Automating Techniques for Inspecting High Assurance Systems

	Marcus S. Fisher

NASA IV&V Facility

Marcus.Fisher@ivv.nasa.gov
	Dr. Bojan Cukic

WVU / NASA IV&V Facility

Cukic@csee.wvu.edu

Abstract

Software inspections are an example of a validation technique for improving software product quality and reducing development time and cost. They are a peer-review process that have shown to decrease costs, decrease development time, and increase quality through a detailed examination of work-in-progress with the objective of identifying defects. In this paper, we report a methodology used for modeling the defects found during a code inspection. The Orthogonal Defect Classification (ODC) was used to categorize and make inferences that resulted in synthesized checklists that reflect the latest project experience and the rules most frequently broken during software development. We were then able to develop techniques that automatically used the checklists to search for defects in the source code. This automated defect detection technique will free up resources that can be used to look for more project specific issues.
1. Introduction

The increasing uses of software in mission and safety critical systems rely heavily on verification and validation (V&V) techniques for success. Obtaining high assurance within this realm demands the response from V&V practitioners to continually advance their techniques and strategies. One activity of V&V, code inspection, has endured great success and the benefits are self-evident (e.g., early defect detection and removal) but there are problems associated with this practice, which may hinder it from being selected as a V&V activity during development. Gilb found that inspections cost around 10-15% of the development budget [2]. This is very significant. Unless we are able to drive the cost of code inspections down or increase their effectiveness, we cannot expect a large number of projects to employ the technique.

It has been shown that inspections can identify up to 80% of all software defects and can do so during the early stages in development. When combined with normal testing practices, defects in the field can be reduced by a factor of 10 [5]. The downfall is that inspections can absorb a significant percentage of the effort during the first half of the development cycle. However, what is overlooked is the net reduction in development cost that results from defects found and fixed during inspections with less effort than that expended on fixing defects found in test [5].

Beside the high costs associated with performing inspections there are other limitations to the technique. A few of the problems associated with code inspections are:

· There is a limited amount of time to inspect the source code,

· Inspectors can only work with small chunks of source code,

· The effectiveness of an inspection is dependent on the knowledge and experience of the inspectors,

· Repeating an inspection may yield different results, and

· Different development technologies require different defect detection strategies.

Only a small amount of time is allocated for inspectors to detect defects. Wenneson observed that defect density (e.g., number of defects found per thousand lines of code (Defects/KLOC)) declines with increasing inspection rates (KLOC/hour) [10, 4]. So it is in the project's best interest to create a manageable workload. This results in inspecting small, but complete, work products (e.g., 250 lines of code). For large systems, this would require many inspection sessions to take place. One particular system, which contained half a million lines of added and changed code on a base of five million lines, required 1,500 inspections [9]. In addition to cost implications, holding such a large number of meetings can cause delays [9].

Inspection practices are based on an informal model, which resides within each inspector's knowledge domain and experience. It also requires highly experienced analysts in order to provide complete coverage of the possible defect types. Yet a significant amount of the highly skilled and highly paid analyst's time is spent on repetitively looking for defects that are easy to locate. Studies have shown that the experience levels of the analysts are vital to conducting beneficial source code inspections [4]. Specifically, they showed that very experienced personnel were required to assess the flow of logic, the metrics, and concurrency issues associated with the source code.

There is no confidence though, that repeating the inspection process on the same source code will yield the same results. Different groups of inspector's can derive different results. The inspectors rely on their experience to identify where they should look and what to look for in finding defects, sometimes guided by a checklist [6].

As technologies advance, checklists normally don't stay in step. How does a program manager select the best code inspection checklist for the project? The cost of using all possible checklists is too expensive and impractical, yet the checklists have the greatest impact on the overall productivity of the inspection. The checklist should reflect the latest project experience and rules most frequently broken, with respect to the technology they are designed for. The rules most frequently broken are dependent on the technology being used by the project; hence modifications are required and driven by project characteristics. It would be nice to have one set of defects that represent all projects, however, studies show that predictability factors for defects differ across the spectrum of projects [3].

Although a significant amount of software inspection research has focused on making structural changes (team size, number of sessions, et cetera) to the process, these changes did not always have the intended effect. Porter et al [9] believe that significant improvements to the inspection process are unlikely to come from just reorganizing the process, but rather will depend on the development of new defect detection techniques.

One way to advance defect detection would be to leverage the wealth of knowledge the discipline acquires during software code inspections. Knowledge about common software defects could greatly advance the discipline's defect detection strategies. This form of knowledge represents (i) what we care about when inspecting source code and (ii) the rules most frequently broken during the development of high assurance systems.

In this paper, we classify the defects extracted from a NASA software development project according to the Orthogonal Defect Classification (ODC). This analysis allowed us to synthesize inspection checklists based on the rules most frequently broken during software development. Once the checklists were created, we developed a technique that automatically applies checklists to the source code. The environment involves modeling the source code using the eXtensible Markup Language (XML) and modeling the checklist using the eXtensible Stylesheet Language (XSL). Any web browser or transformation engine can then easily process these models.

This approach explores only a small portion of the code inspection process. We focus on improving the defect detection process and we believe this combats some of the problems inherent with code inspections. First, automation will enhance the process, in general. Second, automating the defect search technique allows larger work products to be examined. Third, through the analysis on defect repositories, the knowledge of experienced inspectors is preserved. Fourth, applying the checklist and automating the detection technique makes the results of the inspections repeatable. Fifth, different development technologies require different checklists. The environment we introduce can withstand modifications and reinsertion into the defect detection process.

Section 2 of this paper introduces the code inspection process administered by NASA. Section 3 presents the results of analyzing the defect repository of a NASA project. Section 4 introduces the environment we developed to automatically apply a checklist to the source code. Section 5 introduces a prototype of the environment and some examples. Section 6 identifies the lessons learned and section 7 concludes the paper.

2. NASA Inspection Process

During a software inspection, small groups of personnel study work products independently and then meet to examine the work in detail. Work products are small, but complete, and inspectors typically spend one to four hours reviewing the work product and related information before the inspection meeting. Successful inspection meetings require several roles to be filled. In addition to the author, these roles include the moderator, who runs the inspection meeting; a reader, who presents the work product during the examination step; and a recorder, who records the location and description of all defects discovered. Management is not included in the team, because experience has shown that when management participates, inspections tend to identify only superficial defects [5].

The Software Formal Inspections Standard, NASA's standardized version of the inspection process, is designed to support the inspection process of software developed for NASA. Its goal is to provide a framework and model for an inspection process that will detect and eliminate defects as early as possible in the software life cycle [15]. They are used during development to demonstrate completeness, correctness, and compliance relative to requirements and adherence to program standards [15].

The various stages of the NASA Software Formal Inspection process are very similar to the traditional inspection process. They consist of:

· Planning - the phase where package contents, required support, and scheduling of an inspection are defined. The moderator ensures the product to be inspected meets the entry criteria (i.e., source code can be compiled without errors). The moderator also ensures the size/number of the product to be inspected is chosen to allow the corresponding inspection meeting to cover all of the products in two hours or less.

· Overview - this is an educational briefing, given prior to the inspection meeting, which explains the product to be inspected and related materials. The purpose is to bring all of the inspectors to the point where they can read and analyze the inspection product and related materials.

· Preparation - the phase where inspectors individually get ready for the inspection meeting. The inspectors focus on detecting defects and developing questions by examining the product for technical accuracy, fulfillment of requirements, and adherence to standards and conventions. Possible defects and questions are documented and discussed during the Inspection Meeting.

· Inspection Meeting - This is the formal meeting, which is conducted and controlled by the moderator and the inspectors examine the product(s) as a group. Defects and questions from the preparation stage are discussed to determine whether they are actual defects and whether they need to be worked.

· Rework - this stage is where all defects dispositioned for correction are corrected.

· Follow-up - the stage where the moderator verifies that all defects dispositioned for correction has been corrected and that no additional defects have been introduced.

Since Fagan published his software inspection process, many organizations have experimented with, and modified different aspects of the process to fine-tune it to their environment. These experiments have explored ways of changing the process to increase its effectiveness, however the goals and objectives never change. The objective for every modified version is to find defects and it is this invariant that fuels the motivation for this research, improving our techniques for detecting defects?

3. Orthogonal Defect Classification of NASA Project Defect Data

In the absence of feasible and cost-effective theoretical methods for verifying the correctness of software designs and implementations, software inspections and test play a vital role in validating both. However, these techniques do not offer software designers, developers, and test planners any significant guidance for rectifying, in process, the weaknesses of their procedures, and for assessing the implications of any rectifying actions on their inspection and test processes [4]. Literature has provided some assurance that ODC can help. ODC bridges the gaps between quantitative methods and qualitative analysis by bringing in scientific methods that define a measurement system in an area that has been historically ad hoc. It does better than raw counts of defects by using the semantic information contained within.

ODC exploits defects that occur all the way through development and field use. It converts what is semantically rich into a few vital measurements on the product and the process. Its success illustrated that a new class of methods can be developed that rely on semantic extraction of information linking the qualitative aspects from root-cause analysis to measurable computable aspects from statistical defect models [4]. When applied to reduce the cost of classical root-cause analysis, it achieves cost reductions by a factor of 10 [17]. One organization showed that when coupled with the Butterfly Model, they achieved a defect reduction by a factor of 80 in 5 years [17].

This research has chosen to apply ODC to the set of software defects discovered during a code inspection. There are a few reasons for selecting ODC:

· ODC is a proven classification scheme,

· We are capable of comparing our results with other research efforts that have chosen to employ ODC,

· It is believed that the structure of ODC enables the synthesis of checklists, and

· Other analysis activities (e.g., requirements inspection, design inspection, et cetera) performed internally have employed ODC, which provides us some guidance.

Our approach to developing an extensible environment for detecting software defects is based on the analysis of defect repositories. Through statistical analysis we can identify a set of defects that most frequently occur during a software development project. This will enable the synthesis of checklists to reflect the latest project experience and the rules most frequently broken during software development. As a result, we develop techniques that can automatically use checklists to search for defects in source code freeing precious time to look for more project specific issues.

A software development project was identified based on the team's willingness to work with researchers and provide all the defects that surfaced during the course of performing code inspection activities. The project will generate over 3 million lines of code to create a distributed, real-time system. This system will control, monitor, and prepare processes that will be used during safety critical events requiring high assurance. It is being specifically designed to be easily re-configured to support upgrades. The critical nature of the system makes it very important that the software being used operates correctly and adheres to the stringent requirements. The inspection team applies expertise and software development best practices to assist the project in developing their critical distributed real-time software system and achieving the necessary levels of assurance.

During implementation, code inspection activities discovered 630 software defects. The results of applying ODC are shown in Figures 1 and 2.

[image: image1.png]Figure 1. Defect type distribution

Figure 2. Defect trigger distribution

The distribution of defect types (Fig. 1) reveals a relatively high percentage of assignment (43%), documentation (25%), and checking (20%) defects, and relatively low percentages of algorithm (8%), function (1%), timing (< 1%), interface (< 1%), relationship (0%), and build (0%) defects.

The distribution of defect triggers (Fig. 2) reveals a high percentage of logic/flow (53%), language dependency (30%), and internal document (15%) triggers that surfaced defects. The triggers that surfaced the most defects are based on the analysis of language specific details, compilation concerns, documentation dependencies, and basic programming practices.

The defect types that should, generally, peak during a code inspection are checking, assignment, relationship, and algorithm defects. As you can see from Figure 1, algorithm and relationship defect types are low and in the case of relationship defects, none were found. These results raise a few concerns.

First, the distribution of algorithm defects could have possibly been higher. If the profile of algorithm defects is expected to peak during this stage then that means the remaining defects found during subsequent activities will not have a greater share than 8%. Can we accept this as a feasible assumption? Finding algorithm defect types requires an analyst to examine efficiency or correctness problems that affect a task and can be fixed by (re) implementing an algorithm without the need of a change in design. Since the language dependency trigger surfaced the majority of algorithm defects (figure not shown) we can safely say that algorithm defect types were not completely ignored. However, this trigger means the analysts were focusing the attention on the efficiency of the language to perform the task and possibly not on project specific details. For example, the analysts may have focused entirely on the correctness of a data structure (e.g., circular linked-list) and not on the ability of it to complete a search operation in a required amount of time. In any event, we can only conclude that this may need to be monitored. Subsequent defect profiles may reveal an increase in this defect type, which we could refocus our defect detection strategy on future inspections.

[image: image4.wmf]Defect Type Distribution

273

161

126

53

8

5

4

0

0

0

50

100

150

200

250

300

assignment

documentation

checking

algorithm

function

timing

interface

Relationship

Build

Defect Type

Number of Defects

The second concern is the lack of component interaction related defects. The profile is typically expected to have a high number of this defect type in the implementation phase, and it did not. No defect found of that type was very significant. Although, there were a few interface defects (< 1%), this is certainly not enough to counter the lack of component relationship defects. We speculate that some interface defects may have been filtered out by design inspections. But the lateral compatibility trigger is expected to detect incompatibilities between functions in the code and other system services, components, or modules with which it must interface. Figure 2 shows that this trigger didn’t surface any defects. Given the nature of the component, this raises serious questions regarding the skills and/or techniques of the analysts. If the project is confident with the skills of the analysts then their methods of performing analysis must be verified. Whatever the outcome, this finding must be raised to a level which would provide resolution. We suggested that an inspection be redone with analysts highly skilled in the module communication, from a language perspective, and analysts with significant domain knowledge.

The last concern is that significant effort was spent on relatively trivial defects and triggers. This could have hindered the analysts in finding algorithm and relationship defect types. If a significant amount of time was spent on discovering code specific defects (i.e., uninitialized variables, incorrect validation of parameters, commenting, et cetera), no time was left for more complex defects. It is also possible that not enough attention was spent on analyzing project specific details of the code, such as algorithms, possibly due to the lack of having enough time to search for project specific defects.

4. Inspection Checklists

Chernak [16] has shown that the code inspection process becomes more productive and the inspectors find more defects when a checklist is represented by two components; (a) where to look for a defect; and (b) How to detect the defect. The defect model will be used to supply these two components to our checklist. The defect type attribute identifies where in the work product the defect occurred, “where to look”. The defect trigger attribute identifies how the defect was detected, “how to detect”. However, based on the values in the defect model, we cannot objectively provide these two components. For example consider a defect with the following attributes shown in Table 2.

Table 1. Example defect type and trigger

	Defect No.
	Defect Type (Where to look)
	Defect Trigger (How to detect)

	1
	Assignment
	Logic / Flow

A checklist like this is not much of a guide for an analyst. So we need to analyze what these values mean and scope them accordingly to generate a checklist. A value of “assignment” for the defect type means value(s) are assigned incorrectly or not assigned at all. This defect type points to regions of the source code that use variables, parameters, operators and objects. Analyzing all the defect types will result in different perspectives for each type. This provides the “where to look” component for our checklist.

A value of “logic/flow” for the defect trigger means the inspector used knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete. The “how to detect” component of the checklist is derived by analyzing the defect trigger for each defect and specifying how it was detected.

In order to derive a checklist we analyze our ODC results starting with the defect types. We must analyze each defect type to generate the two attributes required for our checklist. For each defect type we provide values for the following two attributes:

1) Where to look for the defect, and

2) How to detect the defect.

The next section shows how to take this checklist, or one similar, and automate its application to source code. Being able to incorporate different checklists is a main requirement of our extensible environment
4.1. Building an Automated Environment

An ideal mechanism to automate the defect detection technique should consist of; (a) the means to model the product under assessment; and (b) the means to search the model in pursuit of violated rules.

What an automated environment intends to do is enable analysts to automatically apply a checklist to a software product to search for defects, which will free up the analyst’s time and resources to possibly focus her search for more domain specific issues. We recognize that the defects that were used to synthesize our checklist do not represent the universal set of software defects and when applied on future projects may not represent the best fit. Menzies, for example, states that domain general fault predictors are notoriously hard to produce and experiments with machine learning strongly suggest that different factors are crucial in different domains [3].

We need the following capabilities to implement an automated checklist environment:

· A mechanism to model source code (our work product),

· A mechanism to model the code inspection checklist, and

· A mechanism to apply capability (b) to capability (a).

The eXtensible Markup Language (XML) and the eXtensible Stylesheet Language (XSL) can provide these mechanisms. The procedure for doing so will entail:

· Using XML to model the source code,

· Using XSL to model the code inspection checklist, and

· Using a web browser, or a transformation engine, to apply XSL style sheets to the XML model and automatically identify defects in the source code.

Due to practical limitations, we limit our attention to programs written in Java. To model Java source code using XML we employ the use of the Java Markup Language (JavaML). Tools that aide engineers during code analysis must uncover the structure of the software, much like compiling tools. Actually, the front-end of compilers are usually duplicated in every tool that needs to reason about the program beyond its lexical nature [7]. This redundancy in effort could be lessened if the structured representation of the source code could be made available to various tools. This would require a universal format for directly representing program structure, which other software engineering tools could easily analyze and manipulate [7].

Greg Badros developed JavaML at the University of Washington. JavaML provides a complete self-describing representation of Java source code. It reflects the structure of the software directly in the nesting of elements in the XML-based syntax [7]. Generating a JavaML model requires the use of the IBM Jikes Java Compiler. The author of [7] has developed a patch to the Jikes compiler that will automatically generate a JavaML model based on the Java source code it is compiling.

JavaML models the programming language constructs of Java using an XML-based syntax [7]. JavaML is defined by its Document Type Definition (DTD) and provides more than just the structure of the program [7]. It also reflects extra edges in the program graph using the linking capabilities of XML. The linking capability enables tools to trace from a variable use to its definition. The process is to compile the Java source file using the Jikes compiler and the JavaML patch. The output will be the class file and an XML document, which is the XML model of the source code.

A key benefit of JavaML is its ability to leverage the growing infrastructure of XML and related tools and techniques [7]. The next step in our research is to model the code inspection checklist using XSL in such a way that it can be applied to the JavaML model.

XSL is the mechanism that translates the logical structure of an XML document into presentable form. XSL includes both a transformation language and a formatting language, which can function independently of each other. The transformation language provides elements that define rules for how one XML document is transformed into another. The transformation language can transform an XML document into another XML document, an HTML document, standard text, or some other format.

XSL contains a list of template rules. The templates are made up of two parts:

1) Pattern – selects the element(s) from the XML document using a criteria, and

2) Action – outputs a template when the “Pattern” is found.

Each template rule is an <xsl:template> element. The pattern of the rule is the value of its match attribute. The output template, the action, is the contents of the element. The following is an example:

<xsl:template match=”tag_name”>

…”output template”…

</xsl:template>

When you try to load the XML file into a web browser it first grabs the XSL style sheet and applies it to the data in the XML document. The output of this process is what gets displayed in the browser.

An alternative mechanism to apply the XSL document to an XML document is to incorporate the use of a transformation engine, like XT [8]. XT is an implementation in Java of XSL Transformations. As indicated above, XSL Transformations (XSLT) provide elements that define rules for how one XML document is transformed into another document. Using this technique enables us to transform the XML model into HTML code, which then is easily rendered by any web browser. The XT engine performs the preprocessing and the output of this action can then be loaded into a web browser. This application is important in combating the differences encountered among web browsers.
XSL style sheets are used to represent the items contained in a checklist and the next section shows some examples of how style sheets are used to represent the entries of the checklist.

5. A Prototype

The checklist derived in section 4 has been used to show that XSL can effectively model its’ contents and automatically detect defects when applied to the XML model of a Java program. However, the entire checklist has not been used, only a subset. The following subset of entries were used:

Table 2. Section of code inspection checklist

	Defect No
	Where To Look
	How To Detect

	1
	Variables
	Are there variables not initialized?

	2
	Commenting
	Are the comments and the comment percentage adequate?

	3
	Variables
	Are there variables being assigned to MAGIC and/or hard-coded literals?

	4
	Conditionals
	Are exact equality tests being used on floating point numbers?

	5
	Loops
	Does the value of the condition ever change in the header or the body of the loop?

In order to model defect number 1, we need to look at the variables in the program and identify those that are not initialized when declared. An XSL style sheet is used to identify all variables that are not initialized when declared. The HTML document (Fig. 3) is the result of applying the style sheet to the source code. The style sheet identifies those class data members and local variables that are not initialized when declared. It generates an HTML file that, when viewed by a Web Browser, shows the line number where the variable is declared, the variable’s name, the variable’s data type, and what the variable is initialized to. The analyst needs to be aware when using this style sheet, the variable may be initialized somewhere other than where it is declared (e.g. in a constructor). In addition, it is a feature of Java that the compiler automatically initializes variables if a value is not specified. However, it is good practice and some standards require that variables be initialized when they are declared, if not, compilers may initialize the variables to values that the programmer had not anticipated. To interpret the results in Fig. 3 the analyst needs to consider two scenarios:

1) The variable may be initialized in the constructor, and

2) The variable may be initialized before it is first used.

An example of scenario 2 would be, if the variable were declared on one line and then initialized on another and then used somewhere else. The following is an example:

1) void rangeFinder(int x)

2) {

3) int i;

4) int d=0;

5) i = d+x;

6) if (i<20)

7) System.out.println(“The variable is in range”);

8) else

9) System.out.println(“The variable is not in range”);

10) }

Figure 3. Style sheet that displays whether or not variables are being initialized

Figure 4. Style sheet that displays when the variables are defined and when they are used

In this case, the output would identify variable i as not being initialized, although it has been on line 5. So the analyst needs to consider these scenarios before flagging them as defects. To support the analyst during these scenarios we wrote another simple style sheet to display the use of class variables. Specifically, the style sheet identifies the class variable and where in the source code it is declared and where it is used. The results of applying the style sheet to the JavaML model are depicted in Figure 4. The results are extremely interesting for this example. Looking at Figure 4, one can see the variable wordLen gets referenced, or used, before it gets initialized, or does it? First the analyst must remember that this application is an applet and the results in Figure 4 show the sequential uses of the variable. The answer lies in the actual sequence the methods get called. Just because the style sheet shows that the variable gets referenced first in the method paint() does not mean it’s an error. It is dependent on when the method paint() gets called. What we do know is that the method init() will get called first and then the method start(), because this is an applet. As you can see from Figure 4, the start() method references the variable before it gets initialized. So in this example it would be considered a defect.

[image: image5.wmf]Defect Trigger Distribution

340

189

94

6

1

0

50

100

150

200

250

300

350

400

Logic / Flow

language

Dependency

Internal

Document

Concurrency

Rare

Situation

Defect Trigger

Number of Defects

We defined one style sheet to model defect number 2 in order to determine if the comments and the comment percentage is adequate. The results of applying this style sheet to the JavaML model are shown in Figure 5. It displays the number of comments and the number of lines of code and computes the comment percentage. We acknowledge that the actual effectiveness of this metric can be argued. Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes understandable/maintainable [13]. Specifically, a higher comment percentage (20-30%) decreases the testing efforts, increases understandability, increases maintainability, and decreases development effort [11].

[image: image6.wmf]Defect Trigger Distribution

340

189

94

6

1

0

50

100

150

200

250

300

350

400

Logic / Flow

language

Dependency

Internal

Document

Concurrency

Rare

Situation

Defect Trigger

Number of Defects

One study found that areas of source code with large numbers of comments also tended to have the most defects and consume the most development effort. The authors hypothesized that programmers tended to comment complicated code segments heavily [14]. Sometimes projects will adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be a side effect of the process itself [12]. Rather than focusing on the number of comments, the analysts may need to determine their effectiveness.

[image: image7.png]
Figure 5. Style sheet that displays the usage of comments

We defined a style sheet to represent defect number 3 in order to determine if variables are being assigned to hard coded literals, if they are then the line number in the first column identifies where in the source code it has occurred. Programmers sometimes use hard-coded literals, or “Magic” numbers, as boundary markers or paths. This is of interest to inspectors because these literals present unique challenges to testers and maintainers. The results of applying this style sheet to the Java model is depicted in figure 6.

[image: image10.png]
Figure 6. Style sheet that displays the usage of hard-code literals

Figure 7 is the result of applying a style sheet, whose purpose is to determine if exact equality tests are being used on floating point numbers (e.g., if (someVar==0.1)). This is of concern because this may never evaluate to TRUE. The constant 0.1 is not exactly representable by any finite binary mantissa and exponent, thus the compiler must round it to some other number.

[image: image2.png]
Figure 7. Style sheet that displays equality tests on floating-point numbers

Figure 8 is the result of applying a style sheet, whose purpose is to determine if the value of the condition, in a loop, is ever updated in the header or body of the loop. If it is never updated, the condition may never become FALSE, which results in an infinite loop. Regarding figure 8, you can see that on line 318, in the source code, the controlling variable, i, is never updated.

[image: image3.png]
Figure 8. Style sheet that displays whether loop conditions are ever updated

6. Lessons Learned
Defects that occur during a project are usually retained in various formats and are dependent on the organization’s defect repository. The database of defects requires filtration in order to extract only those defects associated with the source code. We identified a software development project that was willing to work with our project. They provided their database of defects from which we extracted 630 defects that reflected issues within the source code. Manually extracting and organizing these software defects, however, proved to be very time consuming.

The greatest benefit experienced during the course of this research has been the simplicity of writing style sheets in XSL. The time required to learn the technology and be able to apply the technique is almost negligible. The difficulties lie in capturing the concerns of an inspector in a checklist. However, using historical defect data as a stepping-stone to synthesize checklists has simplified the identification of common mistakes encountered when programming.

The initial choice of using ODC was based on the following:

· ODC is a proven classification scheme,

· We are capable of comparing our results with other research efforts that have chosen to employ ODC,

· It is believed that the structure of ODC enables the synthesis of checklists, and

· Other analysis activities (e.g., requirements inspection, design inspection, et cetera) performed internally have employed ODC, which provides us some guidance.

The main advantage of using ODC results from the usage of a proven classification scheme. The main disadvantage was two-fold. First, classifying a defect was greatly subjective and second, deriving the entries for a checklist based on the defect model values was not a straightforward process.

The choice of using the eXtensible Markup Language (XML) as the implementation mechanism has been widely reported by industry, and we concur. A standard representation of data using XML benefited in the following ways:

· There exists a myriad of open-source tools for XML that we can employ,

· XML is greatly supported by the Internet,

· Facilitates data exchange via the Internet or between distributed defect repositories, and

· Provides an easy interface for extracting data automatically.

As a means to represent source code, XML has numerous advantages, especially for an organization that relies heavily on software assurance activities. The reason for this is that tools that support code verification can be limiting because they require the first stages of compilation to extract the structure of the program. The non-interoperability of tools then limits the organization to using only a few tools to provide the required assurance. XML brings the open source concepts to the assurance table, by providing the means to develop a standard representation for source code.

The most significant drawback of using XML to model source code may generate a sizeable concern. Using XML to model 558 SLOC during this project generated an XML model well over 2 KSLOC. We have yet to evaluate the impact this will have on processing larger models. In addition, there are some practical limitations to the use of style sheets. First, style sheets can only report when something is present or missing. This may lead to an over detection of possible defects. The analyst is still required to confirm the results. Second, the structure of the XML model only associates line numbers with certain language constructs. This means if a style sheet reports that line number n contains a possible defect then usually it is referencing the block of code in which the possible defect resides. Third, it may be impossible to explore race conditions, error propagations, bound checking, et cetera. More complex queries have yet to be explored. Yet it is important to note that using XML as the source code representation scheme it becomes accessible by a well-defined Application Programming Interface (API), which can remedy these problems.

7. Conclusions and Future Work

Our research focused on:

· Applying a defect model to a set of software defects,

· Synthesizing a checklist based on the analysis of the defect model, and

· Use a markup language to represent the software defects.

Our defect model, ODC, used defect types and defect triggers to describe a defect. The defect type attribute took on values that represent where the defect occurred in the source code and the defect trigger attribute has values that represent how the defect was detected.

Based on the defect model, our next step was to synthesize a checklist. The code inspection process becomes more productive and the inspector finds more defects when a checklist is represented by two components 1) where to look for a defect and 2) how to detect a defect. To synthesize a checklist based on this premise required an assessment of our defect model. The defect model was used to supply the two components for our checklist. The defect type attribute identified where in the source code the defect occurred, “Where to look” and the defect trigger attribute identified how the defect was detected, “How to detect”. Based on the analysis of the defects we were able to synthesize a checklist, which contains 46 entries.

Synthesizing the checklist became too subjective. It involved assessing each defect type and determining all the possible places it could occur in the source code. This could be improved by developing some mapping techniques. For each defect type we could identify all the possible locations at which it can occur and for each defect trigger we could identify how you would find each defect type. This requires developing a map that shows the linkage between language constructs and defect types. This was just an example and requires further exploration. In addition, we need to examine the correlation between defect triggers and defect types. Does a certain defect trigger always reveal the same defect type?

Once we had created the checklist, we were able to explore the application of it on source code. This required the services of a unique environment. An environment to enable an inspector to apply a checklist to a software product that would automatically search for defects must be able to adapt to the process. Specifically, the environment must be extensible to enable the checklist to be modified and reapplied seamlessly into the inspection process. The eXtensible Markup Language (XML) and eXtensible Stylesheet Language (XSL) was used to automate the defect detecting process that occurs during an inspection. We used XML to model the source code and XSL to model the checklist. Using a web browser, or transformation engine, the XSL models were automatically applied to the XML models, which translates to the checklist being applied to the source code.

XSL was used to model a subset of the entries in the checklist. We showed that XSL could effectively model the checklist entry and automatically applied to source code. The source code was modeled using JavaML, which is derived from XML. The examples revealed the simplicity involved in modeling the checklist entries. Not only does this provide the necessary querying capabilities, it supports distributed team members by sending the output to the web browser.

We are aware that further experimentation is needed to be able to assess the time that actually gets freed as a result of using the automated defect detection techniques. Case studies could serve as an avenue for implementation. Comparison and effectiveness studies need to assess if the automated defect detection techniques have the same success as manual inspections. In addition to effectiveness metrics, the effort involved in transferring these techniques to the field needs to be revealed.
8. References

[1] M.E. Fagan, Design and Code Inspections to Reduce Errors in Program Development, I
BM Systems Journal., vol. 15, No. 3, March 1976

[2]
T. Gilb and D. Graham, Software Inspection, Reading, Mass.: Addison-Wesley, 1993

[3] T. Menzies, Practical Machine Learning for Software

Engineering and Knowledge Engineering, Handbook of

Software Engineering and Knowledge Engineering, 2001

[4] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar,

Michael J. Halliday, In-Process Evaluation for Software

Inspection and Test, IEEE Transactions On Software

Engineering, Vol. 19, No. 11, November 1993

[5] David A. Wheeler, Bill Brykcznski, Reginald N. Meeson,

Jr., Software Inspection: An Industry Best Practice, IEEE

Computer Society Press, 1996

[6] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski, Software

Inspections: An Effective Verification Process, IEEE Software,

Vol.6, No. 3, May 1989

[7] Greg J. Badros, JavaML: A Markup Language for Java

Source Code, Dept. of Computer Science and Engineering,

University of Washington

[8] James Clark, XT is an implementation in Java of XSL

Transformations., http://www.jclark.com/xml/xt.html
[9] Adam A. Porter, Harvey P. Siy, Carol A. Toman, Lawrence

G. Votta, An Experiment to Assess the Cost-Benefits of Code

Inspections in Large Scale Software Development, IEEE

Transactions on Software Engineering, Vol. 23, No. 6, June

1997

[10] G. Wenneson, Quality Assurance Software Inspections at

NASA Ames: Metrics for Feedback and Modification,

Proceedings of the 10th Annual Software Engineering

Workshop (GSFC), December 1985

[11] Linda Rosenberg, Applying and Interpreting Object

Oriented Metrics, Technical Report, Software Assurance

Technology Center, 1998

[12] Steve McConnell, Code Complete, Microsoft Press, 1993

[13] Robert Sharble and Samuel Cohen, The Object Oriented

Brewery: A Comparison of Two Object Oriented Development

Methods, Software Engineering Notes, Vol 18, No 2,, April

1993, pp 60-73

[14] Randy K. Lind and K. Vairavan, An Experimental \

Investigation of Software Metrics and Their Relationship to

Software Development Effort, IEEE Transactions on Software

Engineering SE-15, no. 5 (May), 1989:649-53

[15] Software Formal Inspections Standard, NASA-STD-2202-93, April 1993

[16] Yuri Chernak, A Statistical Approach to the Inspection Checklist Formal Synthesis and Improvement, IEEE Transactions On Software Engineering. Vol. 22, No. 12, December,1996

[17] Ram Chillarege, Chapter 9: Orthogonal Defect Classification, Handbook of Software Reliability Engineering, McGraw-Hill, 1996

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

[image: image8.wmf]Defect Type Distribution

273

161

126

53

8

5

4

0

0

0

50

100

150

200

250

300

assignment

documentation

checking

algorithm

function

timing

interface

Relationship

Build

Defect Type

Number of Defects

[image: image9.png]_1058870006.xls
Chart1

		assignment

		documentation

		checking

		algorithm

		function

		timing

		interface

		Relationship

		Build

Frequency

Defect Type

Number of Defects

Defect Type Distribution

273

161

126

53

8

5

4

0

0

CLCS Issues

		Tim No.		Activity		Phase/Review		Frequency		Description		Module

		1251		SW.CODE		PHASE.SW.DESIGN		42		Deviations from the coding standards (line was greater than 79 characters)		Data Distribution CSCI (Data Distribution)

								1		Deviations from the coding standards (e.g., variables did not have clear names)

								1		Deviations from the coding standards (e.g., not enough commenting)

								1		Deviations from the coding standards (e.g.,switch contructs did not have default statements)

		1252		SW.CODE		PHASE.SW.CODE		1		Lines were greater than 79 characters		Data Distribution CSCI (Data Distribution)

								1		Variable identifiers not clearly named

								1		brackets in the wrong place

								1		not enough comments

								1		switch statements do not contain default statements

		1255		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values		System Services CSCI (IPC CORBA CSC)

		1260		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Lack of Java programming standard		All System Software

		1268		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		108		Uninitialized variables, empty case statements, lines greater than 80 columns		Data Distribution CSCI (Data Health)

		1269		SW.CODE.FAULT_ERROR_HANDLING		REVIEW.SW.CODE.WALKTHROUGH		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		set pointer to null after delete

								1		lack of comments

		1273		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		not enough comments		Data Distribution CSCI (Data Health)

								1		variables were not initialized

								1		variables were not well commented

								1		Functions were not preceded with comments explaining their functionality

		1274		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Data Health)

								1		Switch statements did not contain default statements

								1		Case statements did not contain Break statements

								1		Else statements were empty

								1		Delete statements were used improperly without using New

								1		Include guards were omitted

		1279		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Comments need to identify the variables used		Not Defined

								1		Column alignment was off and makes reading code very difficult

								1		Several lines were greater than 80 columns

								1		Invalid identifiers were used

		1280		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Functions were not preceded with comments explaining their functionality		Data Distribution CSCI (Constraint Mgmt)

								1		variables were not initialized

								1		variables were not well commented

		1282		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		110		coding violations w.r.t. Code Wizzard		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1283		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Constraint Mgmt)

								1		Switch statements did not contain default statements

								1		Invalid filename identifiers

								1		Unclear messages

		1286		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Coment sections preceding functions were inaccurate		Data Distribution CSCI (Constraint Mgt)

								1		Header files contained inaccurate and incomplete parameter descriptions

								1		Method names in the body were inconsistent from header files

								1		Insufficient commenting

		1287		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Error codes not properly identified		Data Distribution CSCI (Constraint Mgt)

								1		Improper identification of return values

								1		Switch statements consisted of empty Case statements

								1		Instances of empty else statements

								1		Strcpy used instead of Strncpy

		1290		SW.CODE.CONTROL_FLOWS		PHASE.SW.UNIT_TEST		1		Use of = in conditional statements instead of ==		Cmd Suppt CSCI (Cmd Mgmt CSC)

		1298		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		15		Pointer initialized to 0		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								2		Replace numbers with constants

		1299		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		7		Virtual functions must have virtual destructors		Cmd Suppt CSCI (Cmd Mgmt CSC)

								2		Public interfaces should not contain data members

								3		Public member functions must always return const handles to data members

								4		Do not directly access global data from a constructor

								17		Prefer C++ style casts

								1		Pass objects by reference instead of by value

								1		Return objects by reference instead of by value

		1300		SW.CODE		PHASE.SW.UNIT_TEST		2		Define a copy constructor and operator= for classes with dynamically allocated memory		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)

								4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second

								4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class

								27		Prefer C++ style casts

								1		Virtual functions must have virtual destructors

		1345		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		2		Revisions need comments which identify author, date, and description		Data Distribution CSCI (Constraint Mgt)

								2		Methods require comments depicting their purpose

								1		Delete debug code

								1		Make main a separate file

		1346		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Missing file headers		Data Distribution CSCI (Constraint Mgt)

								1		else portions of the if statements are not indented

								3		No commenting

								3		List parameters, returns, and exceptions in headers

								1		Need copy constructor and assignment operator

								1		Comments need to identify the variables used

								1		Need deletes for all new methods

		1357		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Private data members require comments		Data Distribution CSCI (Constraint Mgt)

								2		Nothing is being returned

								1		Counters I and j are not commented

		1358		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Directory paths must not be hardcoded		Data Distribution CSCI (Constraint Mgt)

								2		Add copy constructor and assignment operator for pointer declared as private data member

								1		Add a default case for the switch statement

								1		Return int not a pointer

								14		Parameters and counters require comments

								1		variable is declared as global, could cause collision

								1		Code for checking boundary conditions is missing

								1		Constraint parameter is passed with method

								1		main method needs to be placed in separate file

								8		Delete debug code and dead code

		1360		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Initialize all variables		Data Distribution CSCI (Constraint Mgt)

								1		Constants need to appear on the left side of comparison operators

								1		Main should be in a separate file

								1		Using strcpy instead of strncpy

		1384		SW.CODE.SUPPORT_MAINTAINABILITY		PHASE.SYS.TEST		1		Method had a complexity of 30 versus the rule of thumb 10		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*

		1413		SW.CODE		Systems Test		1		Mutex locking is not being used around object creation methods, which may result in memory leaks		Cmd Suppt CSCI (All CSCs)

		1459		Code Analysis		Code & Unit Test		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software		CLCS System (CLCS)

		1464		Code Analysis		Code & Unit Test		1		Status of method execution is not returned		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?

								1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen

								1		Identify methods that are non-thread safe (e.g., those using a static buffer)

								1		Pointer arithmetic is highly discouraged

								1		Variables without descriptive names or no comments associated with them are highly discouraged

								3		The meaning of the comments are unclear

								1		Algorithm allows the pointer to extend past the array's upper bound

		1465		Code Analysis		Code & Unit Test		1		No commenting		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string

								1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized

		1466		Code Analysis		Code & Unit Test		1		Classes need to have insertion or assignment methods for their data members		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

		1467		Code Analysis		Code & Unit Test		1		Standards for class structure is not followed (Class, function, data members)		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Standard naming conventions are not followed

								1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)

								2		variables need to be initialized

								1		there is no check to see if variable exceed another before the for loop is entered

								1		Use strtod() to check for valid C/C++ format number

		1468		Code Analysis		Code & Unit Test		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file		Cmd Suppt CSCI (All CSCs)

		1470		Code Analysis		Code & Unit Test		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Postconditions and exceptions are not always stated in the comments

		1471		Code Analysis		Code & Unit Test		3		Code does not follow what the comments say		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								2		Variables are not checked for valid data before critical use

								2		Methods that do nothing (e.g., return this) should state they do nothing and why

		1472		Code Analysis		Code & Unit Test		6		Post-conditions are required, lack of comments in general		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?

								9		Checks to determine pointers actually point to valid data before they are used

								1		Does not check if element 0 of the array is defined before its use

								3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation

								4		Redundant code is a good candiate for a subroutine

								1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers

								6		Initialize variables

		1473		Code Analysis		Code & Unit Test		1		Files are extremely large and functions are easily hundreds of lines long		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Proprietary system calls provided by the operating system requires commenting and tracking

								1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type

								1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)

								1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))

								1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code

								1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code

								1		Masking literals need to be named to constants (e.g., 0x800000000)

		1478		Interface Analysis		Code & Unit Test		3		Initialize methods have no error checking to guarantee the variables have been properly initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								9		Arguments to methods do not have comments associated with them concerning their valid values

		1483		Code Analysis		Code & Unit Test		2		Dereferencing pointers without checking them first		Cmd Suppt CSCI (Cmd Auth CSC)

								1		No checking method returns for failure status

								1		Commenting states specific error messages can be generated, however the code does not reflect this

								2		Comments do not reflect the code

								1		C++ automatically converts enums to integers, which allows for a wide range of values

								1		It is unclear what meaning "<" can have for a bit vector

								1		variables not being initialized, especially constants

								1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer

		1484		Code Analysis		Code & Unit Test		1		Read and write priveledges on files need to be examined		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Preconditions are not stated in the comments of methods

								1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed

								2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance

								1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined

		1486		Code Analysis		Code & Unit Test		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines		CMD Suppt CSCI (Cmd Auth CSC)

		1489		Code Analysis		Code & Unit Test		1		Member variables not initialized in the Constructor		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Commenting is confusing

								2		Return warnings upon successful termination

								1		Comments conflict with the code

								1		Using static variables for error values leaves multi-threaded applications with no reliable error checking

								1		Errors should be past back through the argument list

								1		Define where System Messages are to be propogated

								1		Multi-threaded code must use thread safe constructs

		1490		Code Analysis		Code & Unit Test		3		Commenting is confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Assertions need to be added to ensure all variables used in this routine are properly initialized

								1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set

								1		Enums should be integer constants to make their meaning clearer

								3		Dereferencing pointers without checking them first

								1		The destructor for this calss needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.

								1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations

		1491		Code Analysis		Code & Unit Test		4		Comments are confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		An enum is used where integer constants are implied

								2		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Vectors are used without checking the bounds nor if there are values in the vector

								1		String classes are used in conjunction with C style string functions

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

								1		Constants nees to have comments

		1492		Code Analysis		Code & Unit Test		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

		1494		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		No postconditions are stated for methods		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		No preconditions are stated for methods

								1		Comments are confusing

								4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)

								2		Variable naming is confusing

		1495		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		3		Comments are unclear		Cmd Suppt CSCI (Cmd Mgmt CSC)

								3		Variables need to be checked for proper values

		1496		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are used outside of their scope		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Method are declared but never used, hence dead code

								3		Comments contradict the code

		1497		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		6		Variables are not initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1498		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1501		SW.CODE		Code & Unit Test		1		Variables are not checked for valid data		Data Distribution CSCI (Data Fusion)

								630

The IV&V Activity
being performed
when the issue was
identified

The phase or review in which the issue was identified

The number of times the issue occurred

Filtered Issues

		Trigger		Type		Severity		Frequency		General Description		Template		Module

		language Dependency		documentation		3		42		line was greater than 79 characters				K

		language Dependency		documentation		3		1		variables did not have clear names				K

		language Dependency		documentation		3		1		not enough commenting				K

		language Dependency		checking		3		1		switch contructs did not have default statements				K

		language Dependency		documentation		3		1		Lines were greater than 79 characters				K

		language Dependency		documentation		3		1		Variable identifiers not clearly named				K

		language Dependency		documentation		3		1		brackets in the wrong place				K

		language Dependency		documentation		3		1		not enough comments				K

		language Dependency		checking		3		1		switch statements do not contain default statements				K

		Logic / Flow		algorithm		3		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values				O

		language Dependency		documentation		3		1		Lack of Java programming standard				A

		Logic / Flow		assignment		3		108		Uninitialized variables, empty case statements, lines greater than 80 columns				M

		Logic / Flow		algorithm		3		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor				F

		Logic / Flow		assignment		3		2		set pointer to null after delete				F

		Logic / Flow		documentation		3		1		lack of comments				F

		Internal Document		documentation		3		1		not enough comments				M

		Internal Document		assignment		3		1		variables were not initialized				M

		Internal Document		documentation		3		1		variables were not well commented				M

		Internal Document		documentation		3		1		Functions were not preceded with comments explaining their functionality				M

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				M

		language Dependency		checking		3		1		Switch statements did not contain default statements				M

		language Dependency		checking		3		1		Case statements did not contain Break statements				M

		language Dependency		checking		3		1		Else statements were empty				M

		language Dependency		algorithm		3		1		Delete statements were used improperly without using New				M

		language Dependency		checking		3		1		Include guards were omitted				M

		language Dependency		documentation		3		1		Comments need to identify the variables used				N

		language Dependency		documentation		3		1		Column alignment was off and makes reading code very difficult				N

		language Dependency		documentation		3		1		line was greater than 79 characters				N

		language Dependency		documentation		3		1		Invalid identifiers were used				N

		Internal Document		documentation		2		1		Functions were not preceded with comments explaining their functionality				J

		Internal Document		assignment		2		1		variables were not initialized				J

		Internal Document		documentation		2		1		variables were not well commented				J

		Logic / Flow		assignment		3		110		coding violations w.r.t. Code Wizzard				F

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		3		1		Switch statements did not contain default statements				J

		language Dependency		documentation		3		1		Invalid filename identifiers				J

		language Dependency		documentation		3		1		Unclear messages				J

		Internal Document		documentation		2		1		Coment sections preceding functions were inaccurate				J

		Internal Document		documentation		2		1		Header files contained inaccurate and incomplete parameter descriptions				J

		Internal Document		interface		2		1		Method names in the body were inconsistent from header files				J

		Internal Document		documentation		2		1		Insufficient commenting				J

		language Dependency		documentation		2		1		Error codes not properly identified				J

		Internal Document		documentation		2		1		Improper identification of return values				J

		language Dependency		checking		2		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		2		1		Instances of empty else statements				J

		language Dependency		algorithm		2		1		Strcpy used instead of Strncpy				J

		language Dependency		checking		1		1		Use of = in conditional statements instead of ==				H

		Logic / Flow		assignment		3		15		Pointer initialized to 0				I

		language Dependency		assignment		3		2		Replace numbers with constants				I

		language Dependency		algorithm		3		7		Virtual functions must have virtual destructors				H

		language Dependency		function		3		2		Public interfaces should not contain data members				H

		language Dependency		interface		3		3		Public member functions must always return const handles to data members				H

		language Dependency		algorithm		3		4		Do not directly access global data from a constructor				H

		language Dependency		checking		3		17		Prefer C++ style casts				H

		language Dependency		algorithm		3		1		Pass objects by reference instead of by value				H

		language Dependency		algorithm		3		1		Return objects by reference instead of by value				H

		language Dependency		algorithm		3		2		Define a copy constructor and operator= for classes with dynamically allocated memory				I

		language Dependency		algorithm		3		8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)				I

		language Dependency		algorithm		3		4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second				I

		language Dependency		algorithm		3		4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class				I

		language Dependency		checking		3		27		Prefer C++ style casts				I

		language Dependency		algorithm		3		1		Virtual functions must have virtual destructors				I

		Internal Document		documentation		3		2		Revisions need comments which identify author, date, and description				J

		Internal Document		documentation		3		2		Methods require comments depicting their purpose				J

		language Dependency		checking		3		1		Delete debug code				J

		language Dependency		algorithm		3		1		Make main a separate file				J

		Internal Document		documentation		3		1		Missing file headers				J

		language Dependency		documentation		3		1		else portions of the if statements are not indented				J

		Internal Document		documentation		3		3		No commenting				J

		Internal Document		documentation		3		3		List parameters, returns, and exceptions in headers				J

		language Dependency		algorithm		3		1		Need copy constructor and assignment operator				J

		Internal Document		documentation		3		1		Comments need to identify the variables used				J

		language Dependency		algorithm		3		1		Need deletes for all new methods				J

		Internal Document		documentation		3		1		Private data members require comments				J

		language Dependency		checking		3		2		Nothing is being returned				J

		Internal Document		documentation		3		1		Counters I and j are not commented				J

		Internal Document		assignment		3		1		Directory paths must not be hardcoded				J

		language Dependency		algorithm		3		2		Add copy constructor and assignment operator for pointer declared as private data member				J

		language Dependency		checking		3		1		Add a default case for the switch statement				J

		language Dependency		algorithm		3		1		Return int not a pointer				J

		Internal Document		documentation		3		14		Parameters and counters require comments				J

		Logic / Flow		function		3		1		variable is declared as global, could cause collision				J

		Logic / Flow		checking		3		1		Code for checking boundary conditions is missing				J

		language Dependency		documentation		3		1		Constraint parameter is passed with method				J

		language Dependency		algorithm		3		1		main method needs to be placed in separate file				J

		language Dependency		checking		3		8		Delete debug code and dead code				J

		language Dependency		assignment		3		1		Initialize all variables				J

		language Dependency		checking		3		1		Constants need to appear on the left side of comparison operators				J

		language Dependency		algorithm		3		1		Main should be in a separate file				J

		language Dependency		algorithm		3		1		Using strcpy instead of strncpy				J

		Rare Situation		function		3		1		Method had a complexity of 30 versus the rule of thumb 10				H

		Logic / Flow		algorithm		3		1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*				H

		Concurrency		timing		4		1		Mutex locking is not being used around object creation methods, which may result in memory leaks				D

		language Dependency		documentation		3		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software				B

		Logic / Flow		checking		2		1		Status of method execution is not returned				G

		Internal Document		assignment		2		1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?				G

		Internal Document		documentation		2		1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen				G

		Concurrency		timing		2		1		Identify methods that are non-thread safe (e.g., those using a static buffer)				G

		Logic / Flow		checking		2		1		Pointer arithmetic is highly discouraged				G

		Logic / Flow		documentation		2		1		Variables without descriptive names or no comments associated with them are highly discouraged				G

		Internal Document		documentation		2		3		The meaning of the comments are unclear				G

		Logic / Flow		checking		2		1		Algorithm allows the pointer to extend past the array's upper bound				G

		Internal Document		documentation		4		1		No commenting				G

		Logic / Flow		assignment		4		1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string				G

		Logic / Flow		assignment		4		1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized				G

		language Dependency		assignment		3		1		Classes need to have insertion or assignment methods for their data members				G

		language Dependency		documentation		2		1		Standards for class structure is not followed (Class, function, data members)				G

		language Dependency		documentation		2		1		Standard naming conventions are not followed				G

		Logic / Flow		assignment		2		1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)				G

		Logic / Flow		assignment		2		2		variables need to be initialized				G

		Logic / Flow		checking		2		1		there is no check to see if variable exceed another before the for loop is entered				G

		Logic / Flow		checking		2		1		Use strtod() to check for valid C/C++ format number				G

		language Dependency		documentation		3		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file				D

		language Dependency		assignment		4		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				G

		Internal Document		documentation		4		1		Postconditions and exceptions are not always stated in the comments				G

		Internal Document		documentation		2		3		Code does not follow what the comments say				G

		Logic / Flow		checking		2		2		Variables are not checked for valid data before critical use				G

		Logic / Flow		documentation		2		2		Methods that do nothing (e.g., return this) should state they do nothing and why				G

		Internal Document		documentation		2		6		Post-conditions are required, lack of comments in general				G

		Logic / Flow		documentation		2		3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?				G

		Logic / Flow		checking		2		9		Checks to determine pointers actually point to valid data before they are used				G

		Logic / Flow		checking		2		1		Does not check if element 0 of the array is defined before its use				G

		Internal Document		documentation		2		3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation				G

		Logic / Flow		algorithm		2		4		Redundant code is a good candiate for a subroutine				G

		Logic / Flow		checking		2		1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers				G

		Logic / Flow		assignment		2		6		Initialize variables				G

		language Dependency		function		2		1		Files are extremely large and functions are easily hundreds of lines long				G

		Internal Document		documentation		2		1		Proprietary system calls provided by the operating system requires commenting and tracking				G

		Logic / Flow		algorithm		2		1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type				G

		Logic / Flow		checking		2		1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)				G

		Logic / Flow		checking		2		1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))				G

		Internal Document		documentation		2		1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code				G

		Logic / Flow		checking		2		1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code				G

		Logic / Flow		assignment		2		1		Masking literals need to be named to constants (e.g., 0x800000000)				G

		Logic / Flow		checking		3		3		Initialize methods have no error checking to guarantee the variables have been properly initialized				F

		Internal Document		documentation		3		9		Arguments to methods do not have comments associated with them concerning their valid values				F

		Logic / Flow		checking		2		2		Dereferencing pointers without checking them first				E

		Logic / Flow		checking		2		1		No checking method returns for failure status				E

		Logic / Flow		documentation		2		1		Commenting states specific error messages can be generated, however the code does not reflect this				E

		Logic / Flow		documentation		2		2		Comments do not reflect the code				E

		Logic / Flow		checking		2		1		C++ automatically converts enums to integers, which allows for a wide range of values				E

		Logic / Flow		documentation		2		1		It is unclear what meaning "<" can have for a bit vector				E

		Logic / Flow		assignment		2		1		variables not being initialized, especially constants				E

		Logic / Flow		checking		2		1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer				E

		Concurrency		checking		3		1		Read and write priveledges on files need to be examined				F

		Internal Document		documentation		3		1		Preconditions are not stated in the comments of methods				F

		Concurrency		timing		3		1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed				F

		Logic / Flow		assignment		3		2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance				F

		Logic / Flow		function		3		1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined				F

		Internal Document		checking		2		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines				E

		Logic / Flow		assignment		3		1		Member variables not initialized in the Constructor				F

		Internal Document		documentation		3		1		Commenting is confusing				F

		Logic / Flow		checking		3		2		Return warnings upon successful termination				F

		Internal Document		documentation		3		1		Comments conflict with the code				F

		Concurrency		timing		3		1		Using static variables for error values leaves multi-threaded applications with no reliable error checking				F

		Logic / Flow		algorithm		3		1		Errors should be past back through the argument list				F

		Logic / Flow		function		3		1		Define where System Messages are to be propogated				F

		Concurrency		timing		3		1		Multi-threaded code must use thread safe constructs				F

		Internal Document		documentation		2		3		Commenting is confusing				F

		Logic / Flow		assignment		2		2		Assertions need to be added to ensure all variables used in this routine are properly initialized				F

		Internal Document		checking		2		1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set				F

		Logic / Flow		assignment		2		1		Enums should be integer constants to make their meaning clearer				F

		Logic / Flow		checking		2		3		Dereferencing pointers without checking them first				F

		language Dependency		checking		2		1		The destructor for this class needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.				F

		language Dependency		algorithm		2		1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations				F

		Internal Document		documentation		3		4		Comments are confusing				F

		Logic / Flow		checking		3		1		An enum is used where integer constants are implied				F

		Logic / Flow		checking		3		2		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		checking		3		1		Vectors are used without checking the bounds nor if there are values in the vector				F

		Logic / Flow		function		3		1		String classes are used in conjunction with C style string functions				F

		Logic / Flow		assignment		3		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Logic / Flow		documentation		3		1		Constants need to have comments				F

		Logic / Flow		checking		2		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)				F

		Logic / Flow		checking		2		1		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		assignment		2		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Internal Document		documentation		3		1		No postconditions are stated for methods				H

		Internal Document		documentation		3		1		No preconditions are stated for methods				H

		Internal Document		documentation		3		1		Comments are confusing				H

		Logic / Flow		checking		3		4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)				H

		Internal Document		documentation		3		2		Variable naming is confusing				H

		Internal Document		documentation		3		3		Comments are unclear				C

		Logic / Flow		checking		3		3		Variables need to be checked for proper values				C

		Logic / Flow		checking		4		1		Variables are used outside of their scope				F

		Logic / Flow		checking		4		2		Method are declared but never used, hence dead code				F

		Internal Document		documentation		4		3		Comments contradict the code				F

		Logic / Flow		assignment		2		6		Variables are not initialized				F

		Logic / Flow		checking		1		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns				F

		Logic / Flow		checking		3		1		Variables are not checked for valid data				L

								630

The number of times the issue occurred

Defect Type Chart

		Type		Frequency

		assignment		273

		documentation		161

		checking		126

		algorithm		53

		function		8

		timing		5

		interface		4

		Relationship		0

		Build		0

The number of times the issue occurred

Defect Type Chart

		0

		0

		0

		0

		0

		0

		0

		0

		0

Frequency

Defect Type

Number of Defects

Frequency of Defects

Defect Trigger Chart

		Trigger		Frequency		Percent

		Logic / Flow		340		53.97

		language Dependency		189		30.00

		Internal Document		94		14.92

		Concurrency		6		0.95

		Rare Situation		1		0.16

		Important Note:		The trigger classification can not be deemed one hundred percent reliable.

				The activity that surfaced the defect was not recorded by the defect identification team, so this required

				the authors to attempt to identify which activity was being performed when the defect was found

		Analysis:		Logic / Flow was responsible for identifying 54 percent of the overall defects found

				A few examples of this trigger type are control flow analysis, global entity-cross referencing, object use analysis

				exception propogation analysis, and call dependency analysis

				Language Dependency was responsible for finding 30 precent of the overall defects found

				This trigger type describes activities that deal with analyzing the source code with respect to a specific standard

				and focuses on checking language specific details and compilation concerns

				Internal Document was responsible for finding 15 precent of the overall defects found

				This trigger type searches for incorrect information, inconsistency, or incompleteness within the code and its

				documentation (including comments). This activity is also responsible for assessing how maintainable the code

				will be in its current form

The number of times the issue occurred

Defect Trigger Chart

		0

		0

		0

		0

		0

Frequency

Defect Trigger

Frequency

Frequency of Defect Triggers

VS Charts

		

				Concurrency		Internal Document		Language Dependency		Logic/Flow		Rare Situation

		timing		5		0		0		0		0		5

		checking		1		2		70		53		0		126

		documentation		0		87		62		12		0		161

		assignment		0		4		7		262		0		273

		interface		0		1		3		0		0		4

		algorithm		0		0		44		9		0		53

		function		0		0		3		4		1		8

				6		94		189		340		1		630

VS Charts

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

timing

checking

documentation

assignment

interface

algorithm

function

Defect Trigger

Frequency

Defect Trigger vs Defect Type

IV&V Triggers

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Type

Frequency

Defect Type vs Defect Trigger

Severity Chart

		IV&V Analysis Level Definitions

		Phase		Activity		Basic		Limited		Focused		Comprehensive		Trigger

		Requirements Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements		x		x		x		x		Conformance

				Validate ability of requirements to meet system needs		x		x		x		x		Conformance

				Verify traceability to and from parent requirements		x		x		x		x		Conformance

				Analyze data/adaptation requirement		x		x		x		x

				Analyze testability, qualification requirements		x		x		x		x

				Analyze data flow, control flow, moding and sequencing		x		x		x		x

				Assess development metrics		x		x		x		x

				Analyze development risks/mitigation plans		x		x		x		x

				Analyze timing and sizing requirements		x		x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform engineering analysis of key algorithms						x		x

				Review/use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Design Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x

				Validate ability of design to meet system needs				x		x		x

				Verify traceability to and from requirements				x		x		x

				Analyze database design				x		x		x

				Analyze design testability, qualification requirements				x		x		x

				Analyze design data flow, control flow, moding, sequencing				x		x		x

				Analyze control logic, error/exception handling design				x		x		x

				Assess design development metrics				x		x		x

				Analyze development risks/mitigation plans				x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform design analysis of select critical algorithms						x		x

				Review /use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Code Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x		Design Conformance

				Verify Traceability to and from design				x		x		x		Design Conformance

				Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)				x		x		x		Design Conformance

				Verify supportability and maintainability				x		x		x

				Assess code static metrics				x		x		x

				Verify CSU & CSC level logical structure and control flow				x		x		x		logic

				Verify internal data structures and data flow/usage						x		x		logic

				Verify error and exception handling						x		x		logic

				Verify code & external I/O data consistency						x		x		logic

				Review code compilation results & syntax checking						x		x

				Verify correct adaptation data & ability to reconfigure						x		x

				Verify correct operating system & run time libraries						x		x

				For select algorithms, verify correctness and stability under full range of potential input conditions								x

				Verify code data compliance with data dictionary								x

				Verify compliance with coding standards								x		language

		Software Test Analysis		Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions		x		x		x		x

				Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs		x		x		x		x

				Verify test cases traceability and coverage of software requirements, operational needs, and capabilities		x		x		x		x

				Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives		x		x		x		x

				Analyze correct dispositioning of software test anomalies		x		x		x		x

				Validate software test results compliance with test acceptance criteria		x		x		x		x

				Verify trace and successful completion of all software test case objectives		x		x		x		x

				Verify ability of software test environment plans and designs to meet software testing objectives				x		x		x

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes				x		x		x

				Analyze STD procedures for test setup, execution, and data collection						x		x

				Monitor execution of software testing						x		x

				Analyze select CSC test plans, procedures, and results to verify adequate logic path coverage, testing of full range of input conditions, error and exception handling, key algorithm stability, and performance in compliance with the design.								x

				Perform life cycle IV&V on software test environment components								x

		System Test Analysis		Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs

				Verify test case traceability and coverage of system requirements, operational needs, and capabilities

				Analyze correct dispositioning of software test anomalies

				Validate ST results compliance with test acceptance criteria

				Verify trace and successful completion of all ST case objectives

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes

System test analysis activities are applied independent of IV&V Analysis Levels

Defect Type

		Severity		Frequency

		One		2

		Two		109

		Three		505

		Four		14

		Five		0

		Severity		Description

		One		Prevent the accomplishment of an essential capability

				Jeapordize safety, security, or other requirements designated critical

		Two		Adversely affect the accomplishment of an essential capability and no work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, and no work-around solution is known

		Three		Adversely affect the accomplishment of an essential capability but a work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, but a work-around solution is known

		Four		Result in user/operator inconveniences but does not affect a required operational or mission essential capability

				Result in inconvenience for development or maintenance personnel, but does not affect accomplishment of these responsiblities

		Five		Any other affect

The number of times the issue occurred

Defect Type

		0

		0

		0

		0

		0

Frequency

Severity

Frequency

Defect Severity

ODC Triggers

		Orthogonal Defect Classification

		The selection of the defect type captures the nature of the change

		Defect Type		Description		Examples

		Function / Class / Object		The error should require a formal design change, as it affects significant capability, end-user features, product interfaces, interface with hardware architectures, or global structures. The error occurred when implementing the state and capabilities of		A database did not include a field, although the requirements specified it

						A database included a field but it was to small to contain possible values

						A class was omitted during system design

						An object was not instantiated before being accessed by other objects of the system

		Assignment / Initialization		Value(s) assigned incorrectly or not assigned at all; but note that a fix involving multiple assignment corrections may be of type Algorithm		Internal variable or variable within a control block did not have correct value, or did not have any value at all

						Initialization of parameters

						Resetting of variable's value

						The instance variable capturing a characteristic of an object is omitted

						The instance variables that capture the state of an object are not correctly initialized

		Interface / OO Messages		Communication problems between modules, components, device drivers, objects, functions vi macros, call statements, control blocks, parameter lists		A database implements both insertion and deletion functions, but the deletion interface was not made callable

						The interface specifies a pointer to a number, but the implementation is expecting a pointer to a character

						The OO message incorrectly specifies the name of the service

						The number and/or types of parameters of the OO message do not conform with the signature of the requested service

		Checking		Errors caused by missing or incorrect validation of parameters or data in conditional statements. It might be expected that a consequence of checking for a value would require additional code such as a do while loop or branch. If the missing or incorrec		Value greater than 100 is not valid, but the check to make sure that the value was less than 100 was missing

						The conditional loop should have stopped on the ninth iteration, but it kept looping while the counter was <=10

						Is there checking or debugging code that is left in the function that shouldn't be

		Timing/Serialization		Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong serialization technique was employed		Serialization is missing when making updates to a shared control block

						A hierarchical locking scheme is in use, but the defective code failed to acquire the locks in the prescribed sequence

		Relationship		Problems related to associations among procedures, data structures and objects. Such associations may be conditional		The structure of code/data in one place assumes a certain structure of code/data in another. Without appropriate consideration of their relationship, program will not execute or it executes incorrectly

						The inheritance relationship between two classes is missing or incorrectly specified

						The limit on the number of objects that may be instantiated from a given class is incorrect and causes performance degradation of thsystem

		Build/Package/Merge		Describe errors that occur due to mistakes in library systems, management of changes, or version control

		Documentation		Errors that affect both publications and maintenance notes		Function does not have sufficient commenting or it does not describe the code accurately

						Are variables described when declared

						Variable naming conventions do not follow the standard or are not descriptive

		Algorithm / Method		Efficiency or correctness problems that affect the task and can be fixed by (re)implementing an algorithm or local data structure without the need for requesting a design change. Problem in the procedure, template, or overloaded function that describes a		The low-level designcalled for the use of an algorithm that improves throuput over the link by delaying transmission of some messages, but implementation transmitted all messages as soon as they arrived. The algorithm that delayed transmission was missin

						The algorithm for searching a chain of control blocks was corrected to use a linear-linked list instead of a circular-linked list

						The number and/or types of parameters of a method or an operation are incorrectly specified. A method or an operation is not made public in the specification of a class

IV&V Methodology

				Triggers		Explanation		Examples

		Inspection		Design Conformance		The document reviewer or the code inspector detects the defect while comparing the design element or code segment being inspected with its specification in the preceding stage(s). Faults largely related to the completeness of the product being designed wi		The code didn't implement the case when no data exists

								On one screen, all font is bold while in another it is not

				Logic / Flow		The inspector uses knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete		Memory in this subroutine needs to be allocated before storing these values

								A value assignment is spelled incorrectly

				Lateral Compatibility		The inspector with broad-based experience, detects an incompatibility between the function described by the design document or code, and other systems, products, services, components, or modules with which it must interface		A graphics application was not able to read a gif file put out by some other application package it is supposed to work with

				Backward Compatibility		The inspector uses extensive product/component experience to identify an incompatibility between the function described by the design document or the code, than that of earlier versions of the same product or component or with n to n+1 (subsequent release		The install option in the current product hard codes the drive for the install whereas the previous version just used the current drive

								The previous version defaulted to 0 decimal places for numeric data but the current defaults to 2 decimal places

				Concurrency		The inspector is considering the serialization necessary for controlling a shared resource when the defect is discovered. This would include serialization of multiple functions, threads, processes, or kernel contexts as well as obtaining and releasing lo		Routine A didn't release the lock before calling routine B which requests the lock

								This variable incorrectly reset to 0 by routine A after routine B had already incremented it

				Internal Document		There is incorrect information, inconsistency, or incompleteness within internal documentation. It has to do with overall completeness of the design and ensures that there is consistency between the different parts of the proposed design or implementatio		The prologue for subroutine A lists only 3 parameters when there are actually 4

				Language Dependency		The developer detects the defect while checking the language specific detatils of the implementation of a component or a function. Language standards, compilation concerns, and language specific efficiencies are examples or potential areas of concern		The inspector is checking C code and sees a "=" that should be "=="

				Side Effect		The inspector uses extensive experience or product knowledge to foresee some system, product, function, or component behavior which may result from the design or code under review. The side effects would be characterized as a result of common usage or co		While looking at a pointer that accesses data by byte, the inspector realizes in another part of the code, the bytes could be in reverse order, so that the pointer won't be accessing them correctly

				Process		The inspector uses experience and best practices to identify issues within the development activities		The developing organization has not institutionalized a standard development practice

								The developing organization has not identified any tools or have not identified the appropriate tools to aid in the development of the system

				Rare Situations		The inspector uses extensive experience or product knowledge to foresee some system behavior which is not considered or addressed by the documented design or code under review, and would typically be associated with unusual configurations or usage. These		Requirements state that a network can handle 250 machines. A bug occurs when a customer has 1000 machines. This is not workload stress because the requirements state that only 250 machines are currently able to be accomadated

		Unit Test		Simple Path		In white/Gray Box Testing, the test case that found the defect was executing a simple code path related to a single function		Tried executing the "default" path of a case statement but since it didn't exist, the test failed

				Complex Path		In White/Gray Box Testing, the test case that found the defect was executing some contrived combinations of code paths related to multiple functions		Path failed because one function released memory that subsequently was used in another function

								Path failed because a global variable is being accessed and incremented in multiple functions

		Function Test		Test Coverage		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function, using no parameters or a single set of parameters		The tester tried to delete a city from the database but it couldn't be deleted

				Test Variation		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function but using a variety of inputs and parameters		When the tester tried to add one more character than the maximum allowable, the software hung

				Test Sequencing		During black box testing, the test case that found the defect executed multiple functions in a very specific sequence		The test case first added a record, then deleted it, and then tried to add it again but got the message that you cannot add a record that already exists

				Test Interaction		During black box testing, the test case that found the defect initiated an interaction among two or more bodies of code. This is more involved than a simple serial sequence of the executions		Cant add data to fields after the record has been created

		System Test		Workload Volume/Stress		The system is operating at or near some resource limit		When the system is idle for 10 minutes it hangs

				Recovery/Exception		The system is being tested with the intent of invoking an exception handler or some type of recovery code		Unexpected errors get converted to to other types of errors instead of the expected one

				Startup/Restart		The system was being initialized or restarted		After pulling the plug on the cpu, the system was unable to restart until certain files were cleaned up

				Hardware Configuration		The system is being tested to ensure functions execute correctly under specific hardware configurations

				Software Configuration		The system is being tested to ensure functions execute correctly under specific software configurations

				Blocked Test Execution		The product is operating well within resource limits and the defect surfaced without any particular strategy		Wanted to check for workload stress by printing 1000 jobs. However, when Print was selected, nothing happened

Template

		IV&V: A Life Cycle Engineering Process for Quality Software

		Robert O. Lewis, 1992, John Wiley & Sons, Inc.

		Code Verification Activities

		Phase		Activity		Notes		ODC Trigger

		Documentation Review		Verify consistency between the code and the software design document (SDD)		Are the documents and the code meeting the intended purpose?		Design Conformance

						Is the technical content consistent, complete, clear, correct, and testable?

						The goal is to find discrepancies between the SDD and the Code

		Process Review		Verify the specified standards and practices are being followed		These are specified in the Software Development Plan (SDP)		Process

						Must look at a system level as well as individual units

						Assess the developer's metrics program

						Verify developer's processes meet applicable standards

				Verify the developer is using specified coding tools		Simple check to ensure the appropriate tools are being used

				Verify versions of the compiler, operating system, and utilities		IV&V looks for any inconsistencies and stays coordinated with the developer's configuration management organization		Language Dependency

				Review software library and release/version control		Monitor the developer's control and release procedures, adherence to scheduled events, completeness of the product and consistency with which the release occurs		Process

		Code Review		Verify the logical structure and syntax with static analysis		control flow analysis		Logic / Flow

						standards analysis (coding standards)		Language Dependency

						global entity cross-reference: representation clause, entity cross-reference, type/object cross-reference, type dependency, exception cross-reference, generic instantiation		Logic / Flow

						Object use analysis		Logic / Flow

						exception propogation analysis		Logic / Flow

						call dependency analysis: invocation cross-reference, invocation bands, compilation unit dependency		Logic / Flow

						verify the code is maintainable		Backward Compatibility

						source code data collection and assess metrics		Rare Situation

				Verify terms between data dictionary and code		compare the entries in the data dictionary to the element names appearing both in the code and in the interface, global, and local data definitions in the SDD		Internal Document

						This activity ensures consistency among the three items that share the data definitions

				Verify sample input and output data		During development, it is customary for the developer to generate sample input data that are representative to the actual input data. Coincidentally, the system generates output data that have a correlation to these particular inputs.		Rare Situation

						IV&V checks to make sure the developer is adequately identifying and archiving I/O data and that the correct input data are specified for particular tests

				Verify algorithms per the software design document (SDD)		Ensure the consistency between the algorithms in the code and those defined in the SDD to determine if they are accurately and completely implemented		Design Conformance

						Verify any timing contraints required		Concurrency

CLCS Modules

		The Defect Type you wish to search for		Where to look		How to detect		Explanation

		Documentation		Readability		Line length exceeding 79 characters

						Brackets and indentations in the wrong place

						Class structure (class, functions, and then data members)

				Data Declarations		Variables must have comments the first time they are used

						Are the units on the data declarations commented

						Are the ranges or limitations of values defined for the variables

						Are flags documented to the bit level

						Has each global variable been commented where declared

						Are counters and MAGIC numbers commented

						Identifiers must have clear names

				Methods		Methods must have comment headers explaining their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw

						Comments must accurately describe the code

						Variables local to the method must follow the conditions stated in Data Declarations

						Methods that do nothing (e.g., return this) need to be commented that they do nothing and the reason

				Control Structures		Is each control structure commented

				General		Comment percentage		See the worksheet entitled OO Metrics for Comment Percentage remarks

						Does each file have a header

						Error and message propogation must be clearly identified

						Revisions need comments that identify the author, date, and description of the revision

						Complex code requires comments		See the worksheet entitled OO Metrics for Comment Percentage remarks

		Assignment		Pointers		Set to NULL or 0 (zero) after deleting memory it points to

						Avoid Pointer arithmetic

				Variables		Initialize variables

						All initialization needs to be done in one place

						Initializing strings by hardcoding in "\0" will place 2 null terminators

						MAGIC and hardcoded literals need to be assigned to a constant

				Operators		"&=" should not be used with booleans		May yield a correct results but it may be slower than logical operators

				Class		Must have assignment methods for their data members

		Checking		include guards are omitted

				Delete debugging code

				Code dependent on specific operating system specs (e.g., size of int) may cause future porting issues

				Constructs		switch constructs with empty case statements

						switch constructs with no default clauses

						switch constructs with no break statements

						if statements contain empty else clauses

						Vectors and arrays must check their bounds

						vectors and arrays must check their index being referenced does in fact contain valid data

						Before loops are entered the code does not check if variable exceeds another

				Comparison		if conditionals using "=" instead of "=="

						constants must appear on left side of comparison operators

				Pointers		must check they point to something before they get dreferenced

				Data		variables declared as 8-bit unsigned int must check they don't go out of range (0<=var<=256)

						Where strings get converted to other formats (e.g., integers) you must check that the string first contains a valid conversion type

						Variables that are used outside their scope

				Methods		return values must be checked

						must check their parameters

						must assert() all variables used

						get rid of methods that are never used (dead code)

						Status of routine execution is not returned

				Interfaces		Public member functions must always return const handles to data members

		Algorithm		The use of certain functions

				Main must be a separate file

				Virtual functions must have virtual destructors

				Define a copy constructor and operator= for private data members of a class

				Redundant code is a good candiate for a subroutine

		Function		Variables		Global variables can cause collision

				Files		Extremely large

				Methods		Extremely large, they are easily hundreds of lines long

		Timing		Threads		Multithreaded code must use thread safe constructs

Highlites mean I will provide a stylesheet as an example.

OO Properties "Riel"

		Module		Issues		Identifier		Metrics

								KSLOC		Complexity		Perf / Op		Safety		Devp Cost / Sched		Maturity		Reqts Def / Stability		Testability

		All System Software		1		A

		CLCS System (CLCS)		1		B

		Cmd Suppt CSCI (Cmd Mgmt CSC)		6		C		4.00

		Cmd Suppt CSCI (All CSCs)		2		D

		Cmd Suppt CSCI (Cmd Auth CSC)		11		E

		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)		180		F		2.50

		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)		73		G		10.00

		Cmd Suppt CSCI (Cmd Mgmt CSC)		47		H

		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)		63		I		2.00

		Data Distribution CSCI (Constraint Mgmt)		72		J		15.40

		Data Distribution CSCI (Data Distribution)		50		K		66.00

		Data Distribution CSCI (Data Fusion)		1		L		12.00

		Data Distribution CSCI (Data Health)		118		M		19.00

		Not Defined		4		N

		System Services CSCI (IPC CORBA CSC)		1		O

								130.90

OO Metrics

		Heuristics Summary

		The following heuristics are taken from Object-Oriented Design Heuristics by Arthur J. Riel

		Chapter		Topic		Heuristic

		2		Classes & Objects		All data should be hidden within its class

						Users of a class must be dependent on its public interface, but a class should not be depndent on its users

						Minimize the number of messages in the protocol of the class

						Implement a minimal public interface which all classes understand (e.g., operations such as COPY (deep versus shallow), equality testing, pretty printing, parsing from ASCII description, et cetera)

						Do not put implementation details such as common-code private functions into the public interface of a class

						Classes should only exhibit nil or export coupling with other classes (e.g., a class should only use operations in the public interface of another class or have nothing to do with that class

						A class should capture one and only one key abstarction

						Keep related data and behavior in one place

						Spin off non-related information into another class (e.g., non-communicating behavior)

						Be sure the abstraction that you model are classes and not simply the roles objects play

Effective Coding

		TOOM Metric		Description

		cyclomatic complexity		Used to evaluate the application of the algorithm. The number generated represents the total number of independent test paths (= edges – nodes + 2). The lower the complexity results in a decrease in testing and an increase in understandability of the

		lines of code		LOC: counts all lines; NCNB: counts all lines not comments and not blank; Executable Statements: counts all executable statements; Comments: counts all the comments

		comment percentage		Calculated by taking the total number of on-line and stand-alone comments and divide by the total lines of code less the number of blank lines. A high percentage gives an increase of understandability and maintainability		Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes highly maintainable. Specifically, they say a higher comment percentage (~20-30%) decreasing the testing efforts, increases understanda		Projects sometime adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be		One study found that areas of source code with large numbers of comments also tended to have the most defects and to consume the most development effort. The authors hypothesized that programmers tended to comment difficult code heavily. "An Experimental		Since comments assist developers and maintainers, higher comment percentages increase understandability and maintainability. "The Object Oriented Brewery: A Comparison of Two Object Oriented Development Methods", Robert Sharble and Samuel Cohen, Software

		weighted methods per class		A count of all methods implemented in the class or calculated by summing the methods’ complexities and generates one complexity for the class. The number of methods and their complexity give an idea of how much time and effort will be required to develop

		response for a class		A count of all the methods that can be invoked by a message from a class

		coupling between objects		A count of the number of other classes to which a class is coupled

		depth in a tree		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root of the tree

		number of children		The number of immediate subclasses subordinate to a class in a hierarchy

		McCabe Metrics		Description

		Cyclomatic Complexity (v(G))		The maximum number of linearly independent paths through a module of code. It measures the amount of testing necessary to reasonably guard against errors. To compute follow these steps:
a) Draw the module’s flowgraph
b) Compute v(G) using one of three m

		Actual Complexity (ac(G))		The actual number of independent paths tested during the test phase. The number of distinct, realizable paths; paths that can be traversed with real data.
Usage: if ac(G) < v(G) → v(G) may be able to be reduced to v-ac; it also tells when the minimum nu

		Module Design Complexity (iv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to calls to other modules. To compute just remove all conditions that do not involve calls to other modules and then compute v(G) on this new flowgraph

		Essential Complexity (ev(G))		A measure of the degree to which the module contains unstructured constructs. It is equal to the cyclomatic complexity of the reduced flowgraph. Removing all structured constructs does the reduction.Usage: Quantifies the degree of structuredness, reveal

		Pathological Complexity (pv(G))		A measure of the degree to which the module contains extremely unstructured constructs. The measure of a reduced flowgraph where all unstructured constructs except multiple entries into loops are treated as straight-line code. Pv(G) is the module’s stru

		Design Complexity (S0)		Measures the amount of interaction between modules. S0 of a design G, is a measure of the decision structure that controls the invocation of modules within the design. It is a quantification of the testing effort of all calls in the design. S0 = Σ iv(Gj

		Integration Complexity (S1)		Measures the amount of integration testing necessary to guard against errors. Each S1 tests validates the integration of several modules. It is computed by S1 = S0 – n + 1 (where n is the number of modules in the design and S0 is the design complexity o

		Object Integration Complexity (OS1)		Quantifies the number of tests necessary to fully integrate an object or class into an OO system

		Global Data Complexity (gdv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to global/parameter data. Decision predicates are reduced that do not impact data that is either global or is passed as parameters to the module. Specific Data Complexity sdv(G)

		Line Count		Lines of code, lines of comment, lines of mixed code and comment, lines left blank

		Halstead Metrics		Description

		Program Length		The total number of operator occurrences and the total number of operand occurrences

		Program Volume		The minimum number of bits required for coding the program

		Program Level and Difficulty		Measure the program’s ability to be comprehended

		Intelligent Content		Shows the complexity of a given algorithm independent of the language used to express the algorithm

		Programming Effort		Estimated mental effort required developing the program

		Error Estimate		Calculates the number of errors in a program

		Programming Time		The estimated amount of time to implement an algorithm

Tool for Object Oriented Metrics

Requires further research to determine an accurate correlation

Universal Coding Standards

		Scott Meyers, Effective C++, Second Edition 1998, Addison Wesley Longman, Inc.

		Category		Item		Description

		Shifting from C to C++		2		Prefer iostream.h to stdio.h

				3		Use new and delete instead of malloc and free

		Memory Management		5		Use the same form in corresponding calls to new and delete

				6		Call delete on pointer members in destructors

				7		Check the return value of new

				8		Adhere to convention when writing new

				9		Avoid hiding the global new

				10		Write delete if you write new

		Constructors, Destructors, & Assignment Operators		11		Define a copy constructor and assignment operator for classes with dynamically allocated memory.

				12		Prefer initialization to assignment in constructors

				13		List members in an initialization list in the order in which they are declared

				14		Make destructors virtual in base classes

				15		Have operator= return a reference to *this

				16		Assign to all data members in operator=

				17		Check for assignment to self in operator=

		Classes and Functions: Design & Declaration		19		Differentiate among member functions, global functions, and friend functions

				20		Avoid data members in the public interface

				22		Pass and return objects by reference instead of by value

				23		Don't try to return a reference when you must return an object

				25		Avoid overloading on a pointer and a numerical type

		Classes and Functions: Implementation		29		Avoid returning "handles" to internal data from const member functions

				30		Avoid member functions that return pointers or references to members less accessible than themselves

				31		Never return a reference to a local object or a dereferenced pointer initialized by new within the function

		Inheritance and OO Design		37		Never redefine an inherited non-virtual function

				38		Never redefine an inherited default parameter value

				39		Avoid casts down the inheritance hierarchy

		Scott Meyers, More Effective C++, 1996, Addison Wesley Longman, Inc.

		Category		Item		Description

		Basics		2		Prefer C++-style casts

		Operators		5		Be wary of user-defined conversion functions

				6		Distinguish between prefix and postfix forms of increment and decrement operators

				7		Never overload &&, ||, or ,

		Efficiency		22		Consider using op= instead of stand-alone op

				24		Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI

		Techniques		26		Limiting the number of objects of a class

		Meyers-Klaus Items

		Category		Item		Description

		Constructors/Destructors		13		Avoid calling virtual functions from constructors and destructors

		Assignment

		Implementation		23		Avoid using "..." in function parameter list

User Items

		Universal Coding Standards (Code Wizard Analysis Tool) http://www.atd.ucar.edu/software/wizard/items/items_ucs.htm

		Item		Description

		2		Do not declare protected data members

		3		Do not declare the constructor or destructor to be inline

		4		Declare at least one constructor to prevent the compiler from doing so

		5		Pointers to functions should use a typedef

		6		Never convert a const to a non-const

		7		Do not use the ?: operator

		8		Each class must declare the public, protected, and private sections in that order

		9		In the public section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		10		In the protected section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		11		In the private section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		12		If a function has no parameters, use () instead of (void)

		13		If, else, while, and do statements shall be followed by a block, even if it is empty

		14		If a block is a single statement, enclose it in braces

		15		Whenever a global variable or function is used, use the :: operator

		16		Do not use public data members

		17		If a function has any virtual functions it shall have a virtual destructor

		18		Public member functions shall return const handles to member data

		19		A class that has pointer members shall have an operator= and a copy constructor

		20		If a subclass implements a virtual function, use the virtual keyword

		21		Member functions shall not be defined in the class definition

		22		Ellipses shall not be used

		23		Functions shall explicitly declare their return types

		24		A pointer to a class shall not be converted to a pointer of a second class unless it inherits from the second

		25		A pointer to an abstract class shall not be converted to a pointer that inherits from that class

		26		Do not use the friend mechanism

		27		When working with float or double values, use < and ==> instead of ==

		28		Do not overload functions within a template class

		29		Do not define structs that contain member functions

		30		Do not directly access global data from a constructor

		31		Do not use multiple inheritance

		32		Initialize all variables

		33		All pointers should be initialized to zero

		34		Always terminate a case statement with break

		35		Always provide a default branch for switch statements

		36		Do not use the goto statement

		37		Provide only one return statement in a function

Standards

		User Items

		Item		Description

		1		Assign to all member variables in operator= functions

		2		Declare an assignment operator for each class with pointer member variables

		3		Make destructors virtual for all base classes

		4		Avoid breaks in for loops

		5		Do not cast pointers to non-pointers

		6		Do not cast an unsigned pointer to an unsigned int

		7		Do not compare chars to constants out of char range

		8		Declare reference parameters as const reference whenever possible

		9		Write operator delete if you write operator new

		10		Do not call delete on a non-pointer

		11		Avoid do statements

		12		Do not use an enum keyword to declare a variable in C++

		13		Do not check floats for equality; check for greater than or less than

		14		Do not assign to loop control variables in the body of a for loop

		15		Do not assign the dividend of 2 ints to a float

		16		Avoid assignment in if statement condition

		17		Give each if statements an else clause

		18		Initialize all pointer variables

		19		Use capital "L" instead of lowercase "l" to indicate long

		20		Avoid switch statements with many cases

		21		Number of blocks of code per function

		22		Number of global variable references per member function

		23		Number of function calls per function

		24		Number of base classes

		25		Number of data members per class

		26		Number of methods per class

		27		Number of parameters per method

		28		Number of private data members per class

		29		Number of private methods per class

		30		Number of protected data members per class

		31		Number of protected methods per class

		32		Number of public data members per class

		33		Number of public methods per class

		34		Begin boolean type variable names with `b'

		35		Begin class names with an uppercase letter

		36		Begin constant variable names with `c'

		37		Begin class data member names with `its'

		38		Begin double type variable names with `d'

		39		Begin enumerated type names with an uppercase letter that is prefixed by the software element and suffixed by `_t_'

		40		Begin float type variable names with `f'

		41		Begin function names with an uppercase letter

		42		Begin global variable names with `the'

		43		Begin integer names with `i'

		44		Begin `is' function names with bool values

		45		Begin long integer value names with `li'

		46		Prefix variable type pointer names with `p'

		47		Begin short integer variable names with `si'

		48		Begin signed character variable names with `c'

		49		Begin terminated characters' string variable names with `sz'

		50		Begin struct type names with an uppercase letter that is prefixed by software element and suffixed by `_t'

		51		Begin unsigned character type names with `uc'

		52		Begin unsigned integer type variables with `ui'

		53		Begin variable names with a lowercase letter

		54		Return reference to *this in operator= functions

		55		Pass built-in types by value unless you are modifying them

		56		Avoid member variables in the public interface

		57		Do not use a struct keyword to declare a variable in C++

		58		Do not throw from within a destructor

		59		Avoid unnecessary casts

		60		Avoid unnecessary "==true"s

		61		Avoid unused local variables

		62		Avoid unused parameters

		63		Avoid unused private member variables

		No Java Standard: This can cause a significant impact to the system. Code developed for a large scale project must be maintainable, portable, and follow consistent programming style

_1058869955.xls
Chart2

		Logic / Flow

		language Dependency

		Internal Document

		Concurrency

		Rare Situation

Frequency

Defect Trigger

Number of Defects

Defect Trigger Distribution

340

189

94

6

1

CLCS Issues

		Tim No.		Activity		Phase/Review		Frequency		Description		Module

		1251		SW.CODE		PHASE.SW.DESIGN		42		Deviations from the coding standards (line was greater than 79 characters)		Data Distribution CSCI (Data Distribution)

								1		Deviations from the coding standards (e.g., variables did not have clear names)

								1		Deviations from the coding standards (e.g., not enough commenting)

								1		Deviations from the coding standards (e.g.,switch contructs did not have default statements)

		1252		SW.CODE		PHASE.SW.CODE		1		Lines were greater than 79 characters		Data Distribution CSCI (Data Distribution)

								1		Variable identifiers not clearly named

								1		brackets in the wrong place

								1		not enough comments

								1		switch statements do not contain default statements

		1255		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values		System Services CSCI (IPC CORBA CSC)

		1260		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Lack of Java programming standard		All System Software

		1268		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		108		Uninitialized variables, empty case statements, lines greater than 80 columns		Data Distribution CSCI (Data Health)

		1269		SW.CODE.FAULT_ERROR_HANDLING		REVIEW.SW.CODE.WALKTHROUGH		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		set pointer to null after delete

								1		lack of comments

		1273		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		not enough comments		Data Distribution CSCI (Data Health)

								1		variables were not initialized

								1		variables were not well commented

								1		Functions were not preceded with comments explaining their functionality

		1274		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Data Health)

								1		Switch statements did not contain default statements

								1		Case statements did not contain Break statements

								1		Else statements were empty

								1		Delete statements were used improperly without using New

								1		Include guards were omitted

		1279		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Comments need to identify the variables used		Not Defined

								1		Column alignment was off and makes reading code very difficult

								1		Several lines were greater than 80 columns

								1		Invalid identifiers were used

		1280		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Functions were not preceded with comments explaining their functionality		Data Distribution CSCI (Constraint Mgmt)

								1		variables were not initialized

								1		variables were not well commented

		1282		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		110		coding violations w.r.t. Code Wizzard		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1283		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Switch statements consisted of empty Case statements		Data Distribution CSCI (Constraint Mgmt)

								1		Switch statements did not contain default statements

								1		Invalid filename identifiers

								1		Unclear messages

		1286		SW.CODE.SUPPORT_MAINTAINABILITY		REVIEW.SW.CODE.WALKTHROUGH		1		Coment sections preceding functions were inaccurate		Data Distribution CSCI (Constraint Mgt)

								1		Header files contained inaccurate and incomplete parameter descriptions

								1		Method names in the body were inconsistent from header files

								1		Insufficient commenting

		1287		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Error codes not properly identified		Data Distribution CSCI (Constraint Mgt)

								1		Improper identification of return values

								1		Switch statements consisted of empty Case statements

								1		Instances of empty else statements

								1		Strcpy used instead of Strncpy

		1290		SW.CODE.CONTROL_FLOWS		PHASE.SW.UNIT_TEST		1		Use of = in conditional statements instead of ==		Cmd Suppt CSCI (Cmd Mgmt CSC)

		1298		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		15		Pointer initialized to 0		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								2		Replace numbers with constants

		1299		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		7		Virtual functions must have virtual destructors		Cmd Suppt CSCI (Cmd Mgmt CSC)

								2		Public interfaces should not contain data members

								3		Public member functions must always return const handles to data members

								4		Do not directly access global data from a constructor

								17		Prefer C++ style casts

								1		Pass objects by reference instead of by value

								1		Return objects by reference instead of by value

		1300		SW.CODE		PHASE.SW.UNIT_TEST		2		Define a copy constructor and operator= for classes with dynamically allocated memory		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)

								8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)

								4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second

								4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class

								27		Prefer C++ style casts

								1		Virtual functions must have virtual destructors

		1345		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		2		Revisions need comments which identify author, date, and description		Data Distribution CSCI (Constraint Mgt)

								2		Methods require comments depicting their purpose

								1		Delete debug code

								1		Make main a separate file

		1346		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Missing file headers		Data Distribution CSCI (Constraint Mgt)

								1		else portions of the if statements are not indented

								3		No commenting

								3		List parameters, returns, and exceptions in headers

								1		Need copy constructor and assignment operator

								1		Comments need to identify the variables used

								1		Need deletes for all new methods

		1357		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Private data members require comments		Data Distribution CSCI (Constraint Mgt)

								2		Nothing is being returned

								1		Counters I and j are not commented

		1358		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Directory paths must not be hardcoded		Data Distribution CSCI (Constraint Mgt)

								2		Add copy constructor and assignment operator for pointer declared as private data member

								1		Add a default case for the switch statement

								1		Return int not a pointer

								14		Parameters and counters require comments

								1		variable is declared as global, could cause collision

								1		Code for checking boundary conditions is missing

								1		Constraint parameter is passed with method

								1		main method needs to be placed in separate file

								8		Delete debug code and dead code

		1360		SW.CODE.STANDARDS_COMPLIANCE		REVIEW.SW.CODE.WALKTHROUGH		1		Initialize all variables		Data Distribution CSCI (Constraint Mgt)

								1		Constants need to appear on the left side of comparison operators

								1		Main should be in a separate file

								1		Using strcpy instead of strncpy

		1384		SW.CODE.SUPPORT_MAINTAINABILITY		PHASE.SYS.TEST		1		Method had a complexity of 30 versus the rule of thumb 10		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*

		1413		SW.CODE		Systems Test		1		Mutex locking is not being used around object creation methods, which may result in memory leaks		Cmd Suppt CSCI (All CSCs)

		1459		Code Analysis		Code & Unit Test		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software		CLCS System (CLCS)

		1464		Code Analysis		Code & Unit Test		1		Status of method execution is not returned		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?

								1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen

								1		Identify methods that are non-thread safe (e.g., those using a static buffer)

								1		Pointer arithmetic is highly discouraged

								1		Variables without descriptive names or no comments associated with them are highly discouraged

								3		The meaning of the comments are unclear

								1		Algorithm allows the pointer to extend past the array's upper bound

		1465		Code Analysis		Code & Unit Test		1		No commenting		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string

								1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized

		1466		Code Analysis		Code & Unit Test		1		Classes need to have insertion or assignment methods for their data members		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

		1467		Code Analysis		Code & Unit Test		1		Standards for class structure is not followed (Class, function, data members)		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Standard naming conventions are not followed

								1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)

								2		variables need to be initialized

								1		there is no check to see if variable exceed another before the for loop is entered

								1		Use strtod() to check for valid C/C++ format number

		1468		Code Analysis		Code & Unit Test		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file		Cmd Suppt CSCI (All CSCs)

		1470		Code Analysis		Code & Unit Test		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Postconditions and exceptions are not always stated in the comments

		1471		Code Analysis		Code & Unit Test		3		Code does not follow what the comments say		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								2		Variables are not checked for valid data before critical use

								2		Methods that do nothing (e.g., return this) should state they do nothing and why

		1472		Code Analysis		Code & Unit Test		6		Post-conditions are required, lack of comments in general		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?

								9		Checks to determine pointers actually point to valid data before they are used

								1		Does not check if element 0 of the array is defined before its use

								3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation

								4		Redundant code is a good candiate for a subroutine

								1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers

								6		Initialize variables

		1473		Code Analysis		Code & Unit Test		1		Files are extremely large and functions are easily hundreds of lines long		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)

								1		Proprietary system calls provided by the operating system requires commenting and tracking

								1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type

								1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)

								1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))

								1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code

								1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code

								1		Masking literals need to be named to constants (e.g., 0x800000000)

		1478		Interface Analysis		Code & Unit Test		3		Initialize methods have no error checking to guarantee the variables have been properly initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								9		Arguments to methods do not have comments associated with them concerning their valid values

		1483		Code Analysis		Code & Unit Test		2		Dereferencing pointers without checking them first		Cmd Suppt CSCI (Cmd Auth CSC)

								1		No checking method returns for failure status

								1		Commenting states specific error messages can be generated, however the code does not reflect this

								2		Comments do not reflect the code

								1		C++ automatically converts enums to integers, which allows for a wide range of values

								1		It is unclear what meaning "<" can have for a bit vector

								1		variables not being initialized, especially constants

								1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer

		1484		Code Analysis		Code & Unit Test		1		Read and write priveledges on files need to be examined		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Preconditions are not stated in the comments of methods

								1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed

								2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance

								1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined

		1486		Code Analysis		Code & Unit Test		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines		CMD Suppt CSCI (Cmd Auth CSC)

		1489		Code Analysis		Code & Unit Test		1		Member variables not initialized in the Constructor		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Commenting is confusing

								2		Return warnings upon successful termination

								1		Comments conflict with the code

								1		Using static variables for error values leaves multi-threaded applications with no reliable error checking

								1		Errors should be past back through the argument list

								1		Define where System Messages are to be propogated

								1		Multi-threaded code must use thread safe constructs

		1490		Code Analysis		Code & Unit Test		3		Commenting is confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Assertions need to be added to ensure all variables used in this routine are properly initialized

								1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set

								1		Enums should be integer constants to make their meaning clearer

								3		Dereferencing pointers without checking them first

								1		The destructor for this calss needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.

								1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations

		1491		Code Analysis		Code & Unit Test		4		Comments are confusing		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		An enum is used where integer constants are implied

								2		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Vectors are used without checking the bounds nor if there are values in the vector

								1		String classes are used in conjunction with C style string functions

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

								1		Constants nees to have comments

		1492		Code Analysis		Code & Unit Test		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)		CMD Suppt CSCI (Cmd I/F CSC-Comm Funct)

								1		Pointer is dereferenced without precondition that it has been initialized and no check performed

								1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant

		1494		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		No postconditions are stated for methods		Cmd Suppt CSCI (Cmd Mgmt CSC)

								1		No preconditions are stated for methods

								1		Comments are confusing

								4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)

								2		Variable naming is confusing

		1495		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		3		Comments are unclear		Cmd Suppt CSCI (Cmd Mgmt CSC)

								3		Variables need to be checked for proper values

		1496		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are used outside of their scope		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

								2		Method are declared but never used, hence dead code

								3		Comments contradict the code

		1497		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		6		Variables are not initialized		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1498		SW.CODE		REVIEW.SW.CODE.WALKTHROUGH		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)

		1501		SW.CODE		Code & Unit Test		1		Variables are not checked for valid data		Data Distribution CSCI (Data Fusion)

								630

The IV&V Activity
being performed
when the issue was
identified

The phase or review in which the issue was identified

The number of times the issue occurred

Filtered Issues

		Trigger		Type		Severity		Frequency		General Description		Template		Module

		language Dependency		documentation		3		42		line was greater than 79 characters				K

		language Dependency		documentation		3		1		variables did not have clear names				K

		language Dependency		documentation		3		1		not enough commenting				K

		language Dependency		checking		3		1		switch contructs did not have default statements				K

		language Dependency		documentation		3		1		Lines were greater than 79 characters				K

		language Dependency		documentation		3		1		Variable identifiers not clearly named				K

		language Dependency		documentation		3		1		brackets in the wrong place				K

		language Dependency		documentation		3		1		not enough comments				K

		language Dependency		checking		3		1		switch statements do not contain default statements				K

		Logic / Flow		algorithm		3		1		Constructor had three method calls which used UNIX system calls to read files. They all may fail and a constructor cannot return a status (may get a 'valid' object pointer back, but invalid data inside).
Code should initialize and compare pointer values				O

		language Dependency		documentation		3		1		Lack of Java programming standard				A

		Logic / Flow		assignment		3		108		Uninitialized variables, empty case statements, lines greater than 80 columns				M

		Logic / Flow		algorithm		3		1		Operations that may fail (e.g., opening log files) should not be performed in the constructor				F

		Logic / Flow		assignment		3		2		set pointer to null after delete				F

		Logic / Flow		documentation		3		1		lack of comments				F

		Internal Document		documentation		3		1		not enough comments				M

		Internal Document		assignment		3		1		variables were not initialized				M

		Internal Document		documentation		3		1		variables were not well commented				M

		Internal Document		documentation		3		1		Functions were not preceded with comments explaining their functionality				M

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				M

		language Dependency		checking		3		1		Switch statements did not contain default statements				M

		language Dependency		checking		3		1		Case statements did not contain Break statements				M

		language Dependency		checking		3		1		Else statements were empty				M

		language Dependency		algorithm		3		1		Delete statements were used improperly without using New				M

		language Dependency		checking		3		1		Include guards were omitted				M

		language Dependency		documentation		3		1		Comments need to identify the variables used				N

		language Dependency		documentation		3		1		Column alignment was off and makes reading code very difficult				N

		language Dependency		documentation		3		1		line was greater than 79 characters				N

		language Dependency		documentation		3		1		Invalid identifiers were used				N

		Internal Document		documentation		2		1		Functions were not preceded with comments explaining their functionality				J

		Internal Document		assignment		2		1		variables were not initialized				J

		Internal Document		documentation		2		1		variables were not well commented				J

		Logic / Flow		assignment		3		110		coding violations w.r.t. Code Wizzard				F

		language Dependency		checking		3		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		3		1		Switch statements did not contain default statements				J

		language Dependency		documentation		3		1		Invalid filename identifiers				J

		language Dependency		documentation		3		1		Unclear messages				J

		Internal Document		documentation		2		1		Coment sections preceding functions were inaccurate				J

		Internal Document		documentation		2		1		Header files contained inaccurate and incomplete parameter descriptions				J

		Internal Document		interface		2		1		Method names in the body were inconsistent from header files				J

		Internal Document		documentation		2		1		Insufficient commenting				J

		language Dependency		documentation		2		1		Error codes not properly identified				J

		Internal Document		documentation		2		1		Improper identification of return values				J

		language Dependency		checking		2		1		Switch statements consisted of empty Case statements				J

		language Dependency		checking		2		1		Instances of empty else statements				J

		language Dependency		algorithm		2		1		Strcpy used instead of Strncpy				J

		language Dependency		checking		1		1		Use of = in conditional statements instead of ==				H

		Logic / Flow		assignment		3		15		Pointer initialized to 0				I

		language Dependency		assignment		3		2		Replace numbers with constants				I

		language Dependency		algorithm		3		7		Virtual functions must have virtual destructors				H

		language Dependency		function		3		2		Public interfaces should not contain data members				H

		language Dependency		interface		3		3		Public member functions must always return const handles to data members				H

		language Dependency		algorithm		3		4		Do not directly access global data from a constructor				H

		language Dependency		checking		3		17		Prefer C++ style casts				H

		language Dependency		algorithm		3		1		Pass objects by reference instead of by value				H

		language Dependency		algorithm		3		1		Return objects by reference instead of by value				H

		language Dependency		algorithm		3		2		Define a copy constructor and operator= for classes with dynamically allocated memory				I

		language Dependency		algorithm		3		8		Be wary of user-defined conversion functions (Use of implicit cast should be made explicit)				I

		language Dependency		algorithm		3		4		A pointer to a class may not be converted to a pointer of a second class unless the first class inherits from the second				I

		language Dependency		algorithm		3		4		A pointer to an abstract class shall not be converted to a pointer of a class that inherits from the abstract class				I

		language Dependency		checking		3		27		Prefer C++ style casts				I

		language Dependency		algorithm		3		1		Virtual functions must have virtual destructors				I

		Internal Document		documentation		3		2		Revisions need comments which identify author, date, and description				J

		Internal Document		documentation		3		2		Methods require comments depicting their purpose				J

		language Dependency		checking		3		1		Delete debug code				J

		language Dependency		algorithm		3		1		Make main a separate file				J

		Internal Document		documentation		3		1		Missing file headers				J

		language Dependency		documentation		3		1		else portions of the if statements are not indented				J

		Internal Document		documentation		3		3		No commenting				J

		Internal Document		documentation		3		3		List parameters, returns, and exceptions in headers				J

		language Dependency		algorithm		3		1		Need copy constructor and assignment operator				J

		Internal Document		documentation		3		1		Comments need to identify the variables used				J

		language Dependency		algorithm		3		1		Need deletes for all new methods				J

		Internal Document		documentation		3		1		Private data members require comments				J

		language Dependency		checking		3		2		Nothing is being returned				J

		Internal Document		documentation		3		1		Counters I and j are not commented				J

		Internal Document		assignment		3		1		Directory paths must not be hardcoded				J

		language Dependency		algorithm		3		2		Add copy constructor and assignment operator for pointer declared as private data member				J

		language Dependency		checking		3		1		Add a default case for the switch statement				J

		language Dependency		algorithm		3		1		Return int not a pointer				J

		Internal Document		documentation		3		14		Parameters and counters require comments				J

		Logic / Flow		function		3		1		variable is declared as global, could cause collision				J

		Logic / Flow		checking		3		1		Code for checking boundary conditions is missing				J

		language Dependency		documentation		3		1		Constraint parameter is passed with method				J

		language Dependency		algorithm		3		1		main method needs to be placed in separate file				J

		language Dependency		checking		3		8		Delete debug code and dead code				J

		language Dependency		assignment		3		1		Initialize all variables				J

		language Dependency		checking		3		1		Constants need to appear on the left side of comparison operators				J

		language Dependency		algorithm		3		1		Main should be in a separate file				J

		language Dependency		algorithm		3		1		Using strcpy instead of strncpy				J

		Rare Situation		function		3		1		Method had a complexity of 30 versus the rule of thumb 10				H

		Logic / Flow		algorithm		3		1		The use of C style strings is problematic pointer operations are inherently dangerous, so use the standard template library for string class instead of char*				H

		Concurrency		timing		4		1		Mutex locking is not being used around object creation methods, which may result in memory leaks				D

		language Dependency		documentation		3		1		Coding standards are not modified for safety critical software. Specifically 8719.13A requires special coding standards for safety critical software				B

		Logic / Flow		checking		2		1		Status of method execution is not returned				G

		Internal Document		assignment		2		1		Magic numbers must be avoided in code (e.g., max_size =10; array[max_size +7]; whats with the 7?				G

		Internal Document		documentation		2		1		Specific numbers used for initializers or conditions must have comments associated with them to explain why they were chosen				G

		Concurrency		timing		2		1		Identify methods that are non-thread safe (e.g., those using a static buffer)				G

		Logic / Flow		checking		2		1		Pointer arithmetic is highly discouraged				G

		Logic / Flow		documentation		2		1		Variables without descriptive names or no comments associated with them are highly discouraged				G

		Internal Document		documentation		2		3		The meaning of the comments are unclear				G

		Logic / Flow		checking		2		1		Algorithm allows the pointer to extend past the array's upper bound				G

		Internal Document		documentation		4		1		No commenting				G

		Logic / Flow		assignment		4		1		Initializing strings with a null terminator, some will harcode it in (e.g., string ="\0") but this places two (2) consecutive null terminators in the string				G

		Logic / Flow		assignment		4		1		Initializing variables is scattered throughout the code, there should be one place where all variables are initialized				G

		language Dependency		assignment		3		1		Classes need to have insertion or assignment methods for their data members				G

		language Dependency		documentation		2		1		Standards for class structure is not followed (Class, function, data members)				G

		language Dependency		documentation		2		1		Standard naming conventions are not followed				G

		Logic / Flow		assignment		2		1		code states NULL_STRING="/0" when it should state NULL_STRING="\0" (null terminated)				G

		Logic / Flow		assignment		2		2		variables need to be initialized				G

		Logic / Flow		checking		2		1		there is no check to see if variable exceed another before the for loop is entered				G

		Logic / Flow		checking		2		1		Use strtod() to check for valid C/C++ format number				G

		language Dependency		documentation		3		1		Standards for templates are not being followed, especially where parameters, return values, and exceptions need to be documented in the header file				D

		language Dependency		assignment		4		3		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				G

		Internal Document		documentation		4		1		Postconditions and exceptions are not always stated in the comments				G

		Internal Document		documentation		2		3		Code does not follow what the comments say				G

		Logic / Flow		checking		2		2		Variables are not checked for valid data before critical use				G

		Logic / Flow		documentation		2		2		Methods that do nothing (e.g., return this) should state they do nothing and why				G

		Internal Document		documentation		2		6		Post-conditions are required, lack of comments in general				G

		Logic / Flow		documentation		2		3		Code is used in the form (*ptr).second instead of ptr->second. Is there a reason for this cumbersome syntax?				G

		Logic / Flow		checking		2		9		Checks to determine pointers actually point to valid data before they are used				G

		Logic / Flow		checking		2		1		Does not check if element 0 of the array is defined before its use				G

		Internal Document		documentation		2		3		A complex formula is used to compute the number of bytes, yet there is no comments for explanation				G

		Logic / Flow		algorithm		2		4		Redundant code is a good candiate for a subroutine				G

		Logic / Flow		checking		2		1		The "atoi" function converts strings to integers, but it does not check if the numbers being converted really are integers				G

		Logic / Flow		assignment		2		6		Initialize variables				G

		language Dependency		function		2		1		Files are extremely large and functions are easily hundreds of lines long				G

		Internal Document		documentation		2		1		Proprietary system calls provided by the operating system requires commenting and tracking				G

		Logic / Flow		algorithm		2		1		String literals representing types of pakets to be generated are used to control the flow of execution of the program. Polymorphism would be a much cleaner way of outputting specific code by packet type				G

		Logic / Flow		checking		2		1		The getenv() function is called several times, assigning its result to a string literal. There is no checking to see if the getenv() function call is successful or not (meaning the environment variable is not defined)				G

		Logic / Flow		checking		2		1		Objects are in danger of having multiple objects created without recovering them (memory leaks using Mutexing))				G

		Internal Document		documentation		2		1		Numbers embedded in the code need to be defined why the value was chosen and the value should be assigned to a constant variable and the variable used throughout the code				G

		Logic / Flow		checking		2		1		Performing type copnversions using the old C style casts should use the C++ style static_cast to enhance type safety in the run-time code				G

		Logic / Flow		assignment		2		1		Masking literals need to be named to constants (e.g., 0x800000000)				G

		Logic / Flow		checking		3		3		Initialize methods have no error checking to guarantee the variables have been properly initialized				F

		Internal Document		documentation		3		9		Arguments to methods do not have comments associated with them concerning their valid values				F

		Logic / Flow		checking		2		2		Dereferencing pointers without checking them first				E

		Logic / Flow		checking		2		1		No checking method returns for failure status				E

		Logic / Flow		documentation		2		1		Commenting states specific error messages can be generated, however the code does not reflect this				E

		Logic / Flow		documentation		2		2		Comments do not reflect the code				E

		Logic / Flow		checking		2		1		C++ automatically converts enums to integers, which allows for a wide range of values				E

		Logic / Flow		documentation		2		1		It is unclear what meaning "<" can have for a bit vector				E

		Logic / Flow		assignment		2		1		variables not being initialized, especially constants				E

		Logic / Flow		checking		2		1		Method accesses a buffer but has no idea of its length, its possible this method could overrun the buffer				E

		Concurrency		checking		3		1		Read and write priveledges on files need to be examined				F

		Internal Document		documentation		3		1		Preconditions are not stated in the comments of methods				F

		Concurrency		timing		3		1		Non-critical memory regions may be locked into physical memory and not swapped out as necessary. Unneccesary resources are consumed				F

		Logic / Flow		assignment		3		2		enums should only be used to define lists of named entities, not as integers. This raises the complexity of maintenance				F

		Logic / Flow		function		3		1		Class variables must be defined by the class and not by some external entity. There is no guarrantee that these variables will be redefined or undefined				F

		Internal Document		checking		2		1		Code dependent on specific operating system specs (e.g., size of an int) may cause errors in future implementations on other machines				E

		Logic / Flow		assignment		3		1		Member variables not initialized in the Constructor				F

		Internal Document		documentation		3		1		Commenting is confusing				F

		Logic / Flow		checking		3		2		Return warnings upon successful termination				F

		Internal Document		documentation		3		1		Comments conflict with the code				F

		Concurrency		timing		3		1		Using static variables for error values leaves multi-threaded applications with no reliable error checking				F

		Logic / Flow		algorithm		3		1		Errors should be past back through the argument list				F

		Logic / Flow		function		3		1		Define where System Messages are to be propogated				F

		Concurrency		timing		3		1		Multi-threaded code must use thread safe constructs				F

		Internal Document		documentation		2		3		Commenting is confusing				F

		Logic / Flow		assignment		2		2		Assertions need to be added to ensure all variables used in this routine are properly initialized				F

		Internal Document		checking		2		1		Preconditions need to be used, callers of the routine need to be aware of what needs to be set				F

		Logic / Flow		assignment		2		1		Enums should be integer constants to make their meaning clearer				F

		Logic / Flow		checking		2		3		Dereferencing pointers without checking them first				F

		language Dependency		checking		2		1		The destructor for this class needs to be virtual since there are virtual methods in the class. Memory leaks and other resource leaks could occur.				F

		language Dependency		algorithm		2		1		The "&=" operator is used with booleans. Bit manipulation should not be used with booleans. Bit manipulation should give the correct result in this case but it is confusing and probably slower than logical operations				F

		Internal Document		documentation		3		4		Comments are confusing				F

		Logic / Flow		checking		3		1		An enum is used where integer constants are implied				F

		Logic / Flow		checking		3		2		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		checking		3		1		Vectors are used without checking the bounds nor if there are values in the vector				F

		Logic / Flow		function		3		1		String classes are used in conjunction with C style string functions				F

		Logic / Flow		assignment		3		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Logic / Flow		documentation		3		1		Constants need to have comments				F

		Logic / Flow		checking		2		1		Variables need to be checked to ensure they are within the bounds of an 8-bit unsigned number, otherwise truncation occurs (e.g., 0<=var<256)				F

		Logic / Flow		checking		2		1		Pointer is dereferenced without precondition that it has been initialized and no check performed				F

		Logic / Flow		assignment		2		1		Literal numbers should not be hardcoded in, instead name a constant the value of the number and use the constant				F

		Internal Document		documentation		3		1		No postconditions are stated for methods				H

		Internal Document		documentation		3		1		No preconditions are stated for methods				H

		Internal Document		documentation		3		1		Comments are confusing				H

		Logic / Flow		checking		3		4		Incoming pointers need to be asserted non-null (A core dump will occur with no indication of the location or nature of the problem)				H

		Internal Document		documentation		3		2		Variable naming is confusing				H

		Internal Document		documentation		3		3		Comments are unclear				C

		Logic / Flow		checking		3		3		Variables need to be checked for proper values				C

		Logic / Flow		checking		4		1		Variables are used outside of their scope				F

		Logic / Flow		checking		4		2		Method are declared but never used, hence dead code				F

		Internal Document		documentation		4		3		Comments contradict the code				F

		Logic / Flow		assignment		2		6		Variables are not initialized				F

		Logic / Flow		checking		1		1		Variables are passed by value rather than by reference and pointers assigned to this local copy will lose their intended value when the method returns				F

		Logic / Flow		checking		3		1		Variables are not checked for valid data				L

								630

The number of times the issue occurred

Defect Type Chart

		Type		Frequency

		assignment		273

		documentation		161

		checking		126

		algorithm		53

		function		8

		timing		5

		interface		4

		Relationship		0

		Build		0

The number of times the issue occurred

Defect Type Chart

		0

		0

		0

		0

		0

		0

		0

		0

		0

Frequency

Defect Type

Number of Defects

Frequency of Defects

Defect Trigger Chart

		Trigger		Frequency		Percent

		Logic / Flow		340		53.97

		language Dependency		189		30.00

		Internal Document		94		14.92

		Concurrency		6		0.95

		Rare Situation		1		0.16

		Important Note:		The trigger classification can not be deemed one hundred percent reliable.

				The activity that surfaced the defect was not recorded by the defect identification team, so this required

				the authors to attempt to identify which activity was being performed when the defect was found

		Analysis:		Logic / Flow was responsible for identifying 54 percent of the overall defects found

				A few examples of this trigger type are control flow analysis, global entity-cross referencing, object use analysis

				exception propogation analysis, and call dependency analysis

				Language Dependency was responsible for finding 30 precent of the overall defects found

				This trigger type describes activities that deal with analyzing the source code with respect to a specific standard

				and focuses on checking language specific details and compilation concerns

				Internal Document was responsible for finding 15 precent of the overall defects found

				This trigger type searches for incorrect information, inconsistency, or incompleteness within the code and its

				documentation (including comments). This activity is also responsible for assessing how maintainable the code

				will be in its current form

The number of times the issue occurred

Defect Trigger Chart

		0

		0

		0

		0

		0

Frequency

Defect Trigger

Frequency

Frequency of Defect Triggers

VS Charts

		

				Concurrency		Internal Document		Language Dependency		Logic/Flow		Rare Situation

		timing		5		0		0		0		0		5

		checking		1		2		70		53		0		126

		documentation		0		87		62		12		0		161

		assignment		0		4		7		262		0		273

		interface		0		1		3		0		0		4

		algorithm		0		0		44		9		0		53

		function		0		0		3		4		1		8

				6		94		189		340		1		630

VS Charts

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

timing

checking

documentation

assignment

interface

algorithm

function

Defect Trigger

Frequency

Defect Trigger vs Defect Type

IV&V Triggers

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Concurrency

Internal Document

Language Dependency

Logic/Flow

Rare Situation

Defect Type

Frequency

Defect Type vs Defect Trigger

Severity Chart

		IV&V Analysis Level Definitions

		Phase		Activity		Basic		Limited		Focused		Comprehensive		Trigger

		Requirements Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements		x		x		x		x		Conformance

				Validate ability of requirements to meet system needs		x		x		x		x		Conformance

				Verify traceability to and from parent requirements		x		x		x		x		Conformance

				Analyze data/adaptation requirement		x		x		x		x

				Analyze testability, qualification requirements		x		x		x		x

				Analyze data flow, control flow, moding and sequencing		x		x		x		x

				Assess development metrics		x		x		x		x

				Analyze development risks/mitigation plans		x		x		x		x

				Analyze timing and sizing requirements		x		x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform engineering analysis of key algorithms						x		x

				Review/use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Design Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x

				Validate ability of design to meet system needs				x		x		x

				Verify traceability to and from requirements				x		x		x

				Analyze database design				x		x		x

				Analyze design testability, qualification requirements				x		x		x

				Analyze design data flow, control flow, moding, sequencing				x		x		x

				Analyze control logic, error/exception handling design				x		x		x

				Assess design development metrics				x		x		x

				Analyze development risks/mitigation plans				x		x		x

				Review developer timing/sizing, loading engineering analysis						x		x

				Perform design analysis of select critical algorithms						x		x

				Review /use developer prototypes or dynamic models						x		x

				Develop alternative static representations (diagrams, tables)						x		x

				Develop prototype or models								x

				Perform timing/sizing/loading analysis								x

				Apply formal methods								x

		Code Analysis		Verify documentation meets intended purpose, has appropriate detail and all necessary elements				x		x		x		Design Conformance

				Verify Traceability to and from design				x		x		x		Design Conformance

				Verify Architectural design compliance (structure, external I/O, & CSCI executive moding, sequencing & control)				x		x		x		Design Conformance

				Verify supportability and maintainability				x		x		x

				Assess code static metrics				x		x		x

				Verify CSU & CSC level logical structure and control flow				x		x		x		logic

				Verify internal data structures and data flow/usage						x		x		logic

				Verify error and exception handling						x		x		logic

				Verify code & external I/O data consistency						x		x		logic

				Review code compilation results & syntax checking						x		x

				Verify correct adaptation data & ability to reconfigure						x		x

				Verify correct operating system & run time libraries						x		x

				For select algorithms, verify correctness and stability under full range of potential input conditions								x

				Verify code data compliance with data dictionary								x

				Verify compliance with coding standards								x		language

		Software Test Analysis		Analyze System level verification requirements to verify that test definition, objectives, plans and acceptance criteria are sufficient to validate system requirements and operational needs associated with CCHR Functions		x		x		x		x

				Verify Software Test Plan qualification testing methods and plans are sufficient to validate software requirements and operational needs		x		x		x		x

				Verify test cases traceability and coverage of software requirements, operational needs, and capabilities		x		x		x		x

				Verify software STD test case definition inputs, expected results, and evaluation criteria comply with STP plans and testing objectives		x		x		x		x

				Analyze correct dispositioning of software test anomalies		x		x		x		x

				Validate software test results compliance with test acceptance criteria		x		x		x		x

				Verify trace and successful completion of all software test case objectives		x		x		x		x

				Verify ability of software test environment plans and designs to meet software testing objectives				x		x		x

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes				x		x		x

				Analyze STD procedures for test setup, execution, and data collection						x		x

				Monitor execution of software testing						x		x

				Analyze select CSC test plans, procedures, and results to verify adequate logic path coverage, testing of full range of input conditions, error and exception handling, key algorithm stability, and performance in compliance with the design.								x

				Perform life cycle IV&V on software test environment components								x

		System Test Analysis		Analyze ST Plans to verify that test definition, objectives, verification method (I-A-D-T) and acceptance criteria are sufficient to validate system requirements and operational needs

				Verify test case traceability and coverage of system requirements, operational needs, and capabilities

				Analyze correct dispositioning of software test anomalies

				Validate ST results compliance with test acceptance criteria

				Verify trace and successful completion of all ST case objectives

				Verify regression tests are sufficient to determine that the software is not adversely affected by changes

System test analysis activities are applied independent of IV&V Analysis Levels

Defect Type

		Severity		Frequency

		One		2

		Two		109

		Three		505

		Four		14

		Five		0

		Severity		Description

		One		Prevent the accomplishment of an essential capability

				Jeapordize safety, security, or other requirements designated critical

		Two		Adversely affect the accomplishment of an essential capability and no work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, and no work-around solution is known

		Three		Adversely affect the accomplishment of an essential capability but a work-around solution is known

				Adversely affect technical, cost or schedule risks to the project or life cycle support of the system, but a work-around solution is known

		Four		Result in user/operator inconveniences but does not affect a required operational or mission essential capability

				Result in inconvenience for development or maintenance personnel, but does not affect accomplishment of these responsiblities

		Five		Any other affect

The number of times the issue occurred

Defect Type

		0

		0

		0

		0

		0

Frequency

Severity

Frequency

Defect Severity

ODC Triggers

		Orthogonal Defect Classification

		The selection of the defect type captures the nature of the change

		Defect Type		Description		Examples

		Function / Class / Object		The error should require a formal design change, as it affects significant capability, end-user features, product interfaces, interface with hardware architectures, or global structures. The error occurred when implementing the state and capabilities of		A database did not include a field, although the requirements specified it

						A database included a field but it was to small to contain possible values

						A class was omitted during system design

						An object was not instantiated before being accessed by other objects of the system

		Assignment / Initialization		Value(s) assigned incorrectly or not assigned at all; but note that a fix involving multiple assignment corrections may be of type Algorithm		Internal variable or variable within a control block did not have correct value, or did not have any value at all

						Initialization of parameters

						Resetting of variable's value

						The instance variable capturing a characteristic of an object is omitted

						The instance variables that capture the state of an object are not correctly initialized

		Interface / OO Messages		Communication problems between modules, components, device drivers, objects, functions vi macros, call statements, control blocks, parameter lists		A database implements both insertion and deletion functions, but the deletion interface was not made callable

						The interface specifies a pointer to a number, but the implementation is expecting a pointer to a character

						The OO message incorrectly specifies the name of the service

						The number and/or types of parameters of the OO message do not conform with the signature of the requested service

		Checking		Errors caused by missing or incorrect validation of parameters or data in conditional statements. It might be expected that a consequence of checking for a value would require additional code such as a do while loop or branch. If the missing or incorrec		Value greater than 100 is not valid, but the check to make sure that the value was less than 100 was missing

						The conditional loop should have stopped on the ninth iteration, but it kept looping while the counter was <=10

						Is there checking or debugging code that is left in the function that shouldn't be

		Timing/Serialization		Necessary serialization of shared resource was missing, the wrong resource was serialized, or the wrong serialization technique was employed		Serialization is missing when making updates to a shared control block

						A hierarchical locking scheme is in use, but the defective code failed to acquire the locks in the prescribed sequence

		Relationship		Problems related to associations among procedures, data structures and objects. Such associations may be conditional		The structure of code/data in one place assumes a certain structure of code/data in another. Without appropriate consideration of their relationship, program will not execute or it executes incorrectly

						The inheritance relationship between two classes is missing or incorrectly specified

						The limit on the number of objects that may be instantiated from a given class is incorrect and causes performance degradation of thsystem

		Build/Package/Merge		Describe errors that occur due to mistakes in library systems, management of changes, or version control

		Documentation		Errors that affect both publications and maintenance notes		Function does not have sufficient commenting or it does not describe the code accurately

						Are variables described when declared

						Variable naming conventions do not follow the standard or are not descriptive

		Algorithm / Method		Efficiency or correctness problems that affect the task and can be fixed by (re)implementing an algorithm or local data structure without the need for requesting a design change. Problem in the procedure, template, or overloaded function that describes a		The low-level designcalled for the use of an algorithm that improves throuput over the link by delaying transmission of some messages, but implementation transmitted all messages as soon as they arrived. The algorithm that delayed transmission was missin

						The algorithm for searching a chain of control blocks was corrected to use a linear-linked list instead of a circular-linked list

						The number and/or types of parameters of a method or an operation are incorrectly specified. A method or an operation is not made public in the specification of a class

IV&V Methodology

				Triggers		Explanation		Examples

		Inspection		Design Conformance		The document reviewer or the code inspector detects the defect while comparing the design element or code segment being inspected with its specification in the preceding stage(s). Faults largely related to the completeness of the product being designed wi		The code didn't implement the case when no data exists

								On one screen, all font is bold while in another it is not

				Logic / Flow		The inspector uses knowledge of basic programming practices and standards to examine the flow of logic or data to ensure it is correct and complete		Memory in this subroutine needs to be allocated before storing these values

								A value assignment is spelled incorrectly

				Lateral Compatibility		The inspector with broad-based experience, detects an incompatibility between the function described by the design document or code, and other systems, products, services, components, or modules with which it must interface		A graphics application was not able to read a gif file put out by some other application package it is supposed to work with

				Backward Compatibility		The inspector uses extensive product/component experience to identify an incompatibility between the function described by the design document or the code, than that of earlier versions of the same product or component or with n to n+1 (subsequent release		The install option in the current product hard codes the drive for the install whereas the previous version just used the current drive

								The previous version defaulted to 0 decimal places for numeric data but the current defaults to 2 decimal places

				Concurrency		The inspector is considering the serialization necessary for controlling a shared resource when the defect is discovered. This would include serialization of multiple functions, threads, processes, or kernel contexts as well as obtaining and releasing lo		Routine A didn't release the lock before calling routine B which requests the lock

								This variable incorrectly reset to 0 by routine A after routine B had already incremented it

				Internal Document		There is incorrect information, inconsistency, or incompleteness within internal documentation. It has to do with overall completeness of the design and ensures that there is consistency between the different parts of the proposed design or implementatio		The prologue for subroutine A lists only 3 parameters when there are actually 4

				Language Dependency		The developer detects the defect while checking the language specific detatils of the implementation of a component or a function. Language standards, compilation concerns, and language specific efficiencies are examples or potential areas of concern		The inspector is checking C code and sees a "=" that should be "=="

				Side Effect		The inspector uses extensive experience or product knowledge to foresee some system, product, function, or component behavior which may result from the design or code under review. The side effects would be characterized as a result of common usage or co		While looking at a pointer that accesses data by byte, the inspector realizes in another part of the code, the bytes could be in reverse order, so that the pointer won't be accessing them correctly

				Process		The inspector uses experience and best practices to identify issues within the development activities		The developing organization has not institutionalized a standard development practice

								The developing organization has not identified any tools or have not identified the appropriate tools to aid in the development of the system

				Rare Situations		The inspector uses extensive experience or product knowledge to foresee some system behavior which is not considered or addressed by the documented design or code under review, and would typically be associated with unusual configurations or usage. These		Requirements state that a network can handle 250 machines. A bug occurs when a customer has 1000 machines. This is not workload stress because the requirements state that only 250 machines are currently able to be accomadated

		Unit Test		Simple Path		In white/Gray Box Testing, the test case that found the defect was executing a simple code path related to a single function		Tried executing the "default" path of a case statement but since it didn't exist, the test failed

				Complex Path		In White/Gray Box Testing, the test case that found the defect was executing some contrived combinations of code paths related to multiple functions		Path failed because one function released memory that subsequently was used in another function

								Path failed because a global variable is being accessed and incremented in multiple functions

		Function Test		Test Coverage		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function, using no parameters or a single set of parameters		The tester tried to delete a city from the database but it couldn't be deleted

				Test Variation		During black box testing, the test case that found the defect was a straightforward attempt to exercise code for a single function but using a variety of inputs and parameters		When the tester tried to add one more character than the maximum allowable, the software hung

				Test Sequencing		During black box testing, the test case that found the defect executed multiple functions in a very specific sequence		The test case first added a record, then deleted it, and then tried to add it again but got the message that you cannot add a record that already exists

				Test Interaction		During black box testing, the test case that found the defect initiated an interaction among two or more bodies of code. This is more involved than a simple serial sequence of the executions		Cant add data to fields after the record has been created

		System Test		Workload Volume/Stress		The system is operating at or near some resource limit		When the system is idle for 10 minutes it hangs

				Recovery/Exception		The system is being tested with the intent of invoking an exception handler or some type of recovery code		Unexpected errors get converted to to other types of errors instead of the expected one

				Startup/Restart		The system was being initialized or restarted		After pulling the plug on the cpu, the system was unable to restart until certain files were cleaned up

				Hardware Configuration		The system is being tested to ensure functions execute correctly under specific hardware configurations

				Software Configuration		The system is being tested to ensure functions execute correctly under specific software configurations

				Blocked Test Execution		The product is operating well within resource limits and the defect surfaced without any particular strategy		Wanted to check for workload stress by printing 1000 jobs. However, when Print was selected, nothing happened

Template

		IV&V: A Life Cycle Engineering Process for Quality Software

		Robert O. Lewis, 1992, John Wiley & Sons, Inc.

		Code Verification Activities

		Phase		Activity		Notes		ODC Trigger

		Documentation Review		Verify consistency between the code and the software design document (SDD)		Are the documents and the code meeting the intended purpose?		Design Conformance

						Is the technical content consistent, complete, clear, correct, and testable?

						The goal is to find discrepancies between the SDD and the Code

		Process Review		Verify the specified standards and practices are being followed		These are specified in the Software Development Plan (SDP)		Process

						Must look at a system level as well as individual units

						Assess the developer's metrics program

						Verify developer's processes meet applicable standards

				Verify the developer is using specified coding tools		Simple check to ensure the appropriate tools are being used

				Verify versions of the compiler, operating system, and utilities		IV&V looks for any inconsistencies and stays coordinated with the developer's configuration management organization		Language Dependency

				Review software library and release/version control		Monitor the developer's control and release procedures, adherence to scheduled events, completeness of the product and consistency with which the release occurs		Process

		Code Review		Verify the logical structure and syntax with static analysis		control flow analysis		Logic / Flow

						standards analysis (coding standards)		Language Dependency

						global entity cross-reference: representation clause, entity cross-reference, type/object cross-reference, type dependency, exception cross-reference, generic instantiation		Logic / Flow

						Object use analysis		Logic / Flow

						exception propogation analysis		Logic / Flow

						call dependency analysis: invocation cross-reference, invocation bands, compilation unit dependency		Logic / Flow

						verify the code is maintainable		Backward Compatibility

						source code data collection and assess metrics		Rare Situation

				Verify terms between data dictionary and code		compare the entries in the data dictionary to the element names appearing both in the code and in the interface, global, and local data definitions in the SDD		Internal Document

						This activity ensures consistency among the three items that share the data definitions

				Verify sample input and output data		During development, it is customary for the developer to generate sample input data that are representative to the actual input data. Coincidentally, the system generates output data that have a correlation to these particular inputs.		Rare Situation

						IV&V checks to make sure the developer is adequately identifying and archiving I/O data and that the correct input data are specified for particular tests

				Verify algorithms per the software design document (SDD)		Ensure the consistency between the algorithms in the code and those defined in the SDD to determine if they are accurately and completely implemented		Design Conformance

						Verify any timing contraints required		Concurrency

CLCS Modules

		The Defect Type you wish to search for		Where to look		How to detect		Explanation

		Documentation		Readability		Line length exceeding 79 characters

						Brackets and indentations in the wrong place

						Class structure (class, functions, and then data members)

				Data Declarations		Variables must have comments the first time they are used

						Are the units on the data declarations commented

						Are the ranges or limitations of values defined for the variables

						Are flags documented to the bit level

						Has each global variable been commented where declared

						Are counters and MAGIC numbers commented

						Identifiers must have clear names

				Methods		Methods must have comment headers explaining their behavior, parameters, return values, pre and post-conditions, and exceptions they can throw

						Comments must accurately describe the code

						Variables local to the method must follow the conditions stated in Data Declarations

						Methods that do nothing (e.g., return this) need to be commented that they do nothing and the reason

				Control Structures		Is each control structure commented

				General		Comment percentage		See the worksheet entitled OO Metrics for Comment Percentage remarks

						Does each file have a header

						Error and message propogation must be clearly identified

						Revisions need comments that identify the author, date, and description of the revision

						Complex code requires comments		See the worksheet entitled OO Metrics for Comment Percentage remarks

		Assignment		Pointers		Set to NULL or 0 (zero) after deleting memory it points to

						Avoid Pointer arithmetic

				Variables		Initialize variables

						All initialization needs to be done in one place

						Initializing strings by hardcoding in "\0" will place 2 null terminators

						MAGIC and hardcoded literals need to be assigned to a constant

				Operators		"&=" should not be used with booleans		May yield a correct results but it may be slower than logical operators

				Class		Must have assignment methods for their data members

		Checking		include guards are omitted

				Delete debugging code

				Code dependent on specific operating system specs (e.g., size of int) may cause future porting issues

				Constructs		switch constructs with empty case statements

						switch constructs with no default clauses

						switch constructs with no break statements

						if statements contain empty else clauses

						Vectors and arrays must check their bounds

						vectors and arrays must check their index being referenced does in fact contain valid data

						Before loops are entered the code does not check if variable exceeds another

				Comparison		if conditionals using "=" instead of "=="

						constants must appear on left side of comparison operators

				Pointers		must check they point to something before they get dreferenced

				Data		variables declared as 8-bit unsigned int must check they don't go out of range (0<=var<=256)

						Where strings get converted to other formats (e.g., integers) you must check that the string first contains a valid conversion type

						Variables that are used outside their scope

				Methods		return values must be checked

						must check their parameters

						must assert() all variables used

						get rid of methods that are never used (dead code)

						Status of routine execution is not returned

				Interfaces		Public member functions must always return const handles to data members

		Algorithm		The use of certain functions

				Main must be a separate file

				Virtual functions must have virtual destructors

				Define a copy constructor and operator= for private data members of a class

				Redundant code is a good candiate for a subroutine

		Function		Variables		Global variables can cause collision

				Files		Extremely large

				Methods		Extremely large, they are easily hundreds of lines long

		Timing		Threads		Multithreaded code must use thread safe constructs

Highlites mean I will provide a stylesheet as an example.

OO Properties "Riel"

		Module		Issues		Identifier		Metrics

								KSLOC		Complexity		Perf / Op		Safety		Devp Cost / Sched		Maturity		Reqts Def / Stability		Testability

		All System Software		1		A

		CLCS System (CLCS)		1		B

		Cmd Suppt CSCI (Cmd Mgmt CSC)		6		C		4.00

		Cmd Suppt CSCI (All CSCs)		2		D

		Cmd Suppt CSCI (Cmd Auth CSC)		11		E

		Cmd Suppt CSCI (Cmd I/F CSC-Comm Funct)		180		F		2.50

		Cmd Suppt CSCI (Cmd I/F CSC-Packet Funct)		73		G		10.00

		Cmd Suppt CSCI (Cmd Mgmt CSC)		47		H

		Cmd Suppt CSCI (Cmd Mgmt CSC-FDAT Funct)		63		I		2.00

		Data Distribution CSCI (Constraint Mgmt)		72		J		15.40

		Data Distribution CSCI (Data Distribution)		50		K		66.00

		Data Distribution CSCI (Data Fusion)		1		L		12.00

		Data Distribution CSCI (Data Health)		118		M		19.00

		Not Defined		4		N

		System Services CSCI (IPC CORBA CSC)		1		O

								130.90

OO Metrics

		Heuristics Summary

		The following heuristics are taken from Object-Oriented Design Heuristics by Arthur J. Riel

		Chapter		Topic		Heuristic

		2		Classes & Objects		All data should be hidden within its class

						Users of a class must be dependent on its public interface, but a class should not be depndent on its users

						Minimize the number of messages in the protocol of the class

						Implement a minimal public interface which all classes understand (e.g., operations such as COPY (deep versus shallow), equality testing, pretty printing, parsing from ASCII description, et cetera)

						Do not put implementation details such as common-code private functions into the public interface of a class

						Classes should only exhibit nil or export coupling with other classes (e.g., a class should only use operations in the public interface of another class or have nothing to do with that class

						A class should capture one and only one key abstarction

						Keep related data and behavior in one place

						Spin off non-related information into another class (e.g., non-communicating behavior)

						Be sure the abstraction that you model are classes and not simply the roles objects play

Effective Coding

		TOOM Metric		Description

		cyclomatic complexity		Used to evaluate the application of the algorithm. The number generated represents the total number of independent test paths (= edges – nodes + 2). The lower the complexity results in a decrease in testing and an increase in understandability of the

		lines of code		LOC: counts all lines; NCNB: counts all lines not comments and not blank; Executable Statements: counts all executable statements; Comments: counts all the comments

		comment percentage		Calculated by taking the total number of on-line and stand-alone comments and divide by the total lines of code less the number of blank lines. A high percentage gives an increase of understandability and maintainability		Literature makes claim that there is a correlation between comment percentage and the degree to which the code becomes highly maintainable. Specifically, they say a higher comment percentage (~20-30%) decreasing the testing efforts, increases understanda		Projects sometime adopt a standard such as "programs must have one comment at least every five lines." This standard addresses the symptom of programmers' not writing clear code, but it doesn't address the cause. The number of comments, however, will be		One study found that areas of source code with large numbers of comments also tended to have the most defects and to consume the most development effort. The authors hypothesized that programmers tended to comment difficult code heavily. "An Experimental		Since comments assist developers and maintainers, higher comment percentages increase understandability and maintainability. "The Object Oriented Brewery: A Comparison of Two Object Oriented Development Methods", Robert Sharble and Samuel Cohen, Software

		weighted methods per class		A count of all methods implemented in the class or calculated by summing the methods’ complexities and generates one complexity for the class. The number of methods and their complexity give an idea of how much time and effort will be required to develop

		response for a class		A count of all the methods that can be invoked by a message from a class

		coupling between objects		A count of the number of other classes to which a class is coupled

		depth in a tree		The depth of a class within the inheritance hierarchy is the number of steps from the class node to the root of the tree

		number of children		The number of immediate subclasses subordinate to a class in a hierarchy

		McCabe Metrics		Description

		Cyclomatic Complexity (v(G))		The maximum number of linearly independent paths through a module of code. It measures the amount of testing necessary to reasonably guard against errors. To compute follow these steps:
a) Draw the module’s flowgraph
b) Compute v(G) using one of three m

		Actual Complexity (ac(G))		The actual number of independent paths tested during the test phase. The number of distinct, realizable paths; paths that can be traversed with real data.
Usage: if ac(G) < v(G) → v(G) may be able to be reduced to v-ac; it also tells when the minimum nu

		Module Design Complexity (iv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to calls to other modules. To compute just remove all conditions that do not involve calls to other modules and then compute v(G) on this new flowgraph

		Essential Complexity (ev(G))		A measure of the degree to which the module contains unstructured constructs. It is equal to the cyclomatic complexity of the reduced flowgraph. Removing all structured constructs does the reduction.Usage: Quantifies the degree of structuredness, reveal

		Pathological Complexity (pv(G))		A measure of the degree to which the module contains extremely unstructured constructs. The measure of a reduced flowgraph where all unstructured constructs except multiple entries into loops are treated as straight-line code. Pv(G) is the module’s stru

		Design Complexity (S0)		Measures the amount of interaction between modules. S0 of a design G, is a measure of the decision structure that controls the invocation of modules within the design. It is a quantification of the testing effort of all calls in the design. S0 = Σ iv(Gj

		Integration Complexity (S1)		Measures the amount of integration testing necessary to guard against errors. Each S1 tests validates the integration of several modules. It is computed by S1 = S0 – n + 1 (where n is the number of modules in the design and S0 is the design complexity o

		Object Integration Complexity (OS1)		Quantifies the number of tests necessary to fully integrate an object or class into an OO system

		Global Data Complexity (gdv(G))		Quantifies the cyclomatic complexity of a module’s structure as it relates to global/parameter data. Decision predicates are reduced that do not impact data that is either global or is passed as parameters to the module. Specific Data Complexity sdv(G)

		Line Count		Lines of code, lines of comment, lines of mixed code and comment, lines left blank

		Halstead Metrics		Description

		Program Length		The total number of operator occurrences and the total number of operand occurrences

		Program Volume		The minimum number of bits required for coding the program

		Program Level and Difficulty		Measure the program’s ability to be comprehended

		Intelligent Content		Shows the complexity of a given algorithm independent of the language used to express the algorithm

		Programming Effort		Estimated mental effort required developing the program

		Error Estimate		Calculates the number of errors in a program

		Programming Time		The estimated amount of time to implement an algorithm

Tool for Object Oriented Metrics

Requires further research to determine an accurate correlation

Universal Coding Standards

		Scott Meyers, Effective C++, Second Edition 1998, Addison Wesley Longman, Inc.

		Category		Item		Description

		Shifting from C to C++		2		Prefer iostream.h to stdio.h

				3		Use new and delete instead of malloc and free

		Memory Management		5		Use the same form in corresponding calls to new and delete

				6		Call delete on pointer members in destructors

				7		Check the return value of new

				8		Adhere to convention when writing new

				9		Avoid hiding the global new

				10		Write delete if you write new

		Constructors, Destructors, & Assignment Operators		11		Define a copy constructor and assignment operator for classes with dynamically allocated memory.

				12		Prefer initialization to assignment in constructors

				13		List members in an initialization list in the order in which they are declared

				14		Make destructors virtual in base classes

				15		Have operator= return a reference to *this

				16		Assign to all data members in operator=

				17		Check for assignment to self in operator=

		Classes and Functions: Design & Declaration		19		Differentiate among member functions, global functions, and friend functions

				20		Avoid data members in the public interface

				22		Pass and return objects by reference instead of by value

				23		Don't try to return a reference when you must return an object

				25		Avoid overloading on a pointer and a numerical type

		Classes and Functions: Implementation		29		Avoid returning "handles" to internal data from const member functions

				30		Avoid member functions that return pointers or references to members less accessible than themselves

				31		Never return a reference to a local object or a dereferenced pointer initialized by new within the function

		Inheritance and OO Design		37		Never redefine an inherited non-virtual function

				38		Never redefine an inherited default parameter value

				39		Avoid casts down the inheritance hierarchy

		Scott Meyers, More Effective C++, 1996, Addison Wesley Longman, Inc.

		Category		Item		Description

		Basics		2		Prefer C++-style casts

		Operators		5		Be wary of user-defined conversion functions

				6		Distinguish between prefix and postfix forms of increment and decrement operators

				7		Never overload &&, ||, or ,

		Efficiency		22		Consider using op= instead of stand-alone op

				24		Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI

		Techniques		26		Limiting the number of objects of a class

		Meyers-Klaus Items

		Category		Item		Description

		Constructors/Destructors		13		Avoid calling virtual functions from constructors and destructors

		Assignment

		Implementation		23		Avoid using "..." in function parameter list

User Items

		Universal Coding Standards (Code Wizard Analysis Tool) http://www.atd.ucar.edu/software/wizard/items/items_ucs.htm

		Item		Description

		2		Do not declare protected data members

		3		Do not declare the constructor or destructor to be inline

		4		Declare at least one constructor to prevent the compiler from doing so

		5		Pointers to functions should use a typedef

		6		Never convert a const to a non-const

		7		Do not use the ?: operator

		8		Each class must declare the public, protected, and private sections in that order

		9		In the public section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		10		In the protected section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		11		In the private section, entities shall be declared in the following order: Constructors, Destructors, Member functions, Member conversion functions, Enumerations, and other

		12		If a function has no parameters, use () instead of (void)

		13		If, else, while, and do statements shall be followed by a block, even if it is empty

		14		If a block is a single statement, enclose it in braces

		15		Whenever a global variable or function is used, use the :: operator

		16		Do not use public data members

		17		If a function has any virtual functions it shall have a virtual destructor

		18		Public member functions shall return const handles to member data

		19		A class that has pointer members shall have an operator= and a copy constructor

		20		If a subclass implements a virtual function, use the virtual keyword

		21		Member functions shall not be defined in the class definition

		22		Ellipses shall not be used

		23		Functions shall explicitly declare their return types

		24		A pointer to a class shall not be converted to a pointer of a second class unless it inherits from the second

		25		A pointer to an abstract class shall not be converted to a pointer that inherits from that class

		26		Do not use the friend mechanism

		27		When working with float or double values, use < and ==> instead of ==

		28		Do not overload functions within a template class

		29		Do not define structs that contain member functions

		30		Do not directly access global data from a constructor

		31		Do not use multiple inheritance

		32		Initialize all variables

		33		All pointers should be initialized to zero

		34		Always terminate a case statement with break

		35		Always provide a default branch for switch statements

		36		Do not use the goto statement

		37		Provide only one return statement in a function

Standards

		User Items

		Item		Description

		1		Assign to all member variables in operator= functions

		2		Declare an assignment operator for each class with pointer member variables

		3		Make destructors virtual for all base classes

		4		Avoid breaks in for loops

		5		Do not cast pointers to non-pointers

		6		Do not cast an unsigned pointer to an unsigned int

		7		Do not compare chars to constants out of char range

		8		Declare reference parameters as const reference whenever possible

		9		Write operator delete if you write operator new

		10		Do not call delete on a non-pointer

		11		Avoid do statements

		12		Do not use an enum keyword to declare a variable in C++

		13		Do not check floats for equality; check for greater than or less than

		14		Do not assign to loop control variables in the body of a for loop

		15		Do not assign the dividend of 2 ints to a float

		16		Avoid assignment in if statement condition

		17		Give each if statements an else clause

		18		Initialize all pointer variables

		19		Use capital "L" instead of lowercase "l" to indicate long

		20		Avoid switch statements with many cases

		21		Number of blocks of code per function

		22		Number of global variable references per member function

		23		Number of function calls per function

		24		Number of base classes

		25		Number of data members per class

		26		Number of methods per class

		27		Number of parameters per method

		28		Number of private data members per class

		29		Number of private methods per class

		30		Number of protected data members per class

		31		Number of protected methods per class

		32		Number of public data members per class

		33		Number of public methods per class

		34		Begin boolean type variable names with `b'

		35		Begin class names with an uppercase letter

		36		Begin constant variable names with `c'

		37		Begin class data member names with `its'

		38		Begin double type variable names with `d'

		39		Begin enumerated type names with an uppercase letter that is prefixed by the software element and suffixed by `_t_'

		40		Begin float type variable names with `f'

		41		Begin function names with an uppercase letter

		42		Begin global variable names with `the'

		43		Begin integer names with `i'

		44		Begin `is' function names with bool values

		45		Begin long integer value names with `li'

		46		Prefix variable type pointer names with `p'

		47		Begin short integer variable names with `si'

		48		Begin signed character variable names with `c'

		49		Begin terminated characters' string variable names with `sz'

		50		Begin struct type names with an uppercase letter that is prefixed by software element and suffixed by `_t'

		51		Begin unsigned character type names with `uc'

		52		Begin unsigned integer type variables with `ui'

		53		Begin variable names with a lowercase letter

		54		Return reference to *this in operator= functions

		55		Pass built-in types by value unless you are modifying them

		56		Avoid member variables in the public interface

		57		Do not use a struct keyword to declare a variable in C++

		58		Do not throw from within a destructor

		59		Avoid unnecessary casts

		60		Avoid unnecessary "==true"s

		61		Avoid unused local variables

		62		Avoid unused parameters

		63		Avoid unused private member variables

		No Java Standard: This can cause a significant impact to the system. Code developed for a large scale project must be maintainable, portable, and follow consistent programming style

