comments must accurately describe the code

						Variables local to the method must follow the conditions stated in Data Declarations

						Methods that do nothing (e.g., return this) need to be commented that they do nothing and the reason

				Control Structures		Is each control structure commented

				General		Comment percentage		See the worksheet entitled OO Metrics for Comment Percentage remarks

						Does each file have a header

						Error and message propogation must be clearly identified

						Revisions need comments that identify the author, date, and description of the revision

						Complex code requires comments		See the worksheet entitled OO Metrics for Comment Percentage remarks

		Assignment		Pointers		Set to NULL or 0 (zero) after deleting memory it points to

						Avoid Pointer arithmetic

				Variables		Initialize variables

						All initialization needs to be done in one place

						Initializing strings by hardcoding in "\0" will place 2 null terminators

						MAGIC and hardcoded literals need to be assigned to a constant

				Operators		"&=" should not be used with booleans		May yield a correct results but it may be slower than logical operators

				Class		Must have assignment methods for their data members

		Checking		include guards are omitted

				Delete debugging code

				Code dependent on specific operating system specs (e.g., size of int) may cause future porting issues

				Constructs		switch constructs with empty case statements

						switch constructs with no default clauses

						switch constructs with no break statements

						if statements contain empty else clauses

						Vectors and arrays must check their bounds

						vectors and arrays must check their index being referenced does in fact contain valid data

						Before loops are entered the code does not check if variable exceeds another

				Comparison		if conditionals using "=" instead of "=="

						constants must appear on left side of comparison operators

				Pointers		must check they point to something before they get dreferenced

				Data		variables declared as 8-bit unsigned int must check they don't go out of range (0<=var<=256)

						Where strings get converted to other formats (e.g., integers) you must check that the string first contains a valid conversion type

						Variables that are used outside their scope

				Methods		return values must be checked

						must check their parameters

						must assert() all variables used

						get rid of methods that are never used (dead code)

						Status of routine execution is not returned

				Interfaces		Public member functions must always return const handles to data members

		Algorithm		The use of certain functions

				Main must be a separate file

				Virtual functions must have virtual destructors

				Define a copy constructor and operator= for private data members of a class

				Redundant code is a good candiate for a subroutine

		Function		Variables		Global variables can cause collision

				Files		Extremely large

				Methods		Extremely large, they are easily hundreds of lines long

		Timing		Threads		Multithreaded code must use thread safe constructs

Highlites mean I will provide a stylesheet as an example.

OO Properties "Riel"

		Module		Issues		Identifier		Metrics

								KSLOC		Complexity		Perf / Op		Safety		Devp Cost / Sched		Maturity		Reqts Def / Stability		Testability

		All System Software		1		A

		CLCS System (CLCS)		1		B

		Cmd Suppt CSCI (Cmd Mgmt CSC)		6		C		4.00

		Cmd Suppt CSCI (All CSCs)		2		D

		Cmd Suppt CSCI (Cmd Auth CSC)		11		E

		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)		180		F		2.50

		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)		73		G		10.00

		Cmd Suppt CSCI (Cmd Mgmt CSC)		47		H

		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)		63		I		2.00

		Data Distribution CSCI (Constraint Mgmt)		72		J		15.40

		Data Distribution CSCI (Data Distribution)		50		K		66.00

		Data Distribution CSCI (Data Fusion)		1		L		12.00

		Data Distribution CSCI (Data Health)		118		M		19.00

		Not Defined		4		N

		System Services CSCI (IPC CORBA CSC)		1		O

								130.90

OO Metrics

		Heuristics Summary

		The following heuristics are taken from Object-Oriented Design Heuristics by Arthur J. Riel

		Chapter		Topic		Heuristic

		2		Classes & Objects		All data should be hidden within its class

						Users of a class must be dependent on its public interface, but a class should not be depndent on its users

						Minimize the number of messages in the protocol of the class

						Implement a minimal public interface which all classes understand (e.g., operations such as COPY (deep versus shallow), equality testing, pretty printing, parsing from ASCII description, et cetera)

						Do not put implementation details such as common-code private functions into the public interface of a class

						Classes should only exhibit nil or export coupling with other classes (e.g., a class should only use operations in the public interface of another class or have nothing to do with that class

						A class should capture one and only one key abstarction

						Keep related data and behavior in one place

						Spin off non-related information into another class (e.g., non-communicating behavior)

						Be sure the abstraction that you model are classes and not simply the roles objects play

Effective Coding

		TOOM Metric		Description

		cyclomatic complexity		Used to evaluate the application of the algorithm. The number generated represents the total number of independent test paths (= edges – nodes + 2). The lower the complexity results in a decrease in testing and an increase in understandability of the

		lines of code		LOC: counts all lines; NCNB: counts all lines not comments and not blank; Executable Statements: counts all executable statements; Comments: counts all the comments

		comment percentage		Calculated by taking the total number of on-line and stand-alone comments and divide by the total lines of code less the number of blank lines. A high percentage gives an increase of understandability and maintainability		Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes highly maintainable. Specifically, they say a higher comment percentage (~20-30%) decreasing the testing efforts, increases understanda		Projects sometime adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be		One study found that areas of source code with large numbers of comments also tended to have the most defects and to consume the most development effort. The authors hypothesized that programmers tended to comment difficult code heavily. "An Experimental		Since comments assist developers and maintainers, higher comment percentages increase understandability and maintainability. "The Object Oriented Brewery: A Comparison of Two Object Oriented Development Methods", Robert Sharble and Samuel Cohen, Software

		weighted methods per class		A count of all methods implemented in the class or calculated by summing the methods’ complexities and generates one complexity for the class. The number of methods and their complexity give an idea of how much time and effort will be required to develop

		response for a class		A count of all the methods that can be invoked by a message from a class

		coupling between objects		A count of the number of other classes to which a class is coupled

		depth in a tree		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root of the tree

		number of children		The number of immediate subclasses subordinate to a class in a hierarchy

		McCabe Metrics		Description

		Cyclomatic Complexity (v(G))		The maximum number of linearly independent paths through a module of code. It measures the amount of testing necessary to reasonably guard against errors. To compute follow these steps:
a) Draw the module’s flowgraph
b) Compute v(G) using one of three m

		Actual Complexity (ac(G))		The actual number of independent paths tested during the test phase. The number of distinct, realizable paths; paths that can be traversed with real data.
Usage: if ac(G) < v(G) → v(G) may be able to be reduced to v-ac; it also tells when the minimum nu

		Module Design Complexity (iv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to calls to other modules. To compute just remove all conditions that do not involve calls to other modules and then compute v(G) on this new flowgraph

		Essential Complexity (ev(G))		A measure of the degree to which the module contains unstructured constructs. It is equal to the cyclomatic complexity of the reduced flowgraph. Removing all structured constructs does the reduction.Usage: Quantifies the degree of structuredness, reveal

		Pathological Complexity (pv(G))		A measure of the degree to which the module contains extremely unstructured constructs. The measure of a reduced flowgraph where all unstructured constructs except multiple entries into loops are treated as straight-line code. Pv(G) is the module’s stru

		Design Complexity (S0)		Measures the amount of interaction between modules. S0 of a design G, is a measure of the decision structure that controls the invocation of modules within the design. It is a quantification of the testing effort of all calls in the design. S0 = Σ iv(Gj

		Integration Complexity (S1)		Measures the amount of integration testing necessary to guard against errors. Each S1 tests validates the integration of several modules. It is computed by S1 = S0 – n + 1 (where n is the number of modules in the design and S0 is the design complexity o

		Object Integration Complexity (OS1)		Quantifies the number of tests necessary to fully integrate an object or class into an OO system

		Global Data Complexity (gdv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to global/parameter data. Decision predicates are reduced that do not impact data that is either global or is passed as parameters to the module. Specific Data Complexity sdv(G)

		Line Count		Lines of code, lines of comment, lines of mixed code and comment, lines left blank

		Halstead Metrics		Description

		Program Length		The total number of operator occurrences and the total number of operand occurrences

		Program Volume		The minimum number of bits required for coding the program

		Program Level and Difficulty		Measure the program’s ability to be comprehended

		Intelligent Content		Shows the complexity of a given algorithm independent of the language used to express the algorithm

		Programming Effort		Estimated mental effort required developing the program

		Error Estimate		Calculates the number of errors in a program

		Programming Time		The estimated amount of time to implement an algorithm

Tool for Object Oriented Metrics

Requires further research to determine an accurate correlation

Universal Coding Standards

		Scott Meyers, Effective C++, Second Edition 1998, Addison Wesley Longman, Inc.

		Category		Item		Description

		Shifting from C to C++		2		Prefer iostream.h to stdio.h

				3		Use new and delete instead of malloc and free

		Memory Management		5		Use the same form in corresponding calls to new and delete

				6		Call delete on pointer members in destructors

				7		Check the return value of new

				8		Adhere to convention when writing new

				9		Avoid hiding the global new

				10		Write delete if you write new

		Constructors, Destructors, & Assignment Operators		11		Define a copy constructor and assignment operator for classes with dynamically allocated memory.

				12		Prefer initialization to assignment in constructors

				13		List members in an initialization list in the order in which they are declared

				14		Make destructors virtual in base classes

				15		Have operator= return a reference to *this

				16		Assign to all data members in operator=

				17		Check for assignment to self in operator=

		Classes and Functions: Design & Declaration		19		Differentiate among member functions, global functions, and friend functions

				20		Avoid data members in the public interface

				22		Pass and return objects by reference instead of by value

				23		Don't try to return a reference when you must return an object

				25		Avoid overloading on a pointer and a numerical type

		Classes and Functions: Implementation		29		Avoid returning "handles" to internal data from const member functions

				30		Avoid member functions that return pointers or references to members less accessible than themselves

				31		Never return a reference to a local object or a dereferenced pointer initialized by new within the function

		Inheritance and OO Design		37		Never redefine an inherited non-virtual function

				38		Never redefine an inherited default parameter value

				39		Avoid casts down the inheritance hierarchy

		Scott Meyers, More Effective C++, 1996, Addison Wesley Longman, Inc.

		Category		Item		Description

		Basics		2		Prefer C++-style casts

		Operators		5		Be wary of user-defined conversion functions

				6		Distinguish between prefix and postfix forms of increment and decrement operators

				7		Never overload &&, ||, or ,

		Efficiency		22		Consider using op= instead of stand-alone op

				24		Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI

		Techniques		26		Limiting the number of objects of a class

		Meyers-Klaus Items

		Category		Item		Description

		Constructors/Destructors		13		Avoid calling virtual functions from constructors and destructors

		Assignment

		Implementation		23		Avoid using "..." in function parameter list

User Items

		

		Item		Description

		2		Do not declare protected data members

		3		Do not declare the constructor or destructor to be inline

		4		Declare at least one constructor to prevent the compiler from doing so

		5		Pointers to functions should use a typedef

		6		Never convert a const to a non-const

		7		Do not use the ?: operator

		8		Each class must declare the public, protected, and private sections in that order

		9		In the public section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		10		In the protected section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		11		In the private section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		12		If a function has no parameters, use () instead of (void)

		13		If, else, while, and do statements shall be followed by a block, even if it is empty

		14		If a block is a single statement, enclose it in braces

		15		Whenever a global variable or function is used, use the :: operator

		16		Do not use public data members

		17		If a function has any virtual functions it shall have a virtual destructor

		18		Public member functions shall return const handles to member data

		19		A class that has pointer members shall have an operator= and a copy constructor

		20		If a subclass implements a virtual function, use the virtual keyword

		21		Member functions shall not be defined in the class definition

		22		Ellipses shall not be used

		23		Functions shall explicitly declare their return types

		24		A pointer to a class shall not be converted to a pointer of a second class unless it inherits from the second

		25		A pointer to an abstract class shall not be converted to a pointer that inherits from that class

		26		Do not use the friend mechanism

		27		When working with float or double values, use < and ==> instead of ==

		28		Do not overload functions within a template class

		29		Do not define structs that contain member functions

		30		Do not directly access global data from a constructor

		31		Do not use multiple inheritance

		32		Initialize all variables

		33		All pointers should be initialized to zero

		34		Always terminate a case statement with break

		35		Always provide a default branch for switch statements

		36		Do not use the goto statement

		37		Provide only one return statement in a function

Standards

		User Items

		Item		Description

		1		Assign to all member variables in operator= functions

		2		Declare an assignment operator for each class with pointer member variables

		3		Make destructors virtual for all base classes

		4		Avoid breaks in for loops

		5		Do not cast pointers to non-pointers

		6		Do not cast an unsigned pointer to an unsigned int

		7		Do not compare chars to constants out of char range

		8		Declare reference parameters as const reference whenever possible

		9		Write operator delete if you write operator new

		10		Do not call delete on a non-pointer

		11		Avoid do statements

		12		Do not use an enum keyword to declare a variable in C++

		13		Do not check floats for equality; check for greater than or less than

		14		Do not assign to loop control variables in the body of a for loop

		15		Do not assign the dividend of 2 ints to a float

		16		Avoid assignment in if statement condition

		17		Give each if statements an else clause

		18		Initialize all pointer variables

		19		Use capital "L" instead of lowercase "l" to indicate long

		20		Avoid switch statements with many cases

		21		Number of blocks of code per function

		22		Number of global variable references per member function

		23		Number of function calls per function

		24		Number of base classes

		25		Number of data members per class

		26		Number of methods per class

		27		Number of parameters per method

		28		Number of private data members per class

		29		Number of private methods per class

		30		Number of protected data members per class

		31		Number of protected methods per class

		32		Number of public data members per class

		33		Number of public methods per class

		34		Begin boolean type variable names with `b'

		35		Begin class names with an uppercase letter

		36		Begin constant variable names with `c'

		37		Begin class data member names with `its'

		38		Begin double type variable names with `d'

		39		Begin enumerated type names with an uppercase letter that is prefixed by the software element and suffixed by `_t_'

		40		Begin float type variable names with `f'

		41		Begin function names with an uppercase letter

		42		Begin global variable names with `the'

		43		Begin integer names with `i'

		44		Begin `is' function names with bool values

		45		Begin long integer value names with `li'

		46		Prefix variable type pointer names with `p'

		47		Begin short integer variable names with `si'

		48		Begin signed character variable names with `c'

		49		Begin terminated characters' string variable names with `sz'

		50		Begin struct type names with an uppercase letter that is prefixed by software element and suffixed by `_t'

		51		Begin unsigned character type names with `uc'

		52		Begin unsigned integer type variables with `ui'

		53		Begin variable names with a lowercase letter

		54		Return reference to *this in operator= functions

		55		Pass built-in types by value unless you are modifying them

		56		Avoid member variables in the public interface

		57		Do not use a struct keyword to declare a variable in C++

		58		Do not throw from within a destructor

		59		Avoid unnecessary casts

		60		Avoid unnecessary "==true"s

		61		Avoid unused local variables

		62		Avoid unused parameters

		63		Avoid unused private member variables

		No Java Standard: This can cause a significant impact to the system. Code developed for a large scale project must be maintainable, portable, and follow consistent programming style

