Glenn Research Center

Real-time Linux Center Initiative
	[image: image1.png]

John. H. Glenn Research Center
	[image: image2.wmf]

Preliminary Test Plan for

Linux-based Real-time Operating Systems

For Embedded Systems

June 28, 2002

Preliminary Test Plan for

Linux-based Real-time Operating Systems

For Embedded Systems

PREPARED BY:

 June 28, 2002
Kalynnda Berens

Date

Software Assurance Engineer

Science Applications International Corporation

Table of Contents

51
Introduction

51.1
Purpose

51.2
Scope

61.3
Definitions, Acronyms, and Abbreviations

81.4
References

92
Overall Description

92.1
The Linux Operating System

102.2
Real-time Linux Principles

112.2.1
Separate Real-time Kernel

112.2.2
Upgrading the Linux Kernel

122.2.2.1 Preemption

122.2.2.2 Improved Timing

132.2.2.3 Latency

132.2.3
Real-time from User-space Applications

132.3
Real-time Linux Variants

132.3.1
RT-Linux

142.3.2
RTAI (Real-Time Application Interface)

152.3.3
KURT Linux

162.3.4
HardHat Linux

162.3.5
OnCore OS + Linux

172.3.6
Other Commercial Real-time Linux Distributions

172.3.7
Non-Commercial Real-time Linux Distributions

183
Requirements

183.1
General RTOS Requirements

183.1.1
Schedule

183.1.2
Hardware Interface

183.1.3
Communication and Synchronization

183.1.4
Memory Management

183.1.5
Task Management

183.1.6
Timing

183.1.7
Configuration

193.1.8
External Communications

193.1.9
Error Reporting

193.1.10
Embedded Features

193.1.11
File System

193.1.12
Reliability

193.2
Additional Features

193.2.1
User Interface and Debugging Environment

193.2.2
Software Language Interfaces

193.2.3
Software Standards

203.2.4
Software Capabilities

203.2.5
Constraints

214
Tools

214.1
Linux Trace Toolkit

214.2
Dynamic Probes

224.3
Kernel Debugging

224.3.1
kGDB

224.3.2
LKCD

224.4
Benchmarks and Functional Tests

224.4.1
The Linux Test Project

234.4.2
LMBench

234.4.3
Benchmark (K Computing)

234.5
Ballista

244.6
Other Tools

244.6.1
strace

244.6.2
System Call Tracker (syscalltrack)

255
Test Methodology

255.1
Test Environment

255.2
General Procedures

255.2.1
Test Automation, Repeatability, and Logging

255.2.2
OS Configurations

255.2.3
Domain Configurations

255.2.4
Startup Procedures

265.2.5
Pre-test OS Configuration

265.2.6
Test Procedures

265.2.7
Post-test OS Conditions

265.2.8
Test Results

265.2.9
Shutdown/Logging Procedures.

265.3
Demonstration and Usage

275.4
Test Cases

286
Specific Requirements

286.1
Linux Requirements

296.2
VxWorks AE Requirements

316.3
VxWorks Requirements

467
Test Procedure Specification

1 Introduction

1.1 Purpose

This document is a Test Plan (TP) for Linux-based Real-time Operating Systems. Multiple space-related programs currently use commercial off-the-shelf (COTS) RTOSs such as VxWorks as part of the NASA goal to reduce software development time and cost. With cost often a project driver, Linux-based systems are being considered as a possibility, especially for ground-based or low-criticality systems. While Linux itself is not a real-time operating system, several variants provide soft- or hard-real-time capabilities.

Recent, high profile NASA mission failures have underscored the need for highly reliable software. An internal NASA audit showed a lack of verification and validation (V&V)/certification tests for COTS RTOSs as an issue that must be addressed. These operating systems should be tested to the same confidence level as flight critical software applications.

Previous work on the VxWorks operating system was conducted at the Marshall Space Flight Center. The end result of that work was a Verification and Validation Plan for VxWorks [ref. 3]. Currently, the VxWorks AE and VxWorks 5.4 operating systems are being tested at the Glenn Research Center [ref. 4]. To the extent possible, this Test Plan will use requirements and methodology specified by these efforts.

This test plan is part of a task whose goal is to determine the functionality, reliability, and performance characteristics of several real-time Linux variants.

1.2 Scope

This test plan details the real-time Linux-based operating systems that will be tested. The requirements of the operating systems are derived from those specified for the VxWorks operating system, along with Linux-specific additional requirements.

This plan specifies the requirements to be tested, the test strategy, and testing tools that will be used. Test specifications for each Linux-based real-time operating system will be created in a future release.

1.3 Definitions, Acronyms, and Abbreviations

	ANSI
	American National Standards Institute

	AP
	Application Program

	API
	Application Program Interface

	BSD
	Berkeley Software Distribution, University of California at Berkeley

	BSP
	Board Support Package

	COTS
	Common Off The Shelf

	CPU
	Central Processing Unit

	DMA
	Direct Memory Access; refers to a device other than the CPU accessing memory without CPU intervention.

	DoD
	United States Department of Defense

	DOS
	Disk Operating System

	EEPROM
	Electrically Erasable Programmable Read Only Memory

	FIFO
	First In, First Out, relating to Queues.

	FTP
	File Transfer Protocol; standard TCP/IP protocol

	GRC
	Glenn Research Center, NASA

	Host
	The workstation or computer that acts as a software development station, i.e. runs compilers and linkers and provides a debug interface to the target processor.

	IEEE
	Institute of Electrical and Electronics Engineers

	Interprocess
	Refers to communications and data shared between tasks. In this context, tasks are usually resident on the same processor, but this is not required.

	Interprocessor
	Refers to communications and data shared between user or system tasks resident on different processors in a multiprocessor system.

	I/O
	Input/Output

	IP
	Internet Protocol; refers to the Internet addressing and packet definitions which are built upon hardware protocols and then form the basis for all Internet communications programs. This is the interface between the transport layer and physical layer.

	KB
	Kilobytes

	KURT Linux
	“Kansas University Real-time” Linux kernel

	Linux
	Open source UNIX-based operating system

	MB
	Megabytes

	MIPS
	Million Instructions Per Second

	ms
	Millisecond

	NASA
	National Aeronautics and Space Administration

	NFS
	Network File System; refers to programs which allow named storage groups (files) to be accessed from network connected devices.

	NVRAM
	Non-Volatile Random Access Memory; refers to RAM which holds a value without being powered.

	OS
	Operating System

	Pipe
	An I/O interface between tasks used for message communications.

	POSIX
	Portable Operating System Interface (IEEE-Std-1003)

	RAM
	Random Access Memory

	Real-time
	When a system’s response to a stimulus is valid for only a short time (typically seconds or less) due to further changes in environment and stimuli it is said to be a real-time system.

	Reliable
	In the context of network communications protocols, reliable refers to transfers for which the sender gets acknowledgement and the receiver checks the order and number of the transmitted packets.

	ROM
	Read Only Memory

	RPC
	Remote Procedure Calls; refers to TCP/IP programming interface to execute subprograms on a remote host.

	RS-232
	Protocol for serial communications.

	RTAI
	“Real-time Application Interface”. Open source real-time Linux variant, similar to RTLinux.

	RTLinux
	Real-time Linux variant from FSM Labs

	RTOS
	Real-time Operating System

	SLIP
	Serial Line Internet Protocol; allows two TCP/IP hosts to connect between serial ports.

	Socket
	An endpoint for network communications between tasks, usually used with TCP/IP protocol.

	Target
	Embedded computer that will execute VxWorks and user programs developed for VxWorks.

	TCP
	Transmission Control Protocol; refers to a ”reliable” network transfer protocol in which user programs may assume the consistency of the data.

	TCP/IP
	Transmission Control Protocol/Internet Protocol; refers specifically to TCP layered onto IP [See TCP], and generally to standard Internet communications.

	Timely
	Refers to a response that occurs soon enough after a stimulus such that the response is still valid for the current environment; refer to Real-time.

	TTY
	Terminal used in serial communications.

	UART
	Universal Asynchronous Receiver/Transmitter, an interface chip to perform serial communications.

	UDP
	User Datagram Protocol; refers to an ”unreliable” network transfer protocol in which user programs are responsible for the consistency of the data.

	UNIX
	Multitasking operating system supporting multiple users originally developed at AT&T Bell Laboratory.

	Unreliable
	In the context of network communications protocols, unreliable refers to transfers for which the sender gets no acknowledgement so that it is unknown whether all or any of the transmitted packets arrived safely.

	V & V
	Verification and Validation

	VME
	VERSAModule Eurocard, refers to the backpanel bus which can be used in multiprocessor architectures.

	VxWorks
	Popular commercial real-time operating system

1.4 References

1. Software Requirements Specification for the VxWorks Realtime Operating System for Embedded Systems, MSFC/Lockheed Martin, September 15, 2000

2. Plan and Approach for Verification and Validation of the VxWorks Realtime Operating System, MSFC/Lockheed Martin, November 15, 2000

3. Plan for Verification and Validation of the VxWorks Realtime Operating System, MSFC/Lockheed Martin, January 31, 2001
4. VxWorks AE Software Evaluation Test Plan, CAU VxWorks AE Evaluation Project, GRC, January, 2002
5. IEEE-Std-829-1998: IEEE Standard for Software Test Documentation

6. RTAI Programmer’s Manual, DIAPM (Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano) Real Time Application Interface (for Linux), included in version 24.1.7 of RTAI
7. KURT-Linux User’s Manual, Dinkel, Niehaus, et.al., University of Kansas, March 29, 2002
2 Overall Description

2.1 The Linux Operating System

Linux is an open source operating system kernel designed for a multi-user platform. It is the “free” equivalent of the UNIX operating system (OS). The term “Linux” is commonly used to encompass both the kernel and the set of software applications produced by the Gnu project (Free Software Foundation). This operating environment should be referred to as Gnu/Linux.

Standard Linux is the product of a development team lead by Linus Torvalds. Because Linux is open source (i.e. the source code is freely available), many variations exist. These versions attempt to meet a specific need in a particular environment or provide enhancements.

[image: image1.png]Distributions are particular combinations of Gnu/Linux software, perhaps with custom software added to the mix. Red Hat, SuSE, and other “major players” produce distributions for desktop and server systems. Distributions exist for embedded systems as well.

The Linux kernel is one “monolithic” program. The core services must be compiled into it, and cannot be removed once it is executed. However, the kernel allows device drivers and other modules to be loaded and unloaded while the kernel is running. These modules run as if they had been compiled into the kernel. This allows flexibility and expandability. Kernel functions and loadable modules have no memory protection mechanism. Misbehaving functions could overwrite shared data or another function’s code.

Linux processes (applications) use the services provided by the kernel and the loadable modules and drivers. Each process’s memory is protected from other processes. A misbehaving application can trash itself, but cannot affect other applications or the kernel itself.

The standard Linux kernel does provide limited soft real-time scheduling capabilities. The timing resolution of an unpatched kernel is 10 milliseconds (10 ms). This resolution may be adequate for some soft real-time systems. There is no strict priority-based scheduling of processes. The majority of Linux processes are scheduled as “SCHED_OTHER”, which is the default time-sharing scheduling policy. This leads to a fair system, where no one process or set of processes dominates to the exclusion of the others. Processes can also be scheduled with a “round robin” policy, cooperatively or with time slicing. Any “SCHED_FIFO” (cooperative round robin) or “SCHED_RR” (maximum run time per processes) preempts a regular Linux process.

Latency can be defined as the elapsed time (delay) between the generation of an event and its realization. In a real-time system, latency must be a known and bounded quantity, and should be as low as possible. In Linux, the latency is dependent of the processes involved, and is not deterministic. Ingo Molnar identified six sources of latency in the Linux kernel:

· Calls to the disk buffer cache

· Memory page management

· Calls to the /proc file system

· VGA and console management

· The forking and exits of large processes

· The keyboard driver

Not all of these sources are applicable to the embedded domain. In particular, there may not be a keyboard or display system. However, the majority of these latency sources are found in real-time embedded systems. Their presence in the standard Linux kernel makes it unacceptable for all but soft real-time tasks.

Non-real-time device drivers are another source of non-deterministic behavior in Linux. Device drivers may use a “busy-wait” instead of a timer interrupt while waiting for an event to occur. This prevents Linux from doing other tasks, and will impact the ability to service real-time tasks effectively. Device drivers may also hold resources longer than strictly necessary.

Memory allocation is not deterministic in Linux. The length of time from a request for memory until the memory is provided to the task will depend on how fragmented the memory pool is. Code and data may be swapped out of physical memory to disk if the total memory requirement of all tasks is larger than the available physical memory.

The proc file system is used by Linux as a user interface to what is going on inside of the Linux kernel. Accessing information in these “files”, however, may have significant overhead in some cases. Because the files are virtual, they are created only when needed.

Patches to the Linux system can improve timing resolution, scheduling latency, and other response aspects of the operating system. The Linux kernel is currently not preemptible, though patches exist for that as well. These patches can be used singly or in combination, and are discussed in more detail in section 2.2.2. The kernel preemption patch will be included in the next version of the standard Linux kernel.

2.2 Real-time Linux Principles

Real-time systems may or may not be embedded systems. Real-time adds the requirement of timeliness to the system. If an event, calculation, or other action is late, it is wrong. The timing does not have to be fast – a real-time system could have the requirement to execute a task exactly at midnight each day. Hard real-time systems have absolute deadlines that must be met. Soft real-time systems have a time tolerance within which the event can occur.

As described in section 2.1, the standard Linux kernel provides only very limited soft real-time capability. Several approaches have been taken to make Linux “real-time”. The results of these approaches may improve the soft real-time capability, create a “firm” real-time system (where nearly all timing events are met), or produce a system capable of meeting hard real-time deadlines.

2.2.1 Separate Real-time Kernel

One way to produce a hard real-time operating system is to not use Linux for the real-time aspects. This approach uses a separate real-time kernel (a dual kernel). The standard Linux kernel (and associated “normal” Linux tasks) is run as the lowest priority process.

[image: image2.wmf]
The real-time kernel inserts a very thin layer between the interrupt-control hardware and the standard Linux kernel. When Linux issues a request to enable or disable an interrupt, the real-time kernel receives the request first. Thus, it controls all interrupt vectors from the start.

Real-time tasks can only use the real-time kernel functions. They cannot use standard Linux hardware drivers or services. This results in the need to learn a new operating system (a downside) and to possibly have dual hardware drivers (real-time and standard Linux).

However, hard real-time performance is possible with this dual-kernel approach. Real-time tasks occur when they are required to, and Linux becomes the idle task, operating when no real-time task needs the system. Linux tasks run essentially in the background, and relinquish the system whenever a real-time task needs it.

Real-time tasks can communicate with regular Linux processors, both through shared memory and a device interface that allows Linux processes to read and write to real-time tasks.

2.2.2 Upgrading the Linux Kernel

Improvements to the Linux kernel itself can produce at least “firm” real-time response. Very tight (fast) timing or hard deadlines will usually require the “separate kernel” approach described above. However, most real-time systems do not require that level of timing determinism. A firm real-time operating system will be adequate for many real-time tasks.

2.2.2.1 Preemption

The standard Linux kernel is currently not preemptible. This will change with the next released (stable) version. The kernel changes that allow preemption are included in the kernel release 2.5.4 (an alpha, or not yet stable, kernel).

Currently, when a kernel task is running, another task cannot preempt it (stop it from running and take control of the CPU). This means that a kernel task might prevent another task from meeting a timing deadline. The maximum time a high-priority, ready-to-run, task might have to wait will therefore depend on what kernel task is executing. This leads to non-deterministic behavior.

The main reason for the inability to preempt a kernel task is shared data structures. Many kernel tasks assume exclusive access to a data structure while they are running. If they were preempted, it is possible that another task might change data that the first task relied on. To prevent this, such shared data must be protected with some form of mutual exclusion, such as a semaphore. This adds timing overhead, which is one reason it was not included in earlier kernel revisions.

The basic idea behind the preemption patches is to create opportunities for the scheduler to be run more often and minimize the time between the occurrence of an event and the running of the schedule() kernel function. The preemption patches do this by modifying the spinlock macros and the interrupt return code so that if it is safe to preempt the current process and a rescheduling request is pending, the scheduler is called.

Adding preemption allows the high-priority task to take control of the CPU when it needs to. This reduces the response latency for a high-priority task and improves the real-time capabilities of Linux. Kernel preemption is used by HardHat Linux (Montavista Corporation), and will be included in the next release of the Linux kernel.

2.2.2.2 Improved Timing

The UTIME patch from the University of Kansas improves the timing capabilities of Linux. Normally, on Intel x86 systems, the timing “heartbeat” (tick) is 10 milliseconds. This defines the minimum time increment within the system. (Note that on other processors, the timing tick may be less.)

One of the ways to increase the temporal granularity of Linux would be to program the timer chip of the PC to interrupt the kernel at higher frequencies. This is not an acceptable solution as the overhead increase due to this is tremendous. For example, if we program the timer chip to interrupt the CPU at 40 micro-sec, the interrupt processing cost is so high there is no time left for any other computation.

The UTIME patch has accomplished the task of programming the timer chip to generate interrupts only when there is some scheduled work that needs to be accomplished. This patch allows the use of microsecond timers.

2.2.2.3 Latency

Another strategy for reducing scheduler latency (instead of kernel preemption) is the low-latency patches, created by Ingo Molnar. Rather than attempting a brute-force approach (ala preemption) in a kernel that was not designed for it, these patches focus on introducing explicit preemption points in blocks of code that may execute for long stretches of time. The idea is to find places that iterate over large data structures and figure out how to safely introduce a call to the scheduler if the loop has gone over a certain threshold and a scheduling pass is needed (indicated by need_resched being set). Sometimes this entails dropping a spinlock, scheduling and then reacquiring the spinlock, which is also known as lock breaking.

One major downside of the low-latency patch is the need to drastically update it with each change to Linux. Because Linux code may change, the patch must be rewritten for each kernel revision. This is a time-consuming proposition.

However, tests have shown that the low-latency patch produces better timing results than the preemption patch, at least in the short run. For a regular Linux kernel, the maximum latency measured was 232.6 ms (milliseconds); the mean latency value was 88 µs (microseconds). The preemption patch reduced the values to a maximum latency of 45.2ms and a mean latency value of 53.8µs. For the low-latency patch, the maximum observed latency was 1.3ms and the mean latency value is 54.2µs.

Both patches (preemption and low-latency) can be combined, for a slight improvement. And over a longer test, the increased number of opportunities for rescheduling that the preemption patch provides were important as the system load increased.

2.2.3 Real-time from User-space Applications

One of the dual-kernel real-time Linux operating systems (RTAI) allows user-level programs (i.e. regular Linux applications) to perform real-time tasks. The LinuX Real-Time (LXRT) module implements services to make available any of the RTAI schedulers functions to Linux processes. With this module, you can share memory, send messages, and use semaphores and timings between Linux applications, between Linux and RTAI applications, and of course between RTAI applications.

The LXRT module with its fully symmetrical API provides a safe and flexible tool to quickly implement hard real-time programs in user space. Once the program is debugged, it can be easily migrated to the kernel for optimal performance if the application demands it. With current CPUs clocked near the 1 GHz mark, the necessity to execute code in the kernel becomes questionable. Also, the advantage of user-space real-time tasks is improved memory protection and access to standard Linux device drivers.

2.3 Real-time Linux Variants

2.3.1 RT-Linux

RT-Linux, from FSM Labs, is a dual-kernel real-time Linux variant. Linux is run as a low-priority task, and can be interrupted by any real-time task. While an open source version of RT-Linux exists, development of a proprietary version is also occurring. RT-Linux is covered by a patent held by FSM Labs.

In RT-Linux, all interrupts (including the timer interrupt used for scheduling) are initially handled by the real-time kernel. The interrupts are passed to the Linux task only when there are no real-time tasks to run. To minimize changes in the Linux kernel, it is provided with an emulation of the interrupt control hardware. Thus, when Linux “disables” interrupts, the emulation software will queue interrupts that have been passed on by the real-time kernel. Real-time and Linux user tasks communicate through lock-free queues and shared memory.

RT-Linux relies on Linux for booting, most device drivers, networking, file systems, Linux process control, and loadable kernel modules. The use of loadable kernel modules allows the real-time system to be extensible and easily modifiable. Real-time applications consist of a combination of real-time tasks that are incorporated in loadable kernel modules and Linux processes that take care of non-real-time activities, such as data logging, display, and network access.

One problem with this approach is that real-time tasks run in kernel space and are not protected from other malfunctioning real-time tasks. The kernel itself is vulnerable to a misbehaving real-time task. The Linux virtual memory processes protect user applications by limiting the ability to write outside of an application’s memory space.

RT-Linux takes a minimalist approach to the real-time kernel. Dynamic resource allocation, complex synchronization, or anything that introduces significant overhead or delays that are difficult to bound, are not allowed in real-time tasks. The tasks have only statically allocated memory, no address space protection, a simple fixed priority scheduler (with no protection against impossible schedules), hard interrupt disabling, shared memory, and a limited range of operations on the FIFO queues connecting real-time tasks to Linux processes.

RT-Linux is currently available for the following architectures:

· x86 (IA32) architectures: AMD, Intel and compatibles, 486 and higher

· PowerPC: 603, 604, 7400, MPC8260, MPC860, IBM 4056P, PowerMac G4, Synergy VGM5

· MIPS: RM7000 and more

· AMD Elan NetSC520

· Alpha (ev6)

2.3.2 RTAI (Real-Time Application Interface)

RTAI, from DAIPM in Italy, is an open source “offshoot” of RT-Linux. It developed from the same source, the NMT-RTL (New Mexico Tech-Real Time Linux) patch to Linux. However, only the scheduler from the NMT-RTL patch was kept. Functions from DAIPM’s internally developed RTOS were added, including semaphores, intertask messages, and timing services.

RTAI uses a hardware abstraction layer (HAL), which isolates the Linux data and functions related to hardware. The HAL defines the interface between RTAI and Linux.

Besides structural differences between RTAI and RT-Linux, there is a philosophical difference. RTAI includes more functionality on the real-time side than RT-Linux. Whereas RT-Linux has chosen to keep the real-time aspects very small, RTAI has added more functionality at that level. RTAI has more “standard” RTOS functions, such as semaphores and messages.

RTAI has also developed the LinuX-RealTime (LXRT) interface, which allows some real-time functions to operate in user mode (and therefore be protected from other applications). LXRT allows you to
· Create and run a real time task from user space.

· Test data flow and interaction from user space.

· Introduce Hard Real Time Systems into a User Task.

RTAI supports several architectures:

· x86 (with and without FPU and TSC)

· PowerPC

· ARM (StrongARM; ARM7: clps711x-family, Cirrus Logic EP7xxx, CS89712)

· MIPS

2.3.3 KURT Linux

KURT (Kansas University Real-Time) Linux modifies the standard Linux kernel to provide microsecond resolution and real-time scheduling capabilities. The modifications used by KURT Linux produce a “firm” real-time system (better than soft, but not able to meet all the demands of a hard real-time system).

The approach used by KURT Linux is to modify (patch) the standard Linux kernel to add:

· Microsecond timing resolution (the UTIME patch). This allows scheduling accuracy in the 10s of microseconds, and even below 10 microseconds depending on the processes. Testing of the KURT Linux system with 1000 real-time tasks produced only a few (< 1%) that executed outside of their scheduled time (+/- 5 microseconds). The maximum deviation was +/- 50 microseconds.

· Scheduling with an explicit timeline (the KURT patch). Each explicit timeline schedule template can have cyclic repetition for continuous execution. KURT Linux runs in one of four modes:

· Focused mode. In this mode, only real-time (RT) processes can run, along with essential Linux kernel functions. KURT Linux runs an idle task if no RT process is set to run.

· Preferred mode. RT processes are given priority in the Preferred mode. The regular Linux scheduler (and thus regular Linux processes) is run when no RT processes are scheduled.

· Mixed mode. RT processes are executed preferentially in mixed mode, but interrupts can be blocked by non-RT process behavior. Some RT tasks (that do not have explicit timing restrictions) run at the same priority as regular Linux tasks.

· Normal mode. Regular Linux operation with no real-time processes. This mode can take advantage of the improved timing resolution.

The primary advantage of this real-time approach is that creating real-time applications does not require learning a new operating system. All real-time applications are also standard Linux applications. As such, the real-time tasks are memory-protected from each other.

The limitations of KURT Linux include:

· Firm real-time only. Tasks that require hard real-time capabilities should not use KURT Linux.

· All real-time tasks at the same priority. There is no hierarchy among the real-time tasks. The “priority” is determined by how they are scheduled. Higher priority tasks are scheduled to run more often.

· Advanced processor required. While standard Linux can run on an 80386, the UTIME patch requires advanced hardware timing capabilities. For the x86 line, a Pentium or above is required (the Time Stamp Counter). The StrongARM processor has similar capabilities, and a port of KURT Linux is available.

2.3.4 HardHat Linux

HardHat Linux, from MontaVista Corporation, is an enhanced embedded Linux. This commercial version makes Linux real-time by adding:

· Preemptible Linux Kernel

· MontaVista Software provides a Linux kernel patch. Through some very basic changes, this patch makes the Linux kernel generally preemptible (with short non-preemptible regions corresponding to the spinlocked regions in an SMP kernel). Process level responsiveness is dramatically improved, both on average and in the worst case. There are no changes whatsoever to Linux API’s or semantics induced by the preemptible kernel patch. The preemptible kernel patch strictly affects the system performance domain.

· The MontaVista Linux preemptible kernel is available and shipping for all supported architectures: PowerPC, x86, MIPS, StrongARM, XScale, SH and ARM.

· The MontaVista Real-Time Scheduler

· The MontaVista Real-Time Scheduler is a fully open, GPL-licensed source code module for Linux. This module for the Linux kernel addresses the serious process selection and dispatch time delays described in the previous section of this document.

· High Resolution POSIX Timers

· MontaVista provides a solution for customers needing better timer resolution than that provided by the standard Linux 10ms tick. In the Carrier Grade Edition of HardHat, they provide timers with microsecond resolution and lower list overhead than standard timers.

Features of HardHat Linux include:

· Enhanced Linux system responsiveness

· Standard Linux APIs and user thread-based programming model

· No second kernel "underneath" Linux

· Number of real-time priorities are reconfigurable

· Sub-millisecond scheduling requirements down to 150 microseconds

2.3.5 OnCore OS + Linux

The OnCore operating system (OS) is a commercial, proprietary system. It is a real-time system, similar to VxWorks. This operating system provides a separate real-time OS, upon which Linux can run. The OS runs in a virtual mode, where all tasks are protected from other malfunctioning tasks. This OS uses a different protection mechanism from VxWorks AE. It uses the Memory Management Unit of a processor to protect all processes from each other.

The OnCore OS is a real-time microkernel. Real-time applications can be written using the native OnCore OS Application Programming Interface (API), or ported from other real-time operating systems.

The OnCore OS can run Linux applications without alteration, via several methods. The Linux application source can be recompiled into an OnCore OS application, where OnCore microkernel calls are made instead of Linux system calls. Binary compatibility with Linux executables is also available. “Linux on Demand”, where the Linux capabilities are launched only when (or if) needed, is the third option.

2.3.6 Other Commercial Real-time Linux Distributions

· TimeSys Linux, from TimeSys. This commercial variant uses RTAI for real-time, and includes other enhancements.

· Embedix, from Lineo. This commercial version uses RTAI as it’s real-time core. In addition, Embedix provides many features useful for embedded development.

· REDICE Linux, from REDsonic. This commercial variant is based on RED Linux. It continues the development of that version, and adds a predictable system scheduler.

2.3.7 Non-Commercial Real-time Linux Distributions

· Rapid Response Linux, from Munich University. This variant is fairly new. It uses the same timing improvements as KURT, and adds a low-latency patch. Preliminary tests show good real-time performance.

· RED Linux, from UC Irvine. This version modifies Linux scheduling. It adds modifications for short kernel preemption and a high-resolution timer. REDICE Linux is a commercial product based on this version of Linux.

3 Requirements

These requirements are mapped to specific requirements in section 6. See that section for detailed requirements that will be verified.

3.1 General RTOS Requirements

The features listed in this section are all requirements for a real-time operating system. They must be present, in some form and to some degree.

3.1.1 Schedule

The Real-time Operating System (RTOS) must provide a mechanism to schedule tasks according to a deterministic algorithm. This may be according to a priority, a deadline, or some other method.

3.1.2 Hardware Interface

An RTOS must provide methods to interface to peripheral hardware. Hardware interrupts must be handled by the RTOS.

3.1.3 Communication and Synchronization

The RTOS must provide interprocess communication and synchronization methods. Processes must be able to exchange information and to synchronize with each other or with external data. This communication and synchronization must take place in a timely, reliable, and deterministic way.

3.1.4 Memory Management

The RTOS must provide processes with the ability to allocate memory and to map physical memory to the address range used by a task (for memory-mapped I/O). Memory allocation should be deterministic, and memory allocated to a real-time task should be prevented from being swapped out by the OS paging mechanism. In addition, an RTOS should provide memory protection features, to prevent a process from accessing memory outside of its assigned range.

3.1.5 Task Management

The RTOS must provide methods to create, suspend and delete tasks. Tasks require methods to change their priority levels, timing constraints, and memory needs. A mechanism to prevent priority inversion is desired.

3.1.6 Timing

Timing for the interrupt latency (i.e. time from interrupt to task run) should be known and predictable. The context switch time (how quickly a task can be saved, and the next task made ready to run) should also be known and predictable. Jitter in latencies should be minimal. The time for each system call (mean and maximum) should be known. The maximum time the RTOS and drivers mask the interrupts should be known. Operating system initialization should take only a short time and be predictable.

3.1.7 Configuration

The RTOS should be configurable, so that only the required services are included. Users should be able to add or replace services within the RTOS. A mechanism to add or remove services while the RTOS is operating is desired.

3.1.8 External Communications

The RTOS should support standard communications methods, such as serial, parallel, and network.

3.1.9 Error Reporting

An error reporting and/or logging method should be included. Users should have the ability to add their own messages to the error log.

3.1.10 Embedded Features

The RTOS should take up a small amount of memory (RAM) and storage (ROM, Flash disk, etc.). The RTOS should be able to be loaded from ROM. The RTOS should be able to be restarted in a known configuration. The capability of a watchdog timer, to restart the system when an error has disabled it, is desired.

3.1.11 File System

The RTOS should provide a file system that can be used to store data. Compatibility with established file systems, especially for removable media, is desired.

3.1.12 Reliability

The RTOS should work well within given constraints (identified by the RTOS provider). The RTOS should be stable, resistant to errors, and able to continue operating under limited hardware failures or degradation.

3.2 Additional Features

3.2.1 User Interface and Debugging Environment

Ease of use can be an important factor in selecting a real-time operating system. When other factors are equal, access to integrated tools, an easy-to-learn user interface, and powerful debugging capabilities may tip the balance in the user’s mind. These productivity-enhancing aspects can help reduce a project’s cost or time to develop and test the software.

Non-commercial versions of real-time Linux (e.g. RTAI) provide the necessary tools, but they are not integrated into a nice “toolkit”. Commercial versions of real-time Linux (e.g. HardHat) provide some of that integration. Linux does provide an assortment of useful tools that can be used to create and debug real-time applications. These tools are discussed in section 4.

3.2.2 Software Language Interfaces

Support for multiple development (programming) languages is desired. The standard languages are C/C++ and assembler. In addition, support for other languages, such as Ada, allows the embedded system developer to select the best language to use for the system.

The Gnu compiler collection (gcc) provides C, C++, Ada, and other language choices. Several assemblers are available for strictly assembly language programs. The use of assembly instructions within a C or C++ program is supported by gcc.

3.2.3 Software Standards

The operating system should conform as closely as possible to the standards, POSIX (IEEE-Std-1003.1) and POSIX Real-time Extensions (IEEE-Std-1003.4). Interfaces that do not conform to POSIX should be documented.

3.2.4 Software Capabilities

The programming language and/or RTOS should provide libraries or functions for at least these capabilities:

· Interprocess communication

· Memory management

· String manipulation

· Math functions

· Bit-wise operations

· File system support

Support for various storage devices (e.g. hard disk, Flash disk, EEPROM, RAM disk) is required of an embedded RTOS. The ability to treat these devices identically (from the user’s perspective) allows for flexibility in the embedded system. File systems that can be used on multiple types of storage devices are preferred.

3.2.5 Constraints

For an RTOS to be useful to NASA Projects, whether space flight or ground-based, the following constraints should be met:

· Executes in multiple processor architectures (e.g. Intel x86, Motorola 68xxx, PowerPC)

· Easily ported to new architectures or boards

· Support most hardware devices that may be used in an embedded system

· Have source code available, for static analysis, customization, fixing problems, or to understand the operating system.

4 Tools

The following tools will be used in the testing process for real-time Linux.

4.1 Linux Trace Toolkit

The Linux Trace Toolkit (LTT) is a full-featured tracing system for the Linux kernel. It includes both the kernel components required for tracing and the user-level tools required to view the traces. LTT has been integrated into RTAI, allowing tracing of RTAI real-time tasks.

LTT is not a debugging tool. It provides users with information regarding the dynamic behavior of their system. This dynamic behavior was previously unavailable using a conventional debugging tool. LTT provides its users with all the information required to reconstruct a system’s behavior during a certain period of time. This allows insight into synchronization problems, task switching, and I/O latencies.

The LTT is composed of four elements:

1. A modified Linux kernel that enables events to be logged.

2. A Linux kernel module that takes care of storing the events into its buffer and signaling the trace daemon when a specified limit of data has been reached.

3. A daemon that writes the data collected by the kernel module.

4. A data recorder that takes the raw trace data and puts it in a human-understandable format, while performing some analysis.

LTT will be used to obtain timing information and to verify scheduling and other operations.

4.2 Dynamic Probes

Dynamic Probes (DProbes) is a debugging facility provided by IBM. Dprobes is a debugging facility that will operate under the most extreme software conditions such as debugging a deep-rooted operating system problem in a live environment. For such inaccessible problem scenarios, Dynamic Probes offers a technique for gathering diagnostic information without the need to build custom modules for debugging purposes.

The Dprobes facility can be used to insert software probes dynamically into executing code modules. When a probe is fired, a user written probe-handler is executed. The probe-handler is a program written in an assembly-like language, based on the Reverse Polish Notation. Instructions are provided to enable the probe-handler to access all the hardware registers, system data structures, and memory.

Some of the unique aspects of the Dynamic Probes facility are:

· Probes can be placed almost anywhere.

· Probes can be placed in any executable code, including the kernel, even in interrupt handlers, kernel modules etc.

· Read access to all the hardware registers and write access to most of them.

· Read/write access to any area in the virtual address space that is currently resident in physical memory.

· Probes placed on an executable program or shared library are active globally under the context of all processes executing it.

· Probes can be placed on programs that are being run under a debugger.

· External debugging facilities (e.g. kdb, crash dump) can be triggered from a probe handler.

· Probes can be placed on specific types of memory accesses using h/w watchpoints.

DProbes can be used with the Linux Trace Toolkit to provide a universal (dynamic) tracing capability for Linux. It is universal because it provides a common tracing mechanism for all executables whether in user or kernel space. It is dynamic because tracepoints are defined and applied dynamically to object modules as probepoints using DProbes - no source code modification is required.

DProbes is currently available only on the IA32 and S/390 platforms

4.3 Kernel Debugging

4.3.1 kGDB

kGDB is a remote kernel debugger. It provides a mechanism to debug the Linux kernel using the popular Gnu debugger, gdb. kGDB is an extension of the kernel that allows a user running gdb on a remote host to connect to a machine running the kGDB-extended kernel. The user can then “break” into the kernel, set breakpoints, examine data, etc. in a very similar way to how one would use gdb on an application program. One of the primary features of this patch is that the remote host running gdb connects to the target machine during the boot process. This allows debugging to begin as early as possible.

kGDB can be used with the modified Linux kernels and with RTAI. RTLinux comes with an equivalent kernel debugger.

4.3.2 LKCD

The Linux Kernel Crash Dump (LKCD) program is designed to provide a reliable method of detecting, saving, and examining system crashes. The LKCD contains kernel and user level code designed to:

· Save the kernel memory image when the system dies due to a software failure;

· Recover the kernel memory image when the system is rebooted;

· Analyze the memory image to determine what happened when the failure occurred.

The memory image is stored in a dump device, which is represented by one of the disk partitions on the system. That dump is recovered with an application called lcrash (Linux Crash) once the system boots back up, and before the swap partitions are mounted. A report is generated and saved into /var/log/dump.

LKCD will be useful for the modified Linux kernels. Its applicability to the RTAI and RTLinux real-time kernels is not certain. It may be possible to modify LKCD for use with either of those real-time operating systems.

4.4 Benchmarks and Functional Tests

4.4.1 The Linux Test Project

The Linux Test Project is a joint project with SGI™, IBM®, OSDL™, and Bull® with a goal to deliver test suites to the open source community that validate the reliability, robustness, and stability of Linux. The Linux Test Project is a collection of tools for testing the Linux kernel and related features.

The Linux Test Project suite is a collection of tests. There are three main scripts used to execute the tests:

· The "runalltests.sh" script runs all the kernel tests in sequential order.

· The "diskio.sh" script runs the stress_floppy and stress_cdrom tests.

· The "network.sh" script runs all the network tests in sequential order.

You can run any one of these scripts individually or at the same time. To obtain reliability and robustness results, run all three scripts concurrently and continuously.

A recent analysis of the code coverage shows that this test suite poorly covers some parts of the Linux kernel. Coverage ranges from 0% to as high as 47.8%. In no case were all statements within a kernel subsystem exercised.

This test suite can still provide valuable information, especially for the modified Linux kernels. The extent of its usefulness for RTAI and RTLinux will be evaluated.

4.4.2 LMBench

LMBench is a suite of simple, portable benchmarks that can be used to compare the performance of different UNIX-based systems, including Linux. Each system is a combination of the operating system and the underlying hardware.

LMBench consists of the following benchmarks:

· Bandwidth benchmarks
· Cached file read

· Memory copy (bcopy)

· Memory read

· Memory write

· Pipe

· TCP

· Latency benchmarks

· Context switching.

· Networking: connection establishment, pipe, TCP, UDP, and RPC hot potato

· File system creates and deletes.

· Process creation.

· Signal handling

· System call overhead

· Memory read latency

· Miscellaneous

· Processor clock rate calculation

4.4.3 Benchmark (K Computing)

The Benchmark program, from K Computing, provides benchmarking for user space timers, kernel space timers, RTAI periodic tasks, and RTLinux periodic tasks. K Computing also offers a simple program (bench.c) that tests the responsiveness of nanosleep(). It is intended to compare preemptible kernel solutions.
4.5 Ballista

The Ballista® Project is a COTS Software Robustness Testing approach and test suite, originally created by a DARPA-funded research project. The Ballista® automated robustness testing approach probes software to see how effective it is at exception handling. For example, Ballista testing can find ways to make operating systems crash, and can make other software packages suffer abnormal termination instead of gracefully returning error indications.

.
The Ballista testing approach is both scalable and portable across a wide variety of application domains. No behavior specification is required for testing - the implicit specification of “doesn’t crash; doesn’t hang” suffices. Additionally, tests are created based on the data types of the parameter list rather than based on module functionality, exploiting the fact that in most APIs there are fewer data types than functions/calls.

Originally developed as an internet-based service, a stand-alone version of the Ballista testing tool can be downloaded under GPL. The Ballista testing tool tests for exceptional condition handling effectiveness. The testing tool comes with the source code for not only the tests, but also the tools we used to create those tests. So, a knowledgeable user can modify the tests or extend them to test other functions/APIs. To use the service, the parameter signature information for the software component to be tested is compiled to form a test harness module, and links this harness to the software component to be tested. The tools use C++ for the test harness, but can be used to test any linkable component.

After the test tools exercise some combinations of input values for the software component under test, they analyze the robustness results and prepare a list of specific, reproducible test cases that cause the component to exhibit robustness failures (crashes and hangs).

The publicly distributed test tool includes predefined data types and other definition files to test common operating system calls and C library functions. The tests are extensible, although doing so requires substantial knowledge and is not intended for computing novices.

The POSIX test suite for Ballista can be, and has been, used with the Linux operating system. It will be used to test the modified Linux kernels. It may be used with RTAI and RTLinux, if it can be modified without too much effort for those real-time kernels.

4.6 Other Tools

4.6.1 strace

strace is a program to trace system calls. It is a debugging tool that prints out a trace of all the system calls made by another process/program. The program to be traced does not need to be recompiled, so it can be used on binaries for which there are no source code available.

In order for strace to perform all of its functions, the Linux kernel must be patched.

4.6.2 System Call Tracker (syscalltrack)

The system call tracker (syscalltrack) allows the 'root' user to track invocations of system calls across the Linux system. Rules specify which system call invocations will be tracked, and what to do when a rule matches a system call invocation. Currently, only logging the invocation is supported. In the future, the ability to fail the system call (i.e. force it to return some error code) or suspend the process executing it (e.g. so a debugger could be attached to the process at that point) will be added.

5 Test Methodology

This section describes the test methodology that will be used to verify the real-time Linux variants. It includes general procedures and information relevant to all stages of OS testing.

5.1 Test Environment

The real-time Linux tests are performed at the NASA Glenn Research Center using two separate CPU cards. The hardware to be used for the testing is:

· EP405 from Embedded Planet, with PowerPC 405GP processor on a PC/104 form factor

· SBC2590 from Micro/Sys, with Pentium processor and PC/104-Plus form factor

A laptop running a standard Linux distribution (Mandrake 8.1) is connected to the test cards via an Ethernet network connection and a serial line.

Each real-time Linux variant will be tested first on the SBC2590 Pentium board. Once the tests are complete, each variant capable of running on a PowerPC will then be tested on the EP405 board.

5.2 General Procedures

The following procedures and descriptions are applicable for all stages of testing.

5.2.1 Test Automation, Repeatability, and Logging

Wherever possible, repeated trials of each test will be performed. These tests should be automated, if possible, to ensure the repeatable accumulation of test data. The automation script file name is listed in the test procedure.

In addition, a log file should be generated for each test procedure. The log file will contain whatever console output was generated by the test procedure as well as an indication of the test trial number.

5.2.2 OS Configurations

When possible, each test will be performed for each real-time Linux variant. If a test cannot be performed on a particular variant, that will be noted in the test log along with a reason for exclusion.

5.2.3 Domain Configurations

In general, each test will be repeated with the test module executing within a variety of memory domain configurations. Possible configurations include:

· Test module code within kernel domain only.

· Test module code within independent user partition.

· Test module code distributed between separate user partitions.

· Test module code distributed between user and kernel partitions.

5.2.4 Startup Procedures

Follow the procedures specified in file rtLinux_Start_Procedure_xx.doc, where xx specifies the most recent test procedure revision.

5.2.5 Pre-test OS Configuration

A record of the OS environment prior to the execution of the test module will be obtained for the following OS properties.

· Memory Pools

· Stack Memory

· Resident tasks

· Domain configuration

This information should be recorded within the test log file.

5.2.6 Test Procedures

Each detailed test procedure is documented within a file having the form rtLinux_os_Test_nn_Procedure_vv.doc, where os specifies the OS system used, nn specifies the test number, and vv specifies the procedure version number. os = RT for RTLinux, AI for RTAI, KU for KURT-Linux, HH for HardHat Linux, and ON for OnCore OS.

5.2.7 Post-test OS Conditions

A record of the OS environment after execution of the test module will be obtained for all parameters previously listed in section Pre-test OS Configuration.

5.2.8 Test Results

Test results and observations will be logged within each of the Experimental Results block of each test procedure.

5.2.9 Shutdown/Logging Procedures.

A description of the procedures for system shutdown and retention of test records is described in file rtLinux_Shutdown_Procedure_xx.doc, where xx specifies the most recent test procedure revision.

5.3 Demonstration and Usage

Some of the requirements from the VxWorks verification plan were verified using demonstration or by simply using the software. Those requirements will be verified in the same manner for the real-time Linux variants.

Additional information will be provided, when appropriate, to explain differences between the real-time Linux operating system and VxWorks. Information on setting up the system for loading the real-time Linux operating systems and the test software setup will be included in the final test report.

Test Cases

The approach to verification is a set of black-box tests in the form of real-time Linux processes that will be executed to verify the requirements. Each case is responsible for verifying one or more requirements and reporting pass/fail results and timing information (depending on the requirement). The verification (test) procedures will contain instructions for the execution of each case and for verifying and recording results.

The test tools described in section 4 will be used when appropriate. White-box tests (where the source code is modified and/or where internal values or processes are accessed) will be used where appropriate to verify a requirement.

Timing values will vary with configuration and system load. Whenever possible, the tests will be run with varying configurations and loads to better characterize the timing constraints. Timing tests will be run multiple times in order to obtain accurate results.

Test tasks will be written in the C programming language. The compiler version, switch settings, and other identifying information will be logged for each test task. Instructions for compiling and building the tasks will be found in a procedure document. The procedures may differ for each real-time Linux variant.

Evidence of correct execution will be provided visually through an output screen on the host machine, via serial and/or network connections, or via a log file. This evidence will be noted on the test procedure, and a copy of the log file (on disk and/or paper) will be attached.

6 Specific Requirements

6.1 Linux Requirements

The following requirements are not covered in the section 6.2 or 6.3 (the VxWorks requirement listings). Some of these requirements are Linux-specific. Other requirements are those that were missing from the section 6.2 and 6.3 requirements.

	
	Requirement
	Objective
	Section 3 Requirement

	L1
	Functional testing
	All real-time related functions will be exercised.
	All

	L2
	Stability testing
	RTOS will be subjected to previously identified errors
	3.1.12

	L3
	Installation test

	The process for successful software installation will be identified.
	3.1.7

	L4
	Critical timing
	Under various loads, how well can the RTOS meet the timing constraint of the highest priority task?
	3.1.1

3.1.6

	L5
	Memory allocation timing
	What is the time range for a memory allocation (min, mean, max)
	3.1.6

	L6
	Initialization timing
	How long does the RTOS take to initialize.
	3.1.6

	L7
	Prevent paging
	Can memory for real-time tasks be held in physical memory and prevented from being paged to disk?
	3.1.4

	L8
	Memory protection
	How well are user tasks and the kernel protected from malfunctioning tasks?
	3.1.4

	L9
	System call timing
	Time each real-time related system function
	3.1.6

	L10
	Schedulers
	For real-time Linux variants that support more than one scheduler, test how the various schedulers affect critical timings.
	3.1.1

	L11
	Minimal configuration
	Identify the minimal configuration for each real-time Linux variant. Determine the stored size and memory used.
	3.1.10

	L12
	Configurations
	Document each configuration. Include what can (or cannot) be changed or eliminated from a real-time Linux configuration.
	3.1.7

6.2 VxWorks AE Requirements

Requirements tested by the CAU VxWorks AE test team are listed in the table below. They are copied from reference 4.

	
	Requirement
	Objective
	Verification Method
	Section 3 Requirement
	Real-time Linux

	A1
	Interrupt latency
	Measure interrupt latency
	Test (timing)
	3.1.6
	Will test

	A2
	Clock accuracy
	Measure accuracy of system clock
	Test
	3.1.6
	Will test

	A3
	Clock resolution
	Measure resolution of system clock
	Test
	3.1.6
	Will test

	A4
	Context switch time.
	Measure time to switch between two tasks of the same priority
	Test
	3.1.6
	Will test

	A5
	Critical sections within RTOS.
	Measure time to enter and exit critical sections
	Identify sections.

Test (timing)
	3.1.6
	Will test

	A6
	Preemption time
	Measure time for higher priority task to pre-empt lower priority one.
	Test (timing)
	3.1.6
	Will test

	A7
	Semaphore shuffle time
	Delay in the OS before the task acquires a semaphore in the possession of another task
	Test (timing)
	3.1.3

3.1.6
	TBD

	A8
	Get/release semaphore time
	Measure time to acquire and release a semaphore
	Test (timing)
	3.1.6
	Will test

	A9
	Deadlock break time
	Measure time to break a deadlock.
	Test (timing)
	3.1.5

3.1.6
	Will test

	A10
	Intertask message latency
	Time to send a message from one task to another
	Test (timing)
	3.1.3

3.1.6
	Will test

	A11
	Suspend/Resume Task Time
	Times for task to suspend or resume another task
	Test (timing)
	3.1.5

3.1.6
	Will test

	A12
	Stress Test - Periodic Interrupt Load
	Obtain benchmark under load
	Test
	3.1.1

3.1.2

3.1.12
	Will test

	A13
	Stress Test - Spurious Interrupt
	Obtain benchmark under load
	Test
	3.1.2

3.1.12
	Will test

	A14
	Stress Test - Memory Constraints
	Obtain benchmark under load
	Test
	3.1.4

3.1.12
	Will test

	A15
	Stress Test - Cache
	Obtain benchmark under load
	Test
	3.1.12
	Will test

	A16
	Stress Test - Stack Constraints
	Obtain benchmark under load
	Test
	3.1.12
	Will test

	A17
	Stress Test - CPU Loads
	Obtain benchmark under load
	Test
	3.1.12
	Will test

	A18
	Stress Test - Console I/O Loads
	Obtain benchmark under load
	Test
	3.1.2

3.1.12
	Will test

	A19
	Stress Test - Serial I/O Loads
	Obtain benchmark under load
	Test
	3.1.8

3.1.12
	Will test

	A20
	Stress Test - File System I/O Loads
	Obtain benchmark under load
	Test
	3.1.11

3.1.12
	Will test

6.3 VxWorks Requirements

The following requirements are copied from reference 1, “Software Requirements Specification for the VxWorks Realtime Operating System for Embedded Systems”. These are mapped to the basic RTOS requirements from section 3.

The “VxWorks Verified” column indicates the method of verification used by the VxWorks testing team. The Real-time Linux column contains comments about the applicability of the requirement to the real-time Linux variants. A TBD indicates that the requirement may or may not be applicable to the real-time Linux variants, or may only apply to specific variants. “Included” means that the service or function is part of the real-time Linux operating systems and will be verified in the same manner as the VxWorks requirement.

The next iteration of this test plan will map the requirements to each real-time Linux variant.

	
	Requirement
	VxWorks Verified
	Section 3 Requirement
	Real-time Linux

	External Interfaces

	V1
	The RTOS shall provide an interactive shell to test and debug the operating system, user programs, and device drivers.
	Usage
	3.2.1
	Not available as cohesive test suite, except possibly for high-end commercial OS. Tools to test and debug the RTOS are available individually.

	V2
	The RTOS shall provide an interface to load user programs into the target processor’s memory.
	Usage
	3.2.1
	Tools available, not integrated

	V3
	The RTOS tools shall support an interactive interface to start and stop user programs.
	Demo
	3.2.1
	Not available

	V4
	The RTOS tools shall support an interactive interface to query the status of all tasks, e.g. running, blocked, defunct.
	Demo
	3.2.1
	Linux Trace Tool (LTT), kernel debugger, other tools

	V5
	The RTOS tools shall support an interactive interface to read and modify memory referenced by address.
	Demo
	3.2.1
	Kernel debugger, other tools

	V6
	The RTOS tools shall support an interactive interface to read and modify variables used by the RTOS or user programs.
	Demo
	3.2.1
	Kernel debugger, other tools

	V7
	The RTOS tools shall support an interactive interface to read and modify interprocess communications data structures.
	Demo
	3.2.1
	TBD

	V8
	The RTOS tools should support an interactive interface to read and modify interprocessor communications data structures if used in a multiprocessor system.
	Not Verified
	3.2.1
	Not verified – single processor system

	V9
	The RTOS shall provide, upon query, the addresses of memory blocks which have been dynamically allocated for user programs, system services, variables, stacks, or other uses.
	Demo
	3.2.1
	TBD

	Scheduling

	V10
	The RTOS shall provide a preemptive priority scheduling algorithm.
	Test
	3.1.1
	Scheduling algorithms vary, but nearly all are preemptive, priority based

	V11
	The RTOS shall provide at least 32 levels of priority for user tasks.
	Test
	3.1.1
	Linux has 99 levels of priority. Real-time Linux variants have at least 32.

	V12
	Priority inversion shall be handled such that a low priority task should not be blocked when holding a resource upon which the highest priority task is waiting
	Test
	3.1.5
	RTAI and RTLinux do not provide a mechanism.

	V13
	The RTOS shall provide multitasking functions including creation, deletion, and suspension of tasks.
	Test
	3.1.5
	Included

	V14
	The RTOS shall provide deterministic context switching between tasks in bounded time.
	Test
	3.1.6
	Included

	V15
	The RTOS shall provide documentation which specifies the rules governing context switching between tasks, including how to predict which task will be running after the switch.
	Demo
	3.1.6
	TBD

	V16
	An The RTOS task with the highest user priority and a periodic timer set for an interval should be allowed to run at the interval within 1ms.
	Not Verified
	3.1.1
	Will test

	V17
	An RTOS task with the highest user priority and which is attached to an interrupt should be allowed to run within 1ms of the processor’s report of the interrupt.
	Not Verified
	3.1.1
	Will test

	V18
	The RTOS shall provide services to allow a user program to enter a ”critical” section of code which may not be interrupted or suspended until the critical section is exited.
	Test
	3.1.5
	Included

	V19
	The RTOS should provide services to dynamically set the priority of a user task in order to suspend all other tasks when a high priority situation is found by a low priority program, such as a background check finding an error.
	Test
	3.1.1
	Included in RTAI, TBD in other variants

	Data Management

	V20
	The RTOS shall provide software interfaces for dynamic allocation and deallocation of system memory.
	Test
	3.1.4
	Included

	V21
	The RTOS shall provide memory management services to dynamically allocate and free memory from a fixed block memory pool.
	Test
	3.1.4
	TBD – dynamic allocation, some support fixed block memory pool

	V22
	The size of the memory pool used for dynamic memory allocation shall be configurable by the user.
	Test
	3.1.4, 3.1.7
	TBD

	V23
	The RTOS shall provide virtual memory services which reroute access of a specified block of memory to another specified block of memory.
	Not Verified
	3.1.4
	TBD – most likely not available

	V24
	The RTOS shall provide protection on a block-by-block basis against writing virtual memory by unauthorized user programs.
	Not Verified
	3.1.4
	TBD – most likely not available

	V25
	The RTOS shall allow specified blocks of virtual memory to be hidden from use such that they can be used as replacement blocks when calling the memory rerouting services.
	Not Verified
	3.1.4
	TBD – most likely not available

	Loading and Unloading Software

	V26
	The RTOS shall support application loading being initiated from the operating system or another application (user program) which will become the parent of the loaded program (child).
	Test
	3.1.5
	Included

	V27
	The RTOS shall support user programs killing or removing themselves and other programs.
	Test
	3.1.5
	Included

	V28
	The RTOS shall free all resources (except for memory pool blocks) allocated to a program when that program is killed or removed.
	Test
	3.1.5
	Included

	Interprocess Communication

	V29
	The RTOS shall provide the capability for multiple tasks to share memory and coordinate access to the shared memory.
	Test
	3.1.3
	Included

	V30
	The RTOS shall provide message queue facilities which support variable length messages in FIFO or at tasks’ priority levels.
	Test
	3.1.3
	TBD

	V31
	The RTOS shall provide message queue facilities which support messages from interrupt handlers to user programs.
	Test
	3.1.3
	Included

	V32
	The RTOS should provide to the sending program acknowledgement of receipt of interprocess messages.
	Not Verified
	3.1.3
	TBD

	V33
	The RTOS shall provide both Binary and Counting semaphores to be shared between tasks and services.
	Test
	3.1.3
	Included

	V34
	The RTOS shall provide Mutual Exclusion semaphores to be shared between tasks and services.
	Test
	3.1.3
	Included

	V35
	The RTOS shall provide priority inheritance for Mutual Exclusion semaphores shared between multiple tasks.
	Test
	3.1.5
	No for RTAI/RTLinux. RTAI provides “highest locker” protocol

	V36
	The RTOS shall provide “safing” mechanisms such that an intertask communication device cannot be deleted while in use.
	Test
	3.1.3
	TBD

	I/O Facilities

	V37
	The RTOS I/O primitives create, remove, open, close, read, write, and ioctl shall provide user interfaces which are independent of the resource being accessed with the exception of network ”sockets”.
	Usage
	3.1.2, 3.1.8
	Included

	V38
	The RTOS shall provide I/O primitives referenced by a named object and using the primitive ”create” to return a file descriptor for a resource.
	Usage
	3.1.2
	Included

	V39
	The RTOS shall provide I/O primitives referenced by a named object and using the primitive ”remove” to free the file descriptor for a resource.
	Usage
	3.1.2
	Included

	V40
	The RTOS shall provide I/O primitives referenced by a named object and using the primitive ”open” to establish an input or output path with a resource.
	Usage
	3.1.2
	Included

	V41
	The RTOS shall provide I/O primitives referenced by a named object and using the primitive ”close” to close an input or output path with a resource and place the resource into a state ready to be opened again.
	Usage
	3.1.2
	Included

	V42
	The RTOS shall provide I/O primitives referenced by a named object and using the primitive ”read” to read input from the resource to the user program.
	Usage
	3.1.2
	Included

	V43
	The RTOS shall provide I/O primitives referenced by a named object using the primitive ”write” to write output to the resource from the user program.
	Usage
	3.1.2
	Included

	V44
	The RTOS shall provide I/O primitives referenced by a named object and using the primitive ”ioctl” to perform specialized functions unique to the resource.
	Usage
	3.1.2
	Included

	Network Connectivity

	V45
	The RTOS shall provide support for the Internet Protocol (IP).
	Test
	3.1.8
	Included

	V46
	The RTOS shall provide support for the User Datagram Protocol (UDP).
	Test
	3.1.8
	Included

	V47
	The RTOS shall provide support for the Transmission Control Protocol (TCP).
	Test
	3.1.8
	Included

	V48
	The RTOS shall provide sockets compatible with BSD 4.4 UNIX sockets.
	Test
	3.1.8
	Included

	V49
	The RTOS should provide File Transfer Protocol (FTP).
	Not Verified
	3.1.8
	Included

	V50
	The RTOS should provide Remote Procedure Calls (RPC).
	Not Verified
	3.1.8
	TBD

	V51
	The RTOS should provide Telnet remote logon.
	Not Verified
	3.1.8
	Included

	V52
	The RTOS should provide Network File System (NFS).
	Not Verified
	3.1.8
	Included

	V53
	The RTOS should provide application loading across a network using IP.
	Not Verified
	3.2.1
	TBD

	V54
	The RTOS should provide a remote debugger which connects the host and the target computer across a network using IP.
	Not Verified
	3.2.1
	TBD – probably not available

	File System

	V55
	The RTOS file system shall support the I/O primitives create, remove, open, close, read, write, and ioctl.
	Test
	3.11
	Included

	V56
	The RTOS shall provide a file system which supports system memory as a file media where a file refers to a named collection of data.
	Test
	3.11
	Included

	V57
	The RTOS shall allow the user to provide a file system which supports any readable and writable storage media.
	Not Verified
	3.11
	Included

	V58
	The RTOS shall allow the user to provide a file system which supports any readable storage media.
	Not Verified
	3.11
	Included

	V59
	The RTOS shall provide an MS-DOS compatible file system that can access DOS formatted drives and diskettes.
	Test
	3.11
	Included

	V60
	The RTOS DOS File System shall support hierarchical file and directory organization.
	Test
	3.11
	Included

	V61
	The RTOS DOS File System shall support long file names (above the 8.3 DOS standard)
	Test
	3.11
	Included

	Clocks and Timers

	V62
	The RTOS shall provide user interfaces for accessing at least the following clocks: a delay timer which causes an interrupt, and a periodic timer which causes interrupts at regular intervals.
	Test
	3.1.1, 3.1.6
	Included

	V63
	The RTOS shall provide services to set a delay timer which will signal the requesting task after the specified delay.
	Test
	3.1.1
	Included

	V64
	The RTOS shall provide services to set a periodic timer which will signal the requesting task regularly at the specified interval.
	Test
	3.1.1
	Included

	V65
	The RTOS shall support a granularity of at least 1ms per tick on all timers used for delays and periodic signals.
	Test
	3.1.1
	Varies with real-time variant

	Interrupts

	V66
	The RTOS shall provide services to install and remove user defined interrupt handlers.
	Test
	3.1.2
	Included

	V67
	The RTOS shall not preclude the development of interrupt handlers which handle nested interrupts on the same or different levels.
	Test
	3.1.2
	Included

	V68
	The RTOS shall provide services to mask interrupts on a level-by-level basis.
	Test
	3.1.2
	TBD

	V69
	The RTOS shall provide deterministic service to interrupts of different levels.
	Test
	3.1.2
	Included

	Dynamic Clock Rates

	V70
	The RTOS shall provide a method to customize the interpretation of the Real-time Clock and timer increment rates in order to support varying uses and implementations of the Real-time Clock oscillator source, i.e. one clock tick may represent 128ns in one system and 400ns in another system and the time-of-day clock and other timers must be adjusted to maintain correct orientation.
	Test
	3.1.7
	TBD – probably included

	V71
	The RTOS shall provide a method to set the system clock rate to high power mode, low power mode, and all modes in between which are supported by the clock selection hardware.
	Test
	3.1.7
	TBD

	Communication Safeguards

	V72
	The RTOS device drivers shall report any detected errors to the user program calling the driver.
	Not Verified
	3.1.9
	TBD

	V73
	The RTOS should provide a service to report errors to any task, including a task other than the one which opened the device.
	Not Verified
	3.1.9
	TBD

	V74
	The RTOS shall provide device drivers such that by using the ”remove” and ”create” primitives, the user can attach the driver of a failed device to another equivalent device.
	Not Verified
	3.1.9
	TBD

	System Visibility

	V75
	The RTOS tasks and service routines should have the ability to write to a common log such that the calling order of the services is preserved for later retrieval.
	Test
	3.1.9
	Included

	V76
	The RTOS tasks and service routines shall have the ability to write to a common log asynchronously by sending message to separate logging task or synchronously by using a subroutine or macro to access the log.
	Test
	3.1.9
	Included

	V77
	The RTOS tasks and service routines should write to a common log the identity of executing service, parameters passed in and out, and success or failure status.
	Not Verified
	3.1.9
	TBD

	V78
	The RTOS shall provide a software interface to user programs to log messages in a shared area with the characteristics of a circular queue for later retrieval.
	Test
	3.1.9
	TBD

	V79
	The RTOS shall provide a software interface to user programs to log messages in a shared area of at least 1KB in size.
	Test
	3.1.9
	TBD

	V80
	The RTOS shall provide the means for a user program to patch the program image or data belonging to itself or other user programs.
	Test
	3.1.4
	TBD. Patching outside of user program requires root privileges.

	V81
	The RTOS should provide a service to report which tasks have opened a specified device driver.
	Not Verified
	3.1.5
	TBD

	V82
	The RTOS should provide a service to report which device drivers have been opened by a specified task.
	Not Verified
	3.1.5
	TBD

	V83
	The RTOS device drivers shall log any detected errors for later retrieval.
	Not Verified
	3.1.9
	TBD

	V84
	The RTOS shall provide an interface to user programs to load other user programs into the target processor’s memory.
	Test
	3.1.5
	Included

	V85
	The RTOS shall provide an interface to user programs to start and stop other user programs.
	Test
	3.1.5
	Included

	V86
	The RTOS shall provide an interface to user programs to query the status of all tasks, e.g. running, blocked, defunct.
	Test
	3.1.5
	Included

	V87
	The RTOS shall provide an interface to user programs to read and modify variables used by the RTOS or other user programs.
	Test
	
	No. User programs are protected from each other, and the kernel is protected from user programs. User programs modifying kernel variables is NOT good.

	V88
	The RTOS should provide an interface to user programs to read and modify interprocess communications data structures.
	Not Verified
	3.1.3
	TBD

	V89
	The RTOS shall provide an interface to user programs to read and modify memory referenced by address.
	Test
	3.1.4
	Included

	V90
	The RTOS shall allow user programs to access any and all registers which the hardware allows to be read or written.
	Usage
	3.1.2
	No. User-written device drivers can. User programs have no direct access to the hardware

	Multiprocessing Services

	V91
	When implemented for a multiprocessor system, the RTOS should provide shared memory, semaphores, and message queue facilities such that the user is not required to know which processor is executing any program.
	Not Verified
	
	Not Verified

	V92
	When implemented for a multiprocessor system, the RTOS should allow the retrieval of program state data saved by tasks on one processor by tasks on another processor.
	Not Verified
	
	Not Verified

	Performance

	V93
	When the RTOS is loaded and the RTOS initialization code is invoked, the RTOS shall reach an operational state and be ready to start user programs within mission requirements
	Usage
	3.1.6
	Will time the initialization for mean/worst case values

	Programming Standards

	V94
	The RTOS shall be written using Assembler, C, or C++.
	Not Verified
	3.2.3
	C, Assembly

	V95
	The RTOS using C shall conform to ANSI-Programming Language C, X3.159-1989.
	Not Verified
	3.2.3
	TBD

	V96
	The RTOS software interfaces for C should conform with POSIX standard IEEE-Std-1003.1.
	Not Verified
	3.2.3
	Some variants or parts of variants

	V97
	The RTOS software interfaces for C should conform with POSIX standard IEEE-Std-1003.4 for real-time extensions.
	Not Verified
	3.2.3
	Some variants or parts of variants

	Language Support

	V98
	The RTOS tools shall provide compilers for at least the following languages: C, C++, Assembler.
	Not Verified
	3.2.2
	Yes

	V99
	The RTOS should support user program development using Assembler, C, and C++.
	Not Verified
	3.2.2
	Yes

	V100
	The RTOS tools should allow code written in Assembler to be called from C or C++ programs.
	Not Verified
	3.2.2
	Yes

	V101
	The RTOS tools should allow code written in C to be called from Assembler programs.
	Not Verified
	3.2.2
	Included

	V102
	The RTOS shall provide documentation of the compiler’s stack, register, and memory usage.
	Not Verified
	
	TBD

	V103
	The RTOS shall provide standard library services including numeric, string, bit manipulation, and trigonometric functions.
	Demo
	3.2.2
	Included

	Constraints from System

	V104
	There should exist a minimum executable version of the RTOS kernel such that the program image displaces no more than 256KB of memory and requires no more than another 1M of RAM memory.
	Not Verified
	3.1.10
	Will determine minimum size, which will almost certainly be >256KB

	V105
	There shall exist a version of the RTOS such that the program image can be placed in Read-Only-Memory (ROM) and the initialization service executed; the RTOS may transfer itself to RAM before starting the kernel.
	Test
	3.1.10
	TBD, probably included

	V106
	There shall exist a version of the RTOS kernel such that the program image can be placed in Random-Access-Memory (RAM) and executed.
	Usage
	3.1.10
	Included

	V107
	The RTOS shall not preclude the use of a CPU test interface such as the UART.
	Usage
	3.1.10
	TBD

	Data Allocation

	V108
	The RTOS should provide services to report which task owns a specified allocated memory block.
	Not Verified
	3.1.4, 3.1.5
	TBD

	V109
	The RTOS should provide services to report which memory blocks are allocated to a specified task.
	Not Verified
	3.1.4, 3.1.5
	TBD

	Restarting System

	V110
	The RTOS shall provide the ability to restart the operating system without reloading the operating system image to memory.
	Test
	3.1.10
	Included

	V111
	The RTOS shall not require the initialization of any memory except that containing critical data for the kernel before starting execution.
	Test
	3.1.10
	TBD, will test

	V112
	The RTOS should provide services to reinitialize operating system data which is required to start the kernel from its initial state.
	Not Verified
	3.1.10
	TBD

	V113
	The RTOS shall allow the user to create services to reinitialize user data which is required to start the user programs from a saved state.
	Test
	3.1.10
	TBD, probably not available

	V114
	The RTOS should provide services to allow user programs to invoke the restart of the operating system.
	Not Verified
	3.1.10
	Included, if given root privilege

	V115
	The RTOS should provide services to allow user programs to invoke the restart of other user programs or themselves.
	Not Verified
	3.1.10
	Included, if given root privilege

	Reporting Errors

	V116
	The RTOS services shall report detected errors to the caller of the service unless provisions are made to report to another program which has requested the error reports.
	Test
	3.1.9
	Included

	V117
	The RTOS shall report the crash, or death of a program due to an error to the parent of the crashed program.
	Test
	3.1.9
	Included

	V118
	The RTOS should provide services to query a program or resource for errors from another program.
	Not Verified
	3.1.9
	TBD

	Detecting System Failures

	V119
	The RTOS shall allow the user to handle any and all hardware interrupts, including those reporting the detection of an error.
	Test
	3.1.2
	Device drivers handle the interrupts. These can be created by the user.

	V120
	The RTOS shall allow the user to maintain a ”deadman” timer, i.e. a timer which requires resetting and, when expired, causes a CPU halt or reset.
	Test
	3.1.10
	Included

	V121
	The RTOS shall allow the user to maintain background ”health and status” tasks which can access any memory by address and query the status of any executing task.
	Test
	3.1.10
	Included, if a kernel or real-time task

	Maintainability

	V122
	Source code for the RTOS configurability services (Board Support Package) will be available to users.
	Not Verified
	3.1.7
	Most variants do not have board support packages. Source code is available

	Portability

	V123
	The RTOS should be modular in structure such that processor specific code is confined to 10% or less of the source code files used to build the operating system.
	Not Verified
	3.2.5
	Included, TBD on percentage

	V124
	The RTOS tools shall provide portability to users such that user programs can be used on any other architecture supported by the RTOS by recompiling the user programs without change to the source code.
	Demo
	3.2.5
	Included

	V125
	The RTOS tools shall provide portability to users such that operating system interfaces are consistent between the RTOS versions built for different architectures.
	Demo
	3.2.5
	Included

	Configurability

	V126
	The RTOS tools shall allow the user to build an operating system (the RTOS) image which contains only those functions and data areas required by the user programs, i.e. the RTOS shall be scalable.
	Demo
	3.1.7
	Included

	V127
	When removing a function from the RTOS image, the RTOS tools shall also remove any data and initialization routines which support only the removed function.
	Demo
	3.1.7
	TBD

	V128
	The RTOS tools should provide warning messages when system routines and functions are being replaced or redefined by a user written function.
	Not Verified
	3.1.7
	TBD, probably not available

	V129
	The RTOS shall allow the user to create functions which can be used as services available to the operating system and user programs.
	Test
	3.1.7
	Included

	V130
	The RTOS shall allow the user to create functions which can be used to replace services provided by the operating system.
	Test
	3.1.7
	Included

	V131
	The RTOS should allow the user to specify the size of the target computer’s memory available for use by software.
	Not Verified
	3.1.11
	TBD

	UART I/O

	V132
	UART I/O support shall be provided as the RTOS I/O system device driver.
	Test
	3.1.8
	Included

	V133
	The device driver I/O interface routines (create, remove, open, close, read, write, and ioctl) shall be accessible only through the RTOS I/O system.
	Test
	3.1.8
	Included

	V134
	The driver shall provide one serial communications port.
	Test
	3.1.8
	Included

	V135
	An initialization sequence shall be provided to initialize the hardware interface and install the device driver in the I/O system. This sequence must be invoked before the interface can be used.
	Test
	3.1.8
	Included

	V136
	Hardware initialization shall default to no parity.
	Test
	3.1.8
	Configurable

	V137
	Hardware initialization shall default to 38400 baud.
	Test
	3.1.8
	Configurable

	V138
	Hardware initialization shall default to one stop bit.
	Test
	3.1.8
	Configurable

	V139
	Hardware initialization shall default to 8-bit character mode.
	Test
	3.1.8
	Configurable

	V140
	Hardware initialization shall enable the interface.
	Test
	3.1.8
	Included

	V141
	The driver shall provide an interface to create this driver in the I/O system for the provided communications port.
	Test
	3.1.8
	Included

	V142
	The device create interface shall allow the specification of the I/O file name and the read and write buffer sizes.
	Test
	3.1.8
	Included

	V143
	The driver shall provide an ioctl interface to set the baud rate of the interface to the supported rates of 2400, 4800, 9600, 19200, 38400, 76800, and 153600 baud.
	Test
	3.1.8
	Included

	V144
	The driver should provide an ioctl interface to set the baud rate of the interface to any baud rate supported by the UART hardware.
	Test
	3.1.8
	Included

	V145
	The driver shall provide an ioctl interface to read and write the control registers of the UART interface.
	Test
	3.1.8
	Included

	V146
	The driver shall provide an interface to perform an open of the file to be used for the device.
	Test
	3.1.8
	Included

	V147
	The driver shall provide a routine to begin transmission by storing the first character in the output FIFO and unmasking the transmitter empty interrupt.
	Test
	3.1.8
	Included

	V148
	The driver shall provide a routine to handle transmitter empty interrupts.
	Test
	3.1.8
	Included

	V149
	If more characters remain to be transmitted, the transmitter empty interrupt handler shall store the next character in the output FIFO.
	Test
	3.1.8
	Included

	V150
	If no more characters remain to be transmitted, the transmitter empty interrupt handler shall mask the transmitter empty interrupt condition.
	Test
	3.1.8
	Included

	V151
	The driver shall provide a routine to handle received data available interrupts by passing the received character to the TTY read routine in the I/O system.
	Test
	3.1.8
	Included

7 Test Procedure Specification

The following chart provides a template test procedure specification to follow for each item in the test matrix. An explanation of the contents of each block is provided.

Real-time Linux Evaluation Test Procedure

	TEST INFO

	TEST CASE ID: A numeric identifier matching the corresponding item in the test matrix.
	DATE PERFORMED: Date/dates test record was obtained.

	TEST PROCEDURE FILE NAME: The name of this test procedure file.
	TEST CONDUCTOR: The name of the individual conducting the test.

	TEST SCRIPT FILE NAME: The names of any script file used during the course of the test.
	LOG FILE NAME: The name of the file to use for capturing the test system’s console output.

	TEST PROCEDURE OBJECTIVE: A brief description of the goal of the test.

	OS INFO

	OS IDENTIFIER:

	BOOT IMAGE FILE NAME: The complete file path to the OS image file loaded by the boot loader.

	COMMAND LINE: Command line parameters provided to the kernel
	CONFIGURATION: Name of any configuration files used

	TEST SETUP

	TEST MODULE NAME: The name of the test module downloaded and tested during this procedure.
	TEST MODULE DOMAIN: The name of the domain into which the test module is loaded.

	OTHER USER MODULES AND DOMAINS: The names and domains of any auxiliary or support modules necessary for this procedure as well as the domain into which it must be loaded.

	OTHER HARDWARE OR SOFTWARE INSTRUMENTATION DATA FILES: The names of any data files or logs created by hardware or software instrumentation.

	

	STEP

#
	STEP DESCRIPTION
	EXPECTED RESULTS or

OBSERVATIONS
	EXPERIMENTAL RESULTS

	1.
	Description of experimental procedure.
	Expected results from procedure.
	Actual, experimentally derived results and observations when different from expected results. When appropriate, include test summaries, computed averages, and confidence intervals.

	2.
	
	
	

	3.
	
	
	

	4.
	
	
	

	5.
	
	
	

	6.
	
	
	

Linux Process

Linux Process

User Space

Kernel Space

Loadable Module

Loadable Module

Linux Kernel

Hardware

Real-Time Task

Real-Time Task

Real-Time Micro Kernel

Linux Process

Linux Process

User Space

Kernel Space

Standard Linux Kernel

Hardware

Real-time

Process

Linux Process

Linux Process

User Space

Kernel Space

Loadable Module

Loadable Module

Modified Linux Kernel

Preemptible, Micro Timing, and/or Low Latency

Hardware

Page 31 of 47
June 28, 2002

